

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 4, No.3 (July-2015)

E-mail: enrico.cambiaso@ieiit.cnr.it, gianluca.papaleo@ieiit.cnr.it, maurizio.aiello@ieiit.cnr.it

http://journals.uob.edu.bh

Implementation of SlowDroid:

Slow DoS Attack Performed by a Smartphone

Enrico Cambiaso, Gianluca Papaleo, and Maurizio Aiello

 National Research Council, CNR-IEIIT

Via De Marini, 6 – 16149 – Genoa, Italy

Received 23 Nov. 2014, Revised 19 Jan. 2015, Accepted 7 Mar. 2015, Published 1 July 2015

Abstract: In terms of capabilities, today's smartphones are comparable to desktop computers. Last generation cellphones are indeed

able to execute almost all the operation a common computer is able to accomplish. In this paper we focus on the use of mobile

devices for perpetrating cyber attacks. With the purpose of proving the ability of executing attacks from a mobile environment, we

introduce a mobile threat, SlowDroid, running on Android devices. SlowDroid implements a Denial of Service attack. Since it makes

use of tiny amounts of resources, it is particularly accustomed to a mobile environment. We exhaustively present SlowDroid

implementation and choices in terms of design, user interface and system architecture.

Keywords: android, mobile attack, cybersecurity, slow dos attack, denial of service

1. INTRODUCTION

In the last years, an emerging market appeared in the

computer industry, relatively to Internet ready devices

such as smartphones and tablet. The big companies of the

Internet, such as Google, Apple and Microsoft are

effectively in conflict for the conquest of the mobile

market. Many companies and start-up are widely

investing resources on the mobile market, announcing

mobile oriented software and hardware with even more

powerful capabilities. In this context, the last generation

of devices is equipped with high performance hardware,

such as processors, memory drives, sensors, localization

chips, and different connection modules. In virtue of this,

smartphones are currently able to accomplish operations

not even thinkable before. This evolution has made

mobile devices effectively able to perform almost every

activity associated to desktop computing.

If we explore menaces involving mobile devices, they

are often executed to target cellphones instead of

exploiting them for perpetrate cyberattacks. Indeed,

attackers usually inject malware, trojans, or viruses on the

device to gather some kind of sensitive information or

create a damage to the user. Historically, the first attack

against cellphones arrived in 2000. The attack is

commonly known as the Timofonica worm, designed to

send SMS text messages to randomly generated numbers

[24]. In the arena of attacks to mobile devices, it is only

with the advent of the smartphone era that a wide variety

of threats effectively appear. Some examples are the

CommWarrior worm for Symbian OS [25] or the

FakePlayer malware for Android operating system [32]. It

is also worthy of mention the smudge attack, a “physical”

threat able to detect unlock patterns by analyzing the

smudges on touch screen surfaces [8].

Mobile devices always represented a target for

attackers. Nevertheless, they have rarely been used as an

attack tool. This paper focuses on the adoption of mobile

and smart devices for perpetrating cyberattacks. A test

case, we introduce the SlowDroid attack [11] running

over the Android operating system. SlowDroid

implements a Denial of Service (DoS) attack. Such threats

are executed to make a network service unavailable on the

network. The attacks belongs to a specific emerging

category of DoS attacks: the first generation of such

threats works by either exploiting a particular service or

flooding the victim with a large amount of data.

Differently, novel Slow DoS Attacks (SDA) [10] make

use of tiny amounts of network bandwidth and

computational resources. Because of this, we believe SDA

are particularly suitable to a mobile environment.

The rest of the paper is organized as follows. Section 2

reports the related work of current threats. Section 3

motivates the advantages of a mobile threats execution.

http://dx.doi.org/10.12785/ijcds/040303

166 E. Cambiaso, et al.: Implementation of SlowDroid: Slow DoS Attack Performed by a Smartphone

http://journals.uob.edu.bh

Section 4 reports the implementation of SlowDroid, while

Section 5 describes how the attack works. Finally, Section

6 reports the conclusions of the paper.

2. RELATED WORK

In this section we cover the related work on the topic.
First, we introduce current Slow DoS Attacks in general,
thus focusing on attacks perpetrated from mobile devices.

A. Slow DoS Attacks

Slow DoS Attacks represent the second generation of
Denial of Service (DoS) menaces, after flooding based
ones. Indeed, unlike the first generation of DoS attacks,
SDAs make use of tiny amounts of bandwidth to lead a
DoS on the victim. Attack bandwidth is reduced by
working at the application layer of the ISO/OSI model,
thus directly targeting the listening daemon running on the
victim host. In fact, in comparison to the
network/transport layer, at this layer the resources needed
to overwhelm victim‟s resources are reduced. As a
consequence of this, in the last few years, SDA emerged
and consolidated as a dangerous attacks on the Internet.

Considering this category of attacks, most of the
threats aren‟t related to research works, but they have
been directly presented on the Internet, obtaining
popularity and wide adoption.

Historically the first threat has been represented by the
Shrew, an attack designed to send an attack burst to the
victim, giving it the illusion of a high congestion on the
network link [9]. Later, Maciá-Fernández et al. [13]
introduced the Low-Rate DoS attack against Application
Servers (LoRDAS) attack, leading a DoS on the victim by
executing short attack bursts, focusing them to specific
instants.

Instead, among the attacks born on the Internet, the
most known threat maybe is Slowloris, a SDA
implemented by Robert “RSnake” Hansen [29]. Like most
of the slow DoS threat, Slowloris only targets the HTTP
protocol. The attack works by establishing a large amount
of pending requests with the victim and maintaining them
alive as long as possible [21].

In 2012, together with the slowhttptest tool for
executing a set of Slow DoS Attacks [14], the
development team also introduced the Slow Read menace
[26] for slowing down the responses of a web server by
sending legitimate requests and specifying a small client-
side reception buffer.

The Apache Range Headers attack has been published
on the Internet as a script by a user known as “KingCope”
[23]. This attack exploits the HTTP byte-range parameter,
commonly used to request a portion of a resource, to force
the server to replicate in memory a specific resource.
Conversely to the previously mentioned threat, this attack
should no longer be considered a menace [27], since

appropriate patching systems have been deployed from
Apache developers.

In this work we enrich the available set of SDA tools,
proposing, executing, and analyzing the SlowDroid
attack. The attack we propose works similarly to the
Slowloris menace, since it is based on the same concept of
constructing and sending to the server uncompleted
requests. Nevertheless, in comparison to the other attacks
mentioned, the proposed tool requires a minimum amount
of attack bandwidth, thus making it particularly suitable to
the mobile environment. Moreover, unlike most of the
previously available attacks, the proposed menace can
affect different protocols: messages payload is indeed not
compliant to a specific protocol. Nevertheless, since
custom payload is allowed, SlowDroid can also send
specific well-formed messages affecting particular
protocols. The proposed menace should therefore be
considered a flexible tool, since it is able to lead to a DoS
a wide variety of services.

Mobile Attack Tools

As previously introduced, until recently, due to their
limited software, hardware and network resources, mobile
devices were only considered a target for attackers,
instead of exploiting them to accomplish malicious
operations. Instead, mobile devices are nowadays able to
accomplish operations comparable to ordinary computers.
As a consequence, and also thanks to the advent of
smartphones and last generation mobile operating systems
(Android, iOS, Windows Phone, Firefox OS, etc…), apps
developing is facilitated and malicious attacking tools are
slowly reaching the mobile world too. In this paper we
will now only consider Android operating system, since it
represents the most common mobile operating system
available [20] and due to the nature of the platform.
Indeed, Android is considered an attractive operating
system for hacking activities, due to the simplified app
installation process, the possibility of obtaining
administrator privileges on the device, and the open
source nature of the system.

Considering the attacks deployed on the Android
platform, various malevolent activities are covered.
WiFiKill [31] is a tool used on shared wireless networks
with the purpose of disabling Internet connection on
specific devices.

DroidSheep [2] is instead an application for session
hijacking, retrieving session cookies from hosts connected
to the same network. This action would permit a
malicious user to virtually impersonate the victim. A
similar attack intercepting web session profiles is Faceniff
[3]. These attacks represent a mobile porting of tools such
as the Firesheep extension [4] for Firefox.

The mobile threats introduced above require
administration privileges on the device. It is important to
highlight that root privileges are available only on a small
percentage of the devices, since it requires specific

 Int. J. Com. Dig. Sys. 4, No.3, 165-173 (July-2015) 167

http://journals.uob.edu.bh

procedures and knowledge owned only by a small portion
of hackers. Therefore, this rooted device requirement,
which is not needed in SlowDroid, represents an
important limit.

Considering instead attacks that don‟t require
administration privileges, various apps [16,15,18,17] are
based on the Low Orbit Ion Cannon (LOIC) tool [28], a
malicious software also adopted by the Anonymous group
of hacktivists. The implementations differ one from the
other. Nevertheless, they all make use of high amount of
bandwidth and computational resources, since a flood
against the victim is accomplished. In virtue of this, we
believe such threats are not accustomed to a mobile
environment, where resources are often limited.

An effective Slow DoS Attack implemented on a
mobile platform is represented by the (unofficial)
Slowloris mobile app [19]. Although the attack is able to
successfully lead a DoS on the victim, it needs more
attacking bandwidth than SlowDroid.

Therefore, the SlowDroid attack introduced in this
paper should be considered an innovative tool designed to
be executed on mobile platforms.

3. MOBILE DEPLOYMENT ADVANTAGES

As we have introduced above, the SlowDroid tool has
been implemented as a mobile application running on
Android operating system [11]. Android applications can
be written in Java programming language. Since Java is a
multi-platform language, it gives us the ability to reuse the
same components on different (mobile or not)
environments.

When designing a new software, it is important to
choose a good environment accordingly to developers and
final users needs. The environment is related to the
technologies used during the development process, such
as the programming language or the system architecture.
In our case, the environment also includes the choice
between a desktop/static or a mobile/dynamic execution
of the tool.

From the attacker point of view, a mobile attack
deployment may be preferred for many reasons. We will
now briefly describe these reasons.

A. Mobility

Since mobile devices were born for communicating on
mobility, they are carried out by people for the entire day.
Therefore, a mobile execution of an attack offers the
possibility to launch offensive operations from a wide
range of places. Additionally, since smart devices are
often equipped with several connection modules (Wi-Fi,
3G, LTE, Bluetooth, etc…), the attack is conveyed
through one of these channels.

For example, we could imagine a user at the
restaurant, exploiting the public Wi-Fi network to launch

an attack against a particular victim, without being noticed
by the other customers.

B. Attack Hiding

When running an attack in mobility, we could assume
the attack is not interrupted in case the device (thus the
attacker) is moving from a cell (like 3G, 4G, Wi-Fi, etc…)
to another one. Particularly, in case of an horizontal or
vertical handover [30], it is more difficult to detect and
mitigate the attack, since the perpetrator‟s source address
is continuously varying.

For example, we could imagine an attacker executing
a malicious operation while cycling. In this case, the
perpetrator would easily pass unobserved while executing
the malevolent activity.

C. App Spreading

We can assume that a mobile deployment of a menace
would represent an easy to use product. Indeed, if we
consider last generation mobile operating systems,
applications installation is considered an easy process, due
to the user interface usability. Therefore, it is possible to
easily reach large amounts of users with a simple
publishing of a malicious tool (or an additional
application embedding a malicious behavior). Moreover,
if we consider the Android operating system in particular,
the offered freedom allows users to install apps through
third-party markets or directly from an Android Package
APK files. Therefore, since no particular knowledge is
required to install a malicious tool, almost every user
owning a smartphone is able to install and execute an
attack.

4. SLOWDROID IMPLEMENTATION

This section is focused on describing in detail the
implementation of SlowDroid. The attack opens a
specified amount of connections with the targeted server,
with the aim of seizing all the service queue on the victim
host. Under these conditions, a Denial of Service will be
reached on the server and the adversary would maintain
the DoS state during the attack execution time.

The SlowDroid tool we have implemented runs on
Android based mobile devices and it has been published
on the Internet [11].

We will now describe in detail the implementation.

A. User Inputs

In order to execute an attack/test, it is not required to
master the Denial of Service topic. Indeed, the application
has been designed to require to the user less information
possible. Nevertheless, advanced configuration is
possible, by customizing requests payload sent during the
attack.

1) Basic Configuration
In order to target/test an Internet service, following

basic information are needed:

168 E. Cambiaso, et al.: Implementation of SlowDroid: Slow DoS Attack Performed by a Smartphone

http://journals.uob.edu.bh

 Server IP Address (String) identifies the IP
address or domain name of the
targeted/tested server;

 Port (int) identifies the listening port of the
server‟s daemon;

 Connections (int) identifies how many
connection will be simultaneously active
during the attack execution;

 Wait Timeout (int) identifies, in seconds, the
timeout used to alternate activity periods to
idle ones (ON-OFF behavior).

2) Advanced Configuration
In order to execute an advanced attack, it is possible to

customize the requests payload sent to the server.
Following information can be customized:

 Request Generation (enum) identifies how
requests payload is generated. Three possible
values are allowed:

o Default: requests are composed by a
sequence of spaces;

o Random: characters composing a
request are chosen randomly,
accordingly to the following regular
expression: [0-9a-zA-Z\-_ .,;:?/=*]

o Custom: a customized request
format is used (accordingly to the
next parameter).

 Custom Request Format (String) is used in
case a custom request generation is adopted
(otherwise, this parameter is ignored). This
parameter identifies the custom request sent
as payload during the attack.

3) Additional Configuration
It is also possible to set up additional settings:

 Test Max Duration (int) identifies, in
seconds, the maximum duration of the attack.

This parameter has been introduced as SlowDroid has
not been designed to be used for malicious operations.
The concept behind the Test Max Duration setting is that
an attack test can‟t be executed indefinitely and it will be
sooner or later interrupted: the maximum duration for
each attack is 3600 seconds. The same concept has been
used to automatically interrupt an attack test in case the
device‟s screen is turned off, or in case the application
loses the focus. Indeed, the tool has been designed it to
require a constant attention of the user.

B. Graphical User Interface

The tool has been implemented to maintain
compatibility among a wide variety of versions of the
Android operating system: the main Activity class

implements PreferenceActivity [6], an Activity class
implemented and available through the Android
development framework, with the purpose of providing an
easy to develop and extend interface for managing user
preferences, compliant to the design of the entire
operating system. This class allows developers to define a
structure of preferences, thus automatically generating the
user interface. Therefore, this choice allows us to reuse
already available and consolidated software components.

For the same reason we provide to the user a menu
that can be opened through the physical menu button on
the device or by clicking an automatically shown menu
button inside the application. Through the menu, users can
launch a SlowDroid attack test with current settings, or
obtain information about developers group. These two
cases are treated similarly and a Dialog object [1] is
opened. A dialog is a small window shown over the
current activity and it is usually adopted for modal events.

The attack dialog is shown in Figure 1. As shown in
figure, through the shown dialog, users can interrupt the
attack at any time.

Figure 1. SlowDroid Attack Dialog

 Int. J. Com. Dig. Sys. 4, No.3, 165-173 (July-2015) 169

http://journals.uob.edu.bh

It is also shown the percentage of active connections
over all the connections specified by the user. This value
is shown as a percentage through a graphical odometer,
represented with two different ImageView elements [5].
This percentage, along with the exact number of
established connections, is updated every second. In order
to enhance graphical results and provide a more realistic
odometer, updates procedures are accomplished through a
RotateAnimation object [7].

C. SlowDroid Library

With the purpose of making the attack reusable,
mostly on a desktop environment, SlowDroid has been
implemented in two different projects: the first one is
represented by a Java attack library designed to instantiate
a new attack and execute it. This library is not bounded to
a mobile implementation; therefore it can be used on
projects running on desktop environments as well.
Instead, the second project is represented by the
SlowDroid Android application. This application makes
use of the attack library and implements the mobile
application. Since Android applications can import Java
libraries, the choice of splitting the project in two parts
provides us the possibility of reuse of the implemented
library on different projects, and at the same time
maintaining compatibility with the Android application.
As an example, the library may be (even stealthily)
included in different (mobile or not) projects, with the aim
of designing a new application from scratch, integrate the
attack in a more exhaustive testing tool, or extending the
attack itself through wrapping techniques.

5. ATTACK DESCRIPTION

The SlowDroid attack is based on the SlowReq threat
[22], implementing an extended and enhanced version of
the threat. SlowDroid exploits a vulnerability on most
daemons implementations, often designed to limit the
maximum number of simultaneous active connections to
an extremely low value, with the aim of limit the number
of connections simultaneously managed by the server.
SlowDroid directly affects the application layer of the
victim, trying to open with the listening daemon more
connections than the ones it is able to manage. In virtue of
this, in comparison to flooding based threats, less attack
bandwidth is required. For this reason, the attack is
particularly accustomed to the mobile environment.

We will now analyze the category of attacks which
includes SlowDroid, describing how such attacks work.

A. Long Requests DoS Attacks

The category of Slow DoS Attacks which includes
SlowDroid is known as Long Requests DoS [10].
Menaces of this type establish a large amount of
connections with the server, sending uncompleted
requests and saturating its resources while waiting for
requests completion. Since requests are endless, this wait
would result undefined.

1) Slowloris
The Slowloris attack [21] could be considered the

most known Slow DoS Attack. Slowloris is a Long
Request DoS that exploits the HTTP protocol. The attack
works by establishing a specific amount of connections
with the victim, as for others Long Request DoS threat.
Additionally, through each connection, Slowloris sends
the following specific data.

GET / HTTP /1.1\ r\n

Host: www.target.com\r\n

User Agent: Mozilla /4.0 [...]\ r\n Content -Length: 42\r\n

After receiving these data, the server‟s daemon would
wait for the final \r\n characters, which identify the end of
the request. Nevertheless, Long Request DoS attacks
would never send such characters, thus forcing the server
to an endless wait. Under these connections, a server side
connection close would occur in case no additional
characters are sent within a specific time period. With the
purpose of maintaining the connections alive as long as
possible, a Wait Timeout is used to periodically send a
low amount of data and prevent closures. Particularly,
Slowloris typically and repeatedly sends the following
data, representing a single HTTP parameter.

X-a: b\r\n

2) SlowDroid
The behavior of SlowDroid is similar to the one of

other Long Requests DoS such as Slowloris.
Nevertheless, in this case different data payload is sent.
Particularly, at any period, a single character is sent to the
server. By default, a single space is always sent, but in
general each character may be good. This behavior
requires to the attacker a minimum amount of network
bandwidth to induce a DoS on the server. Since the attack
requires a minimum amount of bandwidth, it is
particularly suitable to mobile environments, usually
characterized by limited and expensive resources.
Moreover, unlike most Slow DoS Attacks like Slowloris,
in this case payload content is not compliant to a specific
protocol. Therefore, SlowDroid can affect a wide range of
TCP protocols (i.e. SMTP, FTP, etc…).

B. Effects of a SlowDroid Attack

The proposed SlowDroid tool is able to make an
Internet service unreachable. From the server point of
view, the effects of an attack execution are particularly
interesting. Indeed, it often occurs that the server is
unreachable just after a few seconds after the beginning of
an attack, since all the available connections managed by
the server are already (maliciously) seized.

Figure 2 shows the effects of a SlowDroid attack on a
server. In particular, the number of connections
established with an Apache2 web server without any
protection module active is shown. Capture is relative to a
duration of 600 seconds.

170 E. Cambiaso, et al.: Implementation of SlowDroid: Slow DoS Attack Performed by a Smartphone

http://journals.uob.edu.bh

Figure 2. SlowDroid Effects on an Apache2 Web Server

It is possible to analyze that the DoS is reached on the
server just after about 4 seconds. After this time, all the
connections have been seized by the attacker and any
additional (legitimate or not) connection is not able to
communicate with the listening daemon until a connection
slot is freed. In particular, although it‟s possible to
connect to the server (at the transport layer), under such
DoS an additional connection is not passed to the
application layer, thus to the listening daemon, until a
connection closure event occurs. Since slots are never
freed during the execution of the attack, additional
connections experience a DoS.

When launching a SlowDroid attack, some active
connections may already be established with the server,
from some other clients. Also in this case, the server
would experience a DoS a few seconds after the begin of
the attack. Nevertheless, each already seized connection
would not be affected from the attack and it will be
possible to communicate with the server through this
channel. After a closure of the connection, the connection
slot will be available and any additional connection will
be allowed/accepted by the server. Actually, although
there would be some sort of race condition with potential
legitimate clients, the attacker would probably seize this
connection as it becomes available, due to its intrusive
behavior. For instance, SlowDroid has been implemented
to detect a connection closure as soon as it happens and
consequently re-establish the communication channel.

It is also important to mention that SlowDroid is
particularly difficult to detect it while it is active. Indeed,
log files on the server are often updated only when a
complete request is received: in our case, requests are
typically endless, and during the attack log files don‟t
contain any trace of such a behavior. Therefore, a log
analysis is not sufficient enough to produce an appropriate
warning in reasonable times. Of course, as the attack
proceeds and connections are closed due to some
circumstances (forced reset, custom configurations on the
server, timeout period occurrence etc.), the log files are
updated.

C. Attack Functioning

As explained above, during a SlowDroid attack a
certain amount of connections against the victim is
established by the attacker. In case of a server without any

already connected client, this number has not to be lower
than the maximum number of simultaneous connections
accepted by the server. Indeed, in this way all the
available connections will be seized an a Denial of
Service may potentially be reached.

Additionally, connections are kept alive by SlowDroid
by periodically sending data (a single byte character is
sent at any period), thus preventing closures.

The attack has been designed to execute three different
program flows/threads for managing connections:

 the connect flow takes care of connections
establishing, without sending any data to the
server;

 the maintain flow maintains the connections
with the server alive, by slowly sending data
to the victim through the established
channels, preventing server side connection
closures;

 finally, the control flow identifies
connections that have been closed by the
server.

These three flows share a common variable that
includes all active connections.

It follows a brief description of each flow with related
code. We assume that a global connectionsList[] array
variable is used, to include all the established connections
that are active at a particular time.

1) Connect Flow
First flow‟s aim is to seize all the connections

available at the application layer on the victim machine.
Assuming that the maximum number of simultaneous
connections the attacker wants to maintain alive with the
server is m, this flow continuously check the currently
established connections with the victim, opening the
remaining ones, in order to reach the m value. It follows a
representative execution procedure for this flow.

function ConnectFlow(int m) {

 while(True) {

 if(connectionsList.length == m)

 continue;

 connection = connect(host, port);

 if(connection != NULL)

 connectionsList.insert(connection);

 sleep(EPSILON); 7

 }

}

Note that the final sleep() call is accomplished in order
to reduce computations on the application.

2) Maintain Flow
The maintaining flow takes care of maintaining the

(already established) connections alive during the attack

 Int. J. Com. Dig. Sys. 4, No.3, 165-173 (July-2015) 171

http://journals.uob.edu.bh

execution. This thread makes use of the Wait Timeout
parameter to manage the slowness of sending,
accomplished through the waiting of the Wait Timeout
expiration, thus sending a single character to the targeted
server through the established channel. It follows a
representative execution procedure for this flow.

function MaintainFlow() {

 while(True) {

 sleep(WAIT_TIMEOUT);

 foreach(connection in connectionsList)

 if(!connection.isActive())

 connectionsList.remove(connection);

 else

 connection.send(’␣’);

 }

}

3) Control Flow
The control flow has the purpose of repeatedly check

the status of the already established connections. This
flow provides the attack the ability to re-establish closed
connections as soon as they have been closed by the
server. In particular, when a connection closure is
identified by the control flow, it is removed from the
connectionsList object. As a consequence, some instants
later, this removal is detected by the connection flow,
which would establish a new connection. In this way the
attack is able to autonomously establish and maintain
alive during the time m connections with the server. It
follows a representative execution procedure for this flow.

function ControlFlow() {

 while(True) {

 foreach(connection in connectionsList)

 if(!connection.isActive())

 connectionsList.remove(connection);

 sleep(EPSILON);

 }

}

Assuming the m value is equal to the maximum
number of connections accepted by the server, vulnerable
to a SlowDroid attack, the attack is able to reach a DoS on
the server. Moreover, thanks to the control flow,
SlowDroid can successfully and quickly detect when the
DoS is not reached anymore, thus trying to reach it again
as soon as possible.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the SlowDroid
Denial of Service testing tool. The tool implements an
innovative attack that makes use of a tiny amount of
bandwidth. Because of this, we have decided to develop
SlowDroid on a mobile environment to demonstrate that
even a single smartphone with limited capabilities is
potentially able to lead a DoS on a corporate server. Since
the tool has been implemented to be suited in a mobile

operating system, we have also deeply analyzed and
described the advantages of a mobile attack execution.

The published SlowDroid attack should be considered
as a testing tool for system administrators willing to test
the resilience of their servers to such attack. Although the
tool is able to lead a DoS on a server, it is particularly
easy to protect from a non-distributed menace such as
SlowDroid [12]. Nevertheless, many servers on the
Internet seems to be affected and unprotected from
SlowDroid.

In order to avoid malicious and dangerous activities,
we have deliberately reduced the functionalities of the
published SlowDroid app: in particular, an extended and
more dangerous version of the tool could have been
published, in order to affect more server by specifying
additional attack parameters and by implementing a
distributed menace. Nevertheless, our purpose is not to
deploy a cyberweapon, but to provide a testing tool and to
prove that today‟s smartphones can be used as attack
vectors. Because of this, the SlowDroid code has also
been obfuscated, in order to hinder decompiling.

Further works on the topic may involve a porting of
SlowDroid on different systems. In particular, since the
attack has been implemented and is included in a separate
Java library, a Java implementation aimed to execute the
attack on different operating systems is facilitated.
Moreover, it may be interesting to extend the tool to allow
the execution of different attacks implementing a common
interface.

It is also important to consider extensions needed from
compatibility needs: since SlowDroid is bounded to the
Android operating system, which is continuously
evolving, future Android versions may require
amendments to maintain compatibility.

REFERENCES

[1] Dialog - Android Developers - Available at
http://developer.android.com/
reference/android/app/Dialog.html (Date Accessed on
April 23, 2014)

[2] DroidSheep [ROOT] - Available at
http://droidsheep.de/?page_id=263 (Date Accessed on
April 23, 2014)

[3] FaceNiff - Facebook (and other services) Session Hijacker
for Android - Available at http://faceniff.ponury.net (Date
Accessed on April 23, 2014)

[4] Firesheep - Available at
http://codebutler.github.io/firesheep/ (Date Accessed on
April 23, 2014)

[5] ImageView - Android Developers - Available at
http://developer.android.com/reference/android/widget/Im
ageView.html (Date Accessed on April 23, 2014)

[6] PreferenceActivity - Android Developers – Available at
http://developer.android.com/reference/android/preference/
PreferenceActivity.html (Date Accessed on April 23,
2014)

172 E. Cambiaso, et al.: Implementation of SlowDroid: Slow DoS Attack Performed by a Smartphone

http://journals.uob.edu.bh

[7] RotateAnimation - Android Developers – Available at
http://developer.android.com/reference/android/view/anim
ation/RotateAnimation.html (Date Accessed on April 23,
2014)

[8] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, J. M. Smith:
Smudge attacks on smartphone touch screens. Proceedings
of the 4th USENIX conference on Offensive technologies
pp. 1–7 (2010)

[9] A. Kuzmanovic, E. W. Knightly: Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and
elephants. Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for
computer communications pp. 75–86 (2003)

[10] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello: Slow DoS
attacks: definition and categorisation. International Journal
of Trust Management in Computing and Communications
- In press article (2013)

[11] E. Cambiaso, G. Papaleo, M. Aiello: SlowDroid Denial of
Service tool for Android - Available at
http://software.netsec.ieiit.cnr.it/projects/slowdroid/ (Date
Accessed on April 23, 2013)

[12] E. Cambiaso, G. Papaleo, M. Aiello: SlowDroid
Mitigation - Available at
http://security.ge.cnr.it/?q=slowdroidmitigation (Date
Accessed on April 23, 2013)

[13] G. Macia-Fernandez, J. E. Diaz-Verdejo, P. Garcia-
Teodoro: Evaluation of a low-rate DoS attack against
iterative servers. Computer Networks 51(4), 1013–1030
(2007)

[14] Google-Code: slowhttptest - Application Layer DoS attack
simulator - Available at
https://code.google.com/p/slowhttptest/ (Date Accessed on
April 23, 2014)

[15] Google-Play: Loic - Available at
https://play.google.com/store/apps/details?id=l.o.i.c (Date
Accessed on April 23, 2014)

[16] Google-Play: LOIC - Low Orbit Ion Cannon - Available at
https://play.google.com/store/apps/details?id=genius.moha
mmad.loic (Date Accessed on April 23, 2014)

[17] Google-Play: LOIC - Low Orbit Ion Cannon - Available at
https://play.google.com/store/apps/details?id=genius.musta
fa.loic (Date Accessed on April 23, 2014)

[18] Google-Play: PlexeDOS - LOIC - Available at
https://play.google.com/store/apps/details?id=genius.plexe.
loic (Date Accessed on April 23, 2014)

[19] Google-Play: Slowloris - Available at
https://play.google.com/store/apps/details?id=com.kanuusa
n.slowloris (Date Accessed on April 23, 2014)

[20] H. McCracken: Whos Winning, iOS or Android? All the
Numbers, All in One Place - Available at
http://techland.time.com/2013/04/16/ios-vs-android/ (Date
Accessed on April 23, 2014)

[21] ha.ckers: Slowloris HTTP DoS - Available at
http://ha.ckers.org/slowloris/ (Date Accessed on April 23,
2014)

[22] M. Aiello, G. Papaleo, E. Cambiaso: SlowReq: A Weapon
for Cyberwarfare Operations. Characteristics, Limits,
Performance, Remediations. International Joint
Conference SOCO‟13-CISIS‟13-ICEUTE‟13 pp. 537–546
(2013)

[23] S. Alam: Apache released patch for ApacheKiller.pl Range
Byte Flaw - Available at
http://www.hackersgarage.com/apache-released-patch-for-
apachekiller-pl-range-byte-flaw.html (Date Accessed on
April 23, 2014)

[24] S. Coursen: The future of mobile malware. Network
Security 2007(8), 7–11 (2007)

[25] S. Furnell: Handheld hazards: The rise of malware on
mobile devices. Computer Fraud & Security 2005(5), 4–8
(2005)

[26] S. Shekyan: Are you ready for slow reading? - Available at
https://community.qualys.com/blogs/securitylabs/2012/01/
05/slow-read (Date 2012)

[27] SpiderLabs-Anterior: Mitigation of Apache Range Header
DoS Attack - SpiderLabs Anterior - Available at
http://blog.spiderlabs.com/2011/08/ mitigation-of-apache-
range-header-dos-attack.html (Date Accessed on April 23,
2014)

[28] Wikipedia: Low Orbit Ion Cannon – Available at
http://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
(Date Accessed on April 23, 2014)

[29] Wikipedia: Slowloris - Available at
http://en.wikipedia.org/wiki/Slowloris (Date Accessed on
April 23, 2014)

[30] Wikipedia: Vertical handover - Available at
http://en.wikipedia.org/wiki/Vertical_handover (Date
Accessed on April 23, 2014)

[31] xda-developers: Kill Wifi For Those Who Annoy You And
Slow Your Network Down - WifiKill For Android -
Available at http://www.xda-developers.com/android/kill-
wifi-for-those-who-annoy-you-and-slow-your-network-
down-wifikill-for-android/ (Date Accessed on April 23,
2014)

[32] Y. Zhou, X. Jiang: Dissecting android malware:
Characterization and evolution. Security and Privacy (SP),
2012 IEEE Symposium on pp. 95–109 (2012)

 Int. J. Com. Dig. Sys. 4, No.3, 165-173 (July-2015) 173

http://journals.uob.edu.bh

Enrico Cambiaso graduated in

Computer Science at the University

of Genoa, Italy, in 2012, with a

thesis entiled „Analysis of slow DoS

attacks‟. He is a PhD student at the

University of Genoa and he

collaborates with the Research

National Council of Italy, working

to the slow DoS field. His scientific

interests are related to computer and

network security, intrusion detection

systems, covert channels and cloud computing.

Gianluca Papaleo graduated in

Computer Science at the University of

Genoa, Italy in 2005. He is a Fellow

Researcher of the National Research

Council since 2006. His main scientific

interests are in the field of computer

and network security, intrusion

detection systems, wireless

communications and covert channels.

His current teaching activity in

University of Genoa are focused on wi-

fi security and tunneling protocols.

Maurizio Aiello graduated in 1994,

worked as a free-lance consultant in the

field of system and network management

both for universities and research centre

and for private industries. From August

2001, he is responsible for the Region of

Liguria of National Research Council

network infrastructure. He is a Teacher of

the course „Network Security‟ at the

University of Genoa and University

College of Dublin; Coordinator of students, fellowships and EU

projects in the field of computer security. He is involved in

activities related to technology transfer (spin-off). His research

activities are network security and protocols.

