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Abstract: This study investigates non-orthogonal multiple access (NOMA) receivers based on deep learning (DL) employing the long-
short term memory technique (LSTM) over frequency-flat Rayleigh distributed fading links. The fading links are independently and
identically distributed (i.i.d.). When comparing the DL-based NOMA receiver’s system performance to that of the traditional NOMA
technique, the DL-based receiver surpasses the conventional successive interference cancellation (SIC)-based NOMA receiver. The
simulations are conducted for various values of cyclic prefix (CP) considering the clipping noise (CN) under real-time propagation
characteristics. It has been discovered that neither minimum mean square error (MMSE) nor least square error (LSE) can provide precise
information on fading channel coefficients. With a signal-to-noise ratio (SNR) value exceeding 14 dB, precision tends to be saturated.
On the other hand, DL techniques continue to be effective in channel estimation and detection. Lower learning rates improve system
performance, whereas a high learning rate generates rapid changes in the weights of the DL NOMA detector, leading to a very high
validation error value.

Keywords: deep reinforcement learning (DRL), mixed-integer nonlinear programming (MINLP), additive white Gaussian noise (AWGN),

Fourier transform (FT), fifth generation (5G).

1. INTRODUCTION

5G and beyond-5G (B5G) wireless networks will de-
liver higher spectral efficiency (SE) by increasing spectrum
utilization from sub-3 GHz in the 4th generation (4G)
to 150 GHz and beyond. 5G may operate at sub-6 GHz
and 30 GHz and higher, bringing high channel capacity
(near Shannon rate), multi-Gbps speed, and extremely low
latency [1], [2]. Compared to 4G, the new 5G network
offers improved speed, capacity, bandwidth, availability,
coverage, and lower latency. Improving these networks
will significantly impact the way people around the world
live, work, and play. 5G will help smart homes and smart
cities evolve further. Edge computing will expand the use
of machine learning (ML) into previously unseen areas
[3], [4]. From smart cities that provide increased energy
harvesting (EH) schemes to smart traffic lights that change
patterns based on traffic, 5G applications that rely on
higher network capacity and lower latency will influence
practically everyone. With an increasing number of user-
equipments (UEs), communication systems will certainly
become overloaded with high volumes of data traffic in the
future. Current multiple access (MA) schemes will most
likely be incapable of serving efficiently in enormously
overloaded environments. SE has recently been identified as

a promising approach for 5G and B5G communications that
may boost SE to a higher extent while servicing many users.
NOMA uses the same resource blocks to service numerous
users who are divided in their power domain at the same
time. At the transmitter end of NOMA, superposition coding
(SC) is employed, while SIC is given at the reception end.
Mutual interference among users at the receiver end is not
an issue with the classic orthogonal carrier-based technique
(such as orthogonal multiple access (OMA) or orthogonal
frequency division multiple access (OFDMA). Even with
a modest receiver, it can improve system performance,
but it cannot meet the 5G and B5G criteria, including
improved end-to-end reliability, increased energy efficiency
(EE) and SE, low latency, and massive connectivity. The
primary purpose of NOMA is to give MA to numerous
people at the same time, at the same frequency, and in
the same location. Latency refers to the amount of time
it takes for a signal to travel from its source to its receiver
and back. Reduced latency has been one of the goals of
each wireless generation. Data transmission will take less
than 5 milliseconds (ms) round-trip on B5G networks,
which will be even faster than 4G long-term evolution
(LTE) [5], [6], [7]. 5G will have a latency far lower than
human eyesight, enabling near-real-time remote operation
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of devices. Many new applications will rely on machine-
to-machine (M2M) communication that is not bound by
human reaction time, which will become a limiting issue
for remote 5G and internet of things (IoT) applications [8],
[9]. While lower latency will benefit device-to-device (D2D)
communication, multimedia applications, and Vehicle-to-
vehicle (V2V) communication, online gaming applications
are also anticipating 5G adoption. The combination of high-
channel SE and EE is perfect for augmented reality (AR)
and virtual reality (VR) applications, which are predicted
to become more popular as the internet connection data
rate improves, allowing for a more seamless, immersive
experience [10]. While speed is appealing, experts and
industry executives are concerned about the 5G network’s
ability to help organizations grow their digital activities.
The data rate of 5G and B5G networks will be 1,000 times
that of 4G, opening the path for IoT expansion. 5G in
conjunction with IoT is a perfect combination, and they are
about to revolutionize how people use wireless networks
and the internet [11]. Multi-carrier NOMA, along with
SWIPT, is a likely scheme for 5G and B5G networks
because of their high reliability, low latency, and ultra-
responsive properties. In [12], the authors proposed the
resource allocation algorithm for the simultaneous wireless
information and power transfer (SWIPT) multiple carrier
NOMA network, considering the pattern division multiple
access (PDMA) technique. To keep the quality of service
(QoS) at a satisfactory level, the authors have minimized
the transmitted power considering the EH scheme. With
the ability to link to hundreds or thousands of UEs, new
applications and use cases for smart cities, corporate homes,
smart farms, smart schools, and families will emerge. DL
approaches are an excellent way to address the issues.
In [13], the authors provide a full review of how deep
neural networks (DNNs) are being employed to address
different 5G NOMA receiver issues. To begin, the DNNs
used in NOMA are enumerated and described. Following
that, their roles are carefully examined to improve NOMA
performance. When the SIC is optimal, the bit error rate
(BER) performance of NOMA outperforms that of a tradi-
tional OFDMA system. A perfect channel state information
(CSD) is necessary to complete SIC in the receiver. It is
impossible to devise an effective power distribution plan
without knowing the precise CSI at the transmitter. It
is tough to deal with a perfect or almost perfect CSI.
Fortunately, DL techniques have previously been proven
to be a feasible answer to this problem. It may be used
in NOMA to identify a channel condition that is entirely
unknown and time-varying. The decoding of data in a
conventional SIC-based NOMA detector is not perfect in
the case of a real-time propagation scenario [14], [15]. The
DL-based multiple-input multiple-output (MIMO)-NOMA
network was examined by the authors in [16]. The authors
developed a DL-based SIC detector and precoders for joint
optimization using the superposition coding approach in
this technique. Because of the receiver’s complexity and
erroneous transmission of user data, the performance of a
traditional SIC is impaired [17], [18]. Because it mitigates

frequency selective fading, orthogonal frequency division
multiplexing (OFDM) is a vital technology and one of
the most well-known modulation methods utilised in the
NOMA system [17]. In [19], a DL-based NOMA detector
is proposed, based on DNN. The proposed DL NOMA de-
tector perfectly decodes and estimates the originally trans-
mitted user data. The proposed technique improves the BER
performance and decreases the overhead of the reference
signal to increase the downlink (D/L) NOMA system’s data
rate and end-to-end reliability. One of the advantages of the
proposed technique is that it can process the conventional
NOMA data directly instead of designing the SIC-based
detector. The advantage of the DNN-based detector is that it
can handle large data applications. Furthermore, the NOMA
detector is characterized by DNN, which jointly does the
signal detection and channel estimation.

In this study, the LSTM algorithm is applied to increase
the performance of NOMA systems. The OFDM transmitter
and receiver block diagram are shown first, followed by the
LSTM algorithm. Then, using the NOMA approach, we
examine the DL integration. Finally, we provide a summary
of the challenges found while using DL techniques in
NOMA. The effect of clipping distortion and nonlinear
noise is explained through simulations.

2. SYSTEM MODEL
A. DL basics

Artificial neural networks (ANNs) are motivated by
human brain function or, in a larger idea, 5SG and B5G
information processing applications. ANNs, on the other
hand, do not have the same structure as the human brain.
Human brains are very complex, dynamic, living creatures
that are always changing. ANNs are static and symbolic,
unlike the human brain, and making them dynamic is a
difficult task. DNNs have several layers, which are referred
to as “deep.” Data-driven 5G signal processing techniques
for difficult communication engineering problems have been
demonstrated to be a useful scheme for developing data-
driven 5G signal processing techniques. Many assembled
algorithms can be overcome by DL algorithms because
they recognize the important properties and qualities of the
input signals rather than requiring an individual to identify
and represent them. DNN [Figure 1] can learn complicated
aspects of human-created material such as photographs and
audio/video recordings and use them for categorization and
decision-making. However, with 5G networks, people pro-
vide the information data, the propagation fading channel
links are very simple to predict, and we know how to
operate near theoretical channel capacity. Is this to say that
DL has no place in future communication systems devel-
opment? Although the answer to the preceding question is
”no,” we must be cautious not to recreate the wheel for
the reasons stated above. We must first identify the issues
that DL can solve and then go from there rather than start
from scratch. Many complex signal processing problems at
the physical layer of 5G wireless networks can be solved
optimally by utilizing well-known estimation, detection, and
convex optimization (CO) schemes, for example. DL has
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been a crucial enabler in 5G, including deep supervised
learning (DSL), deep unsupervised learning (DUL), and
DRL. Without access to mathematical formulations, DL
techniques can solve a broad range of difficulties in 5G
networks, such as decision-making, optimization, and pre-
diction, efficiently and effectively, which helps accelerate
the design and deployment of wireless communications
functionality, especially in situations where mathematical
models fail to properly formulate the considered concerns
[20], [21], [22]. The application of DL to the 5G network
is still in its early stages, and its potential and advantages
over well-established mathematical models have yet to be
thoroughly investigated and proven. Furthermore, the use
of DL schemes in 5G networks raises a slew of issues, in-
cluding data communication, model design, model training,
model deployment, and security protection, all of which
must be handled properly [23], [24], [25]. In addition,
new challenges for recent 5G scenarios such as radio access
networks (RAN), three dimensional (3D) networks, optical
wireless communications (OWC), unmanned aerial vehicles
(UAVs), and wireless power transfer (WPT) will include 5G
wireless network functional modules and high-performance
requirements. The development of DL-based solutions to
meet traditional 5G network requirements has recently been
shown to have a lot of potential for breaking the bottleneck
in traditional 5G networks. In the paper [22], [26], [27], we
investigate the use of DL in 5G NOMA, including physical
layer processing and resource allocation. In a typical 5G
network, DL can improve the BER performance of each
(traditional) block or optimize the entire transmitter or

Simple Neural Network

Deep Learning Neural Network

@ nputLayer () Hidden Layer @ Output Layer

Figure 1. Schematic representation of the DNN [17].

Input layer

Hidden layer 1 Hidden layer 2 Output layer

(a) (b)

Figure 2. (a) Gray box model representation with output y and input
Xp. (b) The Gray-box input-output model is defined by f and a
parameter vector 6. (i) It f is referred to as an ANN (ii) when it has
a complicated shape, such as the one shown in it [17].

receiver at the same time. Therefore, we can distinguish
between DL applications that employ block processing
structures and those that do not in 5G and B5G physical
layer communications. For signal detection in DL-based
5G and B5G networks with block topologies, we deliver
integrated CSI and signal identification based on a fully
linked DNN, model-driven DL [28], [29], [30], [22]. We
present our latest efforts in constructing end-to-end learning
communication systems using DRL and generative adver-
sarial networks (GANSs) for those without block structures.
5G and B5G communication networks may be made more
efficient through judicious resource (spectrum, power, etc.)
allocation. Conventional insight is that optimal power allo-
cation (OPA) should be formulated as a CO problem, with
mathematical programming used to solve it to a specific
level optimally [31], [32], [33], [34], [35]. Because of
its exceptional ability to harness data for problem-solving,
DL is a viable option. It can assist in solving resource
allocation optimization concerns or be used directly for
resource allocation. In work [36], the authors show how to
utilize DL to simplify MINLP. The authors will next go into
how to use DRL directly for wireless resource allocation in
V2V networks by employing applications. In 5G NOMA
networks, selective fading of the recurrent neural network
(RNN) and nonlinear LSTM were investigated for non-
linear time prediction and modeling. The authors in [37]
studied current LSTM cell derivatives and network designs
for time series prediction. RNN and LSTM techniques
are used in sectors like as computer vision, blockchain
technology, Covid-2019 prediction and analysis, VR, AR,
and Natural Language Processing, with outcomes that are
comparable to, if not better than, classical algorithms. Its
popularity stems from the fact that it is simple to use
and outperforms other popular activation functions such as
Sigmoid and Tanh. Gradient disappearance is less likely to
interfere with DL fading channel model training, but other
problems such as saturated and ”dead” units can occur.The
following is the formula for calculating the Sigmoid activa-
tion function: 1/ (1 + exp (—x)).1/ (1 + exp (—x)). Where e
is a well-defined constant value that serves as the foundation
for the natural logarithm. Tanh is the abbreviation for the
hyperbolic tangent activation function. The S-shape of the
sigmoid activation function is quite like that of the sigmoid
activation function. Any real value can be used as an
input, and the function returns a value between -1 and
1. The input is closer to 1.0, the output is closer to -1.0,
and the input is smaller than -1.0. The following formula
may be used to determine the Tanh activation function:
(e(x)—e(—x))/(e(x) +e(—x)). The base of the natural
logarithm is e, which is a mathematical constant. Work [17]
provides a comprehensive examination of DL. The DNN
[17] is depicted in Figure 2 as a Gray box.

B. OFDM system arichtecture

Figure 3 depicts the OFDM transmitter and receiver
in block diagram form. The quadrature phase-shift keying
(QPSK) modulation algorithm is used to create the digitally
modulated symbols. First, utilizing serial to parallel (SP)
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transmission process, the data symbols are transformed to a
parallel data stream. The data symbols are in the frequency
domain (FD), and the inverse FT method is used to transfer
them to the time domain (TD). The CP length is greater than

Coding Bit-to- B
& symbol s s/P IFFT 2
Interl. mapping
Channel
Deinterl.
Sync EET P/S Demod. &
Decoding

Figure 3. Block diagram representation of the OFDM transmitter
and receiver [20].

the maximum value of the delay spread, which is used to
reduce fading and eliminate frequency selective fading (also
known as inter-symbol interference (ISI)). Let us consider

Z b(t)}
51gna1 r(?) is represented as [38], [39], [40],

r(k) = g(k) ® b(k) + z(k), ey

® stands for circular convolution, whereas g(k) and z(r)
stand for transmitted signal and AWGN noise, respectively.
The resultant signal is expressed in (8) after the CP has
been removed from the receiver side and the discrete FT
has been performed on the expression given in (7) [38],
[39], [41], [40], [42],

R(J) = G(J)N(J) + Z(J), (@)

The discrete Fourier transform (DFT) of r(k), g(k), b(k), and
z(k), are R(J),G(J),N(J), and Z(J), respectively. In this
paper, we look at a two-user NOMA-OFDM system, where
both users are expected to send data at the same time
since they share the same frequency resources. A two-user
NOMA system is depicted schematically in Figure 4 [41],
[40], [42]. Both user signals are superimposed at the base
station (BS) in the uplink (U/L) NOMA system, yielding
the expression [38], [39], [41], [40], [43], [44], [45].

represents the multi-tap channel. The received

M
R(J) = Z VP (NG (NN, (J) + Z(J), 3)
n=1
where Z(J),G,(J), and R(J) denote AWGN channel noise,
transmitted OFDM symbol, and FD received signal, re-
spectively. On the J” subcarrier, the n”* user’s power is
represented as P,(J). For M number of subcarriers, the total
transmitted power is denoted by P. The power is distributed
based on the value of the power allocation factors, which
are denoted by the letters

_ Pu(Jd)
Buld) = —p—

for the n™ user. The entire quantity of accessible power

is limited, and this limitation is symbolized by the letter

M
>, Bu(J) = 1. Because of multipath propagation, the channel
n=1

is multitap, and the channel impulse response is b,(g) =
Z KniS(q — wyy) with complex channel gain «,; and time

delay of the I multi-path for the i"* user w,;. b(q)’s DFT is
N,(J). There are 20 total determined pathways, and fading
linkages are Rayleigh distributed [41], [40].

3. DL-BASED NOMA RECEIVER
A. LSTM Network

The RNN approach is a subset of the LSTM algorithm
[Figure 5], which has five layers. The input layer is the
initial layer, followed by the LSTM layer, the SoftMax
layer, and finally the classification layer. Because it can
use data time-dependence, the LSTM NOMA layer, a kind
of RNN, is a core component of the DNN and is often
employed for the classification of sequence and time-series
data. The data is held by the LSTM algorithm, which learns
it in a series of stages. OFDM subcarriers are shown as time
steps using NOMA DL detectors that employ the LSTM
algorithm. The DNN network is trained to realize the multi-
user IDs of a particular subcarrier by focussing on the single
time step module provided by the LSTM layer.

SIC
Subtract Decoded )
| || Decodingor
@ "I“' z.""'m;'::" User 1 Signal
’/ User1
Decoding of
User 2 Signal
IR Decoding of
User 2 Signal
User 2

Figure 4. Two-user NOMA system

B. NOMA-OFDM DL Model Training

Consider a 72-subcarrier OFDM system with packetized
data. For the purpose of simplicity, a packet is made up
of three OFDM signals. Two pilot sequences are provided
for each user, each filling the first two OFDM symbols
and the 3rd OFDM symbol containing the data stream. It
contains the first two OFDM symbols and the 3rd OFDM
symbol contains individual data sequences. QPSK uses the
digital modulation technique to create OFDM data symbols,
each with a two-bit/subcarrier QPSK symbol. The OFDM
data packet is made up of three QPSK data symbols
that are generated at random with a fixed pilot symbol
[41], [40].The FD OFDM symbol is transformed into the
TD OFDM symbol by inserting CP as a guarding time
gap between two OFDM signals. An OFDM packet is
made up of three QPSK data symbols and one fixed pilot
symbol, with the QPSK symbols generated at random. For
converting FD OFDM symbols to TD OFDM symbols, the
CP between two OFDM signals serves as the guard time
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interval. CP helps to attenuate the ISI impact by decreasing
the effects of the fading channel [29-30]. To avoid the ISI
effect, the channel impulse response needs to be shorter than
the CP length. The dimension of the feature vector is equal
to 72x3x2= 432 if there are 72 sub-carriers and 3 symbols.
The DNN will be trained to find the data symbols for the k-
th subcarrier if the matching label Xi(k) is assigned during
training. A label is a number that simultaneously reflects
both users’ equipment’s sent data symbols. Because every
user device sends QPSK data symbols, there will be 16
combinations/labels, i.e., [41], [40]. The length of the real-
valued vector, which is 432, determines the input vector’s
dimension. QPSK data is sent by all user equipment. There
are a lot of hidden layers, a total of 128, because we’re
using DNN, and the fully connected layer with an output
size of 16 comes after them. The projected Xi(k) mark will
be created by the classification layer, and the SoftMax layer
will add a SoftMax function to its input to map all data
symbols given by user equipment all at once by the SoftMax
layer.

4. SIMULATION RESULTS

This section uses simulations to show how the DL
approaches for symbol identification and channel estimation
in the NOMA OFDM system function from start to finish.
The simulation data will be utilized to train the NOMA
OFDM DL detector, and the NOMA OFDM DL detector’s
performance in terms of BER will be compared to that of
traditional NOMA receivers over a range of SNR regimes.
In simulations, the DL-based solution outperforms the LSE
and MMSE methods. The CP is eliminated, or nonlinear
clipping noise occurs when fewer training pilots are used.
The number of subcarriers and the length of CP in our
simulation are 72 and 16, respectively. The carrier frequency
is 2.6 GHz, and there are 24 different routes to choose from.
The urban channel is used, with a maximum delay spread
of 16 and QPSK complex modulating symbols.

A. Calculation of the effect of the number of Pilot Numbers
on the BER Performance

The standard SIC-based receivers, such as LSE and
MMSE, were compared to the DL-based NOMA receiver
in terms of BER performance. Because the fading channel’s
2nd order data statistics are expected to be known and
may be utilized to detect OFDM data symbols, the LSE
receiver performs the worst, while the MMSE performs
substantially better. The DL-based NOMA channel esti-
mator and detector outperform the LSE approach and are
comparable to the MMSE methodology in terms of outage
and BER. In simulations, 16 sample periods have been
considered, with a lesser number of pilot symbols are used
for improving the SE. When just 12 pilot symbols are
included, the BER performance is worse than when 72
pilot symbols are considered. The DNN’s input and output
will be the same for both 72 and 12 pilot symbols [41].
When the SNR is almost equal to 9 dB, the BER SIC-
based LSE and MMSE methods are shown to be consistent.
Furthermore, the simulation curves demonstrate that when

the value of SNR increases, the BER of the DL scheme
reduces dramatically, implying that the DL NOMA detector
is robust and independent of the number of pilot symbols
employed for OFDM signal detection [19], [41], [40].
The superior performance of the DL-based NOMA channel
estimator and detector may be described by investigating
the fading channel coefficients based on the training data
symbols provided by the DL NOMA model [4], [5], [41],
[40].

B. The Impact of the CP on end-to-end BER performance

CP is utilised to reduce ISI and adjacent channel in-
terference (ACI), as well as to help with the conversion
of linear to circular convolution and offer OFDM signal
resiliency. The BER performance comparison with and
without CP is shown in Figure 7.

Neither MMSE nor LSE can offer correct fading channel

L—
RECURRENT NEURAL

NETWORK LAYER (LONG
SHORT-TERM MEMORY)

= FREQUENCY
B | oo B(7)

Bl
LR CIENL)

MULTIPLE CLASS NEURAL
NETWORK LAYER

|

CLASSIFICATION LAYER E( ”)

Figure 5. Schematic representation of the LSTM-based DL model
(4], [5], [41], [40].

—@—72 pilots - Deep Learni

® —0—72 pilots - L
o

0 2 4 6 8 10 12 14 16 18 20
Signal to Noise Ratio in dB

Figure 6. BER vs SNR charts of the DL NOMA detector for 72 and
12 pilot symbols, respectively.

coefficient information. Precision tends to be saturated at
SNR levels above 15 dB. On the other hand, DL approaches
remain effective in channel estimation and detection. This
finding demonstrates that the wireless fading channel’s
potential has been revealed and that DNNs in the training
stage is capable of mastering it. Impact of BER performance
due to clipping distortion OFDM’s main drawbacks are its

http://journals.uob.edu.bh


http://journals.uob.edu.bh

\
N

W

Lk

Uy

30 My,

&

220

WCH
’”'~-j Ravi shankar, et al.: Analysis of the Fifth Generation NOMA System Using LSTM Algorithm...

high PAPR and sensitivity to frequency offset and phase
noise. Clipping is one of the methods for dealing with
the PAPR problem. We experience non-linear noise after
the clipping procedure is completed, which lowers system
performance.

oo _ | W),
FE ‘{ ® exp(—jg (k).

(k) and © represent the phase shift and threshold, respec-
tively. When the DL NOMA network is exposed to nonlin-
ear noise, Figure 8 shows the BER and outage probability
performance of standard SIC-based detectors (MMSE and
LSE). The graphs show that for clipping ratio 1, the DL-
NOMA channel estimator and detector outperform the SIC
detectors for SNR ; 15dB, assuming that the DL scheme is
more robust to PAPR problems caused by clipping. Figure 9
shows a comparison of the SIC and DL channel estimators
and detectors for all practical fading channel conditions,
except for CP and clipping distortion. Even though the
NOMA detector based on DL is more efficient than ordinary
detectors, there is a difference in detection performance
under ideal conditions, as we showed before.

if ¥k <O
otherwise

“

C. Robustness Analysis

The channel coefficients are calculated online with data
sets that are like those used in offline training. In real-
time propagation circumstances, however, there is a latency
between offline and online deployment. It is also important

10!

10°

|—+Deep learning with clipping noise
|-0-Deep learning without clipping noise
~#-Minimum mean square error with clipping noise
|~®-Minimum mean square error without clipping noise|
1 1 L 1 1 1 1 1
2 4 6 8 10 12 14 16 18 2

Signal to Noise Ratio in dB

Figure 7. BER vs SNR charts of the DL NOMA detector [CN-
Clipping Noise] with and without clipping noise.

—@—Deep Learning Considering all Impairments. Y

BER

©—Minimum Mean Square Error Considering all Impairments.

—®—Deep Learning with Ideal Scenario

! L ! L ! L L L !
0 2 4 6 8 10 12 14 16 18 20
Signal to Noise Ratio in dB

Figure 8. BER plots considering all feasible scenarios.

that these mismatches stay consistent long enough for
the trained models to work. Figure 10 depicts the impact
of frequency selective fading on the fading relationship
statistics utilized in the training and testing stages. The
maximum delay spread and the number of multipath in the
testing stage are shown to be different from those in the
training stage. The efficacy of data symbol identification is
unaffected by changes in fading connections data statistics
in Figure 10.

—8-Deep Learning without Cyclic Prefix

~#—Deep Learning with Cyclic Prefix
102[  —®—Least Square without Cyclic Prefix

—#—Minimum Mean Square Estimstor without Cyclic Prefix

! L L L L L
0 2 4 6 8 10 12 14 16 18 20
Signal to Noise Ratio in dB

Figure 9. Plots of BER against SNR for the DL NOMA detector
with and without the CP, CP = 16.

|~%~NUMBER OF PATHS=40, MAXIMUM DELAY =18
E |-©-NUMBER OF PATHS=30, MAXIMUM DELAY =18, TRAINING

|——NUMBER OF PATHS=28, MAXIMUM DELAY =24

~9—~NUMBER OF PATHS=14, MAXIMUM DELAY =18

L L ! L
2 4 6 8 10 12 14 16 18
Signal to Noise Ratio in dB

Figure 10. BER charts that account for the time lag between
deployment and training processes.

|~ -UE2, Learning Rate=0.200|
|~0-UE1, Learning Rate=0.20
|~ -UE2, Learning Rate=0.10
|~e—UE1, Learning Rate=0.10
~—UE2, Learning Rate=0.003/

15 20
Signal to Noise Ratio in dB

Figure 11. BER graphs of the DL NOMA detector for various
learning rate values.

D. Impact of learning rate

In Figure 11, the BER versus SNR in dB is plotted
for both users, the BER vs SNR in dB is presented in
Figure 11 for various learning rates. Simulated results
show that lower learning rates improve BER performance
substantially, but a high learning rate causes fast weight
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TABLE 1. Simulation Parameters

Number of Subcarriers 72 Number of training data | 500000
Number of pilot subcarriers 72 and 12 | Number of DNN layers | 5
Channel length 20 Number of Epochs 150
Cyclic prefix length 20 Learning Rate 0.02
Total number of NOMA users | 02 Batch Size 25000

TABLE II. System Parameters ReLU

Parameter Value Value

OS Windows 10

Framework TensorFlow

Coding Python 3.5 and MATLAB

Fading links

MIMO channel and AWGN fading channel

Channel fading

Rayleigh Distribution

Number of user devices per cluster 2

Number of antennas equipped at the transmitter | 4

Number of antennas equipped at the receiver 4

Modulation symbols QPSK

Number of training samples 409,600

Total transmitted power per antenna 2W

Power allocation factor 0.80

Hidden layer ReLU
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