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Abstract: In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement-learning algorithm is employed to 

enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is 

carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and 

critic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the 

DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity 

Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms. 

The testing shows the robust performance of the DDPG algorithm for empowering robot arm maneuvering in complex 

environments. 
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1. INTRODUCTION

The development of the artificial intelligence field in the 

real-world is measured by the ability to solve complex control 

tasks [1][2] that possess a high dimension in input and action 

spaces [3][4][5]. Reinforcement Learning (RL) lends itself as 

a high-potential player in this field since the advent of the 

Deep Q Network (DQN) [6], as it achieved human-level 

performance in several early-level 2-dimensional computer 

games. Moreover, reinforcement learning has been 

developed further to beat human-level performance in board 

games such as Go [7] and Chess [8]. However, the mentioned 

games and the applied algorithms still have a finite number 

(although sometimes huge) of discrete actions. 

In most control tasks in real applications (such as robotics 

and autonomous driving [9][10]), continuous action spaces 

are the most common. Therefore, if algorithms such as DQN 

(which depends on the maximization of its policy value 

function for action selection) need to be applied to such 

control tasks, it needs to go through a computationally 

expensive optimization step or a careful discretization step of 

the action space.  The most common approach, in this case, 

is discretization, however, it shows on several occasions that 

it is an insufficient approximation particularly in high-

dimensional configurations or in delicate cases that requires 

very fine and precise control actions. Consequently, a more 

logical approach is exploited that depends on the explicit 

parameterization of a certain policy and optimizing its long-

term value while following this policy. The methods that 

follow this approach are referred to as Policy-Based Methods 

(PBM) [11]. 

In this work, the focus will be on the PBMs and its 

subcategory Policy Gradient Methods (PGM) [12]. Several 

research endeavors have been conducted to explore further 

and enhance PBMs and PGMs algorithms. Examples such as 

REINFORCE Algorithm [13], Proximal Policy Optimization 

(PPO) algorithms [14], Asynchronous Advantage Actor-

Critic (A3C) algorithms [15], Advantage Actor-Critic (A2C) 

algorithms [16], Generalized Advantage Estimation (GAE) 

algorithms [17], Trust Region Policy Optimization (TRPO) 

algorithm [18], Truncated Natural Policy Gradient (TNPG) 

algorithm [18], Deep Deterministic Policy Gradient (DDPG) 

algorithms [18][19], and Distributed Distributional Deep 

Deterministic Policy Gradients (D4PG) [20] which integrates 

several modifications to the DDPG algorithm. 

The DDPG reinforcement learning algorithm [18] is 

mainly considered in this work for the following reasons: 
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1. In DDPG the actor is a deterministic policy network that

outputs the continuous action directly which is highly

desirable by robotics applications.

2. A major advantage of the DDPG algorithm is that it is a

model-free and uses off-policy data (not loke PPO which

is on-policy algorithm) and the Bellman equation to learn

the Q-function and then uses the Q-function to learn the

policy through the specific Experience Replay property.

3. Robotics environments are kind of environments that are

expensive to sample from, therefore DDPG is

advantageous here since it more sample efficient not such

as PPO or REINFORCE-based algorithms.

The fundamental operation of DDPG is based on an off-

policy actor-critic principle, in which the update of the actor-

network particularly depends on a learned critic only. 

Therefore, any enhancements to the critic learning process 

will positively affect the updates of the actor. DDPG is a 

model-free approach that can learn competitive policies using 

low-dimensional observations (e.g. Cartesian coordinates or 

joint angles of a multi-joint robot arm).  

The DDPG algorithm is implemented using deep learning 

to realize a deterministic policy, in which the Actor-Critic 

framework is employed. The output of the policy is not the 

probability of action but a certain action. As a result, the 

sampled data is reduced and DDPG can guarantee the 

continuity and the smoothness of the joint movement. 

The main purpose of the work in this paper is to adopt the 

DDPG algorithm to solve control problems that allow the 

successful manipulation of a robot arm with multiple joints, 

and multiple degrees of freedom to reach and grasp a ball that 

moves randomly in a 3D space as shown in Figure 1.   

The process of finding the most appropriate actor and 

cretic topologies will be presented. The final internal 

structures of the actor and critic networks will be described 

in detail, and the tuning of the hyperparameters will be also 

explained. The training results are demonstrated with 

discussion. Testing, evaluation, concluding remarks and 

future work will be presented as well. 

Figure 1 The Multiple-Agent Tennis Environment. 

2. OVERVIEW OF THE DDPG ALGORITHM 

In the typical reinforcement learning setup, an agent 

interacts with a certain environment in discrete time.  At each 

time step t, the agent makes observations 𝑥𝑡 ∈ Χ takes action

𝑎𝑡 ∈ Α , and receives reward 𝑟(𝑥𝑡 , 𝑎𝑡) ∈ ℝ . The setup

environment has a real action space Α ∈ ℝ𝑑.

The control of the agent behavior is carried out using a 

policy 𝜋: Χ → Α that maps each observation to action. The 

expected return is described using the state-action value 

function 𝑄𝜋(𝑎, 𝑥) , under the condition of first taking an

arbitrary action 𝑎 ∈ Α  from a certain state 𝑥 ∈ Χ  and 

subsequently acting according to 𝜋 . Hence, the value 

function is defined as  

𝑄𝜋(𝑎, 𝑥)

= 𝔼 [∑ 𝛾𝑡𝑟(𝑥𝑡 , 𝑎𝑡)

∞

𝑡=0

] 
(1) 

where 𝑥0 = 𝑥, 𝑎0 = 𝑎, 𝑎𝑡 = 𝜋(𝑥𝑡), 𝑥𝑡 ∼ 𝑝(. |𝑥𝑡−1, 𝑎𝑡−1) is

the transition kernel  (probability) to next state, and 𝛾 ∈ [0,1] 
is the discount factor. The quality of a policy is commonly 

evaluated using Eq. (1). Even though it is possible to derive 

an updated policy from 𝑄𝜋 . However, such an approach

typically requires maximizing the value function with respect 

to 𝑎 and is made complicated by the existence of continuous 

action space. Instead, a parametrized policy 𝜋𝜃  is formed and

the expected value of this policy is maximized by optimizing 

the objective function 𝐽(𝜃) = 𝔼[𝑄𝜋𝜃
(𝑥, 𝜋𝜃(𝑥))] . By

incorporating the deterministic policy gradient theorem [21], 

the gradient of this objective function is composed as  

∇𝜃𝐽(𝜃) ≈ 𝔼𝜌[∇𝜃𝜋𝜃(𝑥)∇𝑎𝑄𝜋𝜃
(𝑥, 𝑎)|𝑎=𝜋𝜃(𝑥)] (2) 

where 𝜌  is the state-visitation distribution associated with 

some behavior policy. The behavior policy is different than 

the policy 𝜋 , consequently, it is possible to evaluate the 

behavior policy 𝜌  from data gathered off-policy. The 

gradient given by Eq. (2) can be approximated and modeled 

using a parameterized critic 𝑄𝑤(𝑥, 𝑎), as the exact gradient

assumes access to the true value of the current policy which 

is unreachable.  

By introducing the Bell operator 

(Τ𝜋𝑄)(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛾𝔼[𝑄(𝑥′, 𝜋(𝑥′))|𝑥, 𝑎] (3) 

which include an expectation value calculated with respect 

to the next state 𝑥′, the Temporal Difference (TD) error can

be minimized. TD is the difference between the value 

function before and after the application of the Bellman 

update. Usually, the TD error is evaluated under separate 

target policy and value networks, (i.e. networks with 

separate parameters (𝜃′, 𝑤′) ), to stabilize the learning

process. By taking the two-norm of this error we can write 

the resulting loss as 
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𝐿(𝑤) = 𝔼𝜌 [(𝑄𝑤(𝑥, 𝑎) − (𝑇𝜋𝜃
, 𝑄𝑤′)(𝑥, 𝑎))

2

] (4) 

In practice, the target networks will be periodically 

replaced with copies of the current network weights. 

Ultimately, by training a deep neural network that represents 

the policy using the deterministic policy gradient in Eq. (2) 

and training another deep neural to minimize the TD error in 

Eq. (4), the Deep Deterministic Policy Gradient (DDPG) 

algorithm [18] is obtained as illustrated in Figure 2. The actor 

produces an action given the current state of the environment, 

and the critic produces a TD error signal given the state and 

resultant reward. For the critic to estimate the action-value 

function, it needs to acquire the output of the actor as one of 

its inputs. Therefore, the critic uses the next-state value (TD 

target) that is generated from the current action by the given 

environment. The output of the critic drives the learning 

process in both the actor and the critic. 

Figure 2 The workflow of the DDPG algorithm. 

To further enhance the DDPG algorithm, the sample-

based approximation to its gradients is preferably employed 

by using data gathered in some replay tables as it shows better 

convergence. 

Next, a modification to the DDPG update is considered in 

which it utilizes N-step returns when estimating the TD error. 

This can be seen as replacing the Bellman operator Τ𝜋
𝑁 with

an N-step variant as follows: 

(Τ𝜋
𝑁𝑄)(𝑥𝑜, 𝑎𝑜) = 𝑟(𝑥𝑜 , 𝑎𝑜)

+ 𝔼 [∑ 𝛾𝑛𝑟(𝑥𝑛, 𝑎𝑛)

𝑁−1

𝑛=1

+ 𝛾𝑁𝑄(𝑥𝑁 , 𝜋(𝑥𝑁))|𝑥𝑜, 𝑎𝑜]

(5) 

where the expectation is with respect to the N-step transition 

dynamics. The process of gathering experience is distributed 

by modifying the standard training procedure. As per Eq. (2) 

and (4), the actor and critic updates rely on sampling from 

some state-visitation with distribution 𝜌. Nevertheless, as a 

significant enhancement included in the D4PG algorithm 

[20], the process of gathering experience can be parallelized 

by writing to the same reply table in parallel by using K 

independent actors. Moreover, during the learning process, 

the training algorithm can then sample from the previously 

constructed replay table of size R and perform the necessary 

network updates using this data. Furthermore, the sampling 

can be carried out using non-uniform priorities 𝑝𝑖  as in [21].

However, this requires the use of what is called “importance 

sampling”, which is implemented by weighting the critic 

update by a factor of 1/𝑅𝑝𝑖
.

The actor (the policy function) and critic (the value 

function) parameters are updated using stochastic gradient 

descent with learning rates, 𝛼𝑖 and 𝛽𝑖 respectively, which are

adjusted online using ADAM [22] for T iterations in the 

episode. 

3. THE SETUP OF THE ENVIRONMENT

The simulation environment for training, testing, and 

evaluating the DDPG RL algorithm is built using Unity 

Technologies [23]. Two versions of the environment have 

been deployed: 

1. The 1st version includes only a single double-jointed robot

arm. This environment should be solved using a single

agent trained using a designed Deep Deterministic Policy

Gradient (DDPG) algorithm [17]. The training task is

episodic, and to solve this environment, the agent must get

at least an average score of +30 over 100 consecutive

episodes.

2. The 2nd version is the 20 double-jointed arms similar to

the one shown in 0. This environment will be solved using

20 agents trained simultaneously using the designed

Distributed Distributional Deep Deterministic Policy

Gradients (D4PG) [20] as it uses multiple (noninteracting,

parallel) copies of the same agent to distribute the task of

gathering experience. The barrier for solving this

environment is slightly different, to take into account the

presence of many agents (20 in this case). In particular,

the agents must get an average score of +30 (over 100

consecutive episodes, and including all the agents). After

each episode, and to get a score for each agent, the

rewards are added up for each agent separately (without

discounting). This yields 20 (potentially different) scores.

Then the average of these 20 scores is taken. This yields

an average score for each episode (where the average is

including all the 20 agents).

The observation space consists of 33 variables

corresponding to the position, rotation, velocity, and angular 

velocities of the robot arm. Each action is a vector with four 

numbers, corresponding to torque applicable to two joints. 

Every entry in the action vector should be a number between 

-1 and 1. In other words, the state space for this experiment
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consists of 11 continuous 3-dimensional vectors representing 

the position, rotation, velocity, and angular velocities of the 

two parts of a virtual "Reacher" arm, along with the position 

of the "hand" and the position and speed of the goal sphere. 

The goal sphere is programmed to circle around the arm 

(within the X-Y planes, with multiple Z values). 

The action space is a vector with four numbers, clamped 

between -1 and 1, corresponding to the X and Z torques 

applicable to the two joints of the arm ("shoulder" and 

"elbow"). 0 shows a version of the environment with 10 arms 

follow the goal spheres movements. 

A reward of +0.1 is provided for each step that the agent's 

hand is in the goal location. Thus, the goal of your agent is to 

maintain its position at the target location for as many time 

steps as possible. 

4. EXPERIMENTATIONS AND RESULTS

The DDPG algorithm is implemented for the “Single 

Arm” environment and the D4PG is implemented for the “20-

Arms” environment, using several actor-critic topologies and 

sizes, and the training is performed separately for each 

version. After extensive trials, Table 1.0presents samples of 

these training results which show clearly that the size of the 

DDPG and D4PG networks does not have to be big to achieve 

higher performance, on the contrary, the small-size networks 

(#3) show significantly faster and better performance than the 

big ones (#1, #2 and #4). Nevertheless, it is needed to mention 

here that all the networks are trained with the hyper 

parameters listed in Table 2. 

Employing the GPU (NVIDIA Tesla K80, 13GB RAM) 

[24] instead of the CPU (Intel Xeon Processor @2.3GHz (1

core, 2 threads), 13GB RAM) has reduced the training time

by almost 50%, as demonstrated by comparing cases (#7 and

#8) with cases (#5 and #6).

During training, both the DDPG and D4PG algorithms 

employ the Ornstein-Uhlenbeck Process (OUP) [25] to 

improve the exploration phase. It generates temporally 

correlated noise centered around “0” to explore well in 

physical environments that have momentum. The OUP is 

used with θ = 0.15 and σ = 0.2 as in [26]. 

Table 1 Training Results for Different DDPG & D4PG 

Topologies. 

# Version Size #EP* 
Training 
Time 

Comment 

1 
1-Arm
DDPG 

Actor: 

Input Layer:             33 
1st Hidden Layer:   128  

2nd Hidden Layer:   64 

Output Layer:          4 

Critic: 

Input Layer:             33 
1st Hidden Layer:   128  

2nd Hidden Layer:   64 

2493 981.9 min With CPU 

Output Layer:    1 

2 
1-Arm
DDPG 

Actor: 

Input Layer:             33 

1st Hidden Layer:   256  
2nd Hidden Layer:  128 

Output Layer:          4 

Critic: 
Input Layer:             33 

1st Hidden Layer:   256  

2nd Hidden Layer:  128 
Output Layer:          1 

3006 907.8 min With CPU 

3 
1-Arm
DDPG 

Actor: 

Input Layer:             33 

1st Hidden Layer:   128  

2nd Hidden Layer:   64 

Output Layer:          4 

Critic: 
Input Layer:             33 

1st Hidden Layer:    64   

2nd Hidden Layer:   32 
Output Layer:          1 

1290 610.8 min With CPU 

4 
1-Arm
DDPG 

Actor: 

Input Layer:             33 

1st Hidden Layer:   128  
2nd Hidden Layer:   64 

Output Layer:          4 

Critic: 
Input Layer:             33 

1st Hidden Layer:    96   

2nd Hidden Layer:   48 
Output Layer:          1 

4470 902.7 min With CPU 

5 
20-Arms 
D4PG 

Actor: 

Input Layer:             33 

1st Hidden Layer:   128  
2nd Hidden Layer:   64 

Output Layer:          4 

Critic: 
Input Layer:             33 

1st Hidden Layer:    96   
2nd Hidden Layer:   48 
Output Layer:          1 

181 64.5 min With CPU 

6 
20-Arms 
D4PG 

Actor: 

Input Layer:             33 
1st Hidden Layer:   450  

2nd Hidden Layer:  450 

Output Layer:          4 

Critic: 

Input Layer:             33 

1st Hidden Layer:    250 
2nd Hidden Layer:   250 
Output Layer:          1 

133 81.2 min With CPU 

7 
20-Arms 
D4PG 

Actor: 

Input Layer:             33 
1st Hidden Layer:   350  

2nd Hidden Layer:  350 

Output Layer:          4 

Critic: 

136 43.3 min With GPU 
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Input Layer:             33 
1st Hidden Layer:    250 

2nd Hidden Layer:   250 
Output Layer:          1 

8 
20-Arms 
D4PG 

Actor: 
Input Layer:             33 

1st Hidden Layer:   400  

2nd Hidden Layer:  300 

Output Layer:          4 

Critic: 

Input Layer:             33 
1st Hidden Layer:    400 

2nd Hidden Layer:   300 
Output Layer:          1 

127 41.3 min With GPU 

*Number of Episodes to reach 30. 

Table 2 Hyper-parameters Values. 

Hyperparameter Value 

Replay Buffer Size 100,000 

Batch Size 128 

Discount Factor (𝛾) 0.97 

Soft-update for Target Parameters (𝜏) 0.001 

Learning Rate (Actor) 0.0001 

Learning Rate (Critic) 0.001 

Weight Decay 0.000 

Update Every (only for 1-Arm) 12 Samples 

Figure 3 and Figure 4 depict the training performance of 

the DDPG & D4PG for 1-Arm and 20-Arms environments 

respectively to reach the goal of “a score of 30 for the 100-

episode average”. In both cases, the training advanced 

smoothly to reach the target score. 

The D4PG algorithm shows impressive performance if 

compared to that of the DDPG. The training time of D4PG 

represents on average 8.6% of the training time of the DDPG, 

even though the number of iterations in both algorithms is 

almost the same (the average is 2815 for DDPG and 2885 for 

D4PG), noting that each D4PG iteration is equivalent to 20 

iterations of the DDPG. As has been explained before, the 

main difference between the two algorithms is that the D4PG 

uses K parallel actors (K=20) learning simultaneously from 

data sampled from a shared experience reply buffer 

(distributed learning). 

After the training phase is accomplished, both the DDPG 

and D4PG algorithms are tested on 1-Arm and 20-Arms 

environments respectively using a different seed (equals 2). 

The network was already trained with a seed (0). The testing 

results show that an episode of 1000 time steps scored 

“38.59” and “37.1” respectively. More extensive 

experimentation produces the same robust performance for 

both algorithms. 

Figure 3 Training Performance of the DDPG (#1) to reach a 30.0 

score. 

Figure 4 Training Performance of the D4PG (#6) to reach a 30.0 

score.
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Figure 5 Training Performance of the PPO in the 20-Arm environment to reach a 30.0 score.

For the purpose of comparison with other possible 

reinforcement algorithms for robot arm navigation. The 

popular PPO algorithm is applied to the 20-Arm environment 

and the training results (the progress of the reward score) are 

shown in Figure 5. Compared with the results achieved by the 

D4PG algorithm shown in 0, which show faster convergence 

rate then the PPO. The D4PG algorithm reached the 

prespecified score in around 130 episodes, while the PPO 

reached this score in 230 episodes (the D4PG is about 44% 

faster). 

5. CONCLUSION

The DDPG and D4PG reinforcement learning algorithms 

are used to train a double-jointed robotic arm to reach an 

object moving in a 3-D space around the arm. The DDPG is 

used to train a single arm while the D4PG is used to train 

multiple arms simultaneously. The D4PG is an improved 

version of the DDPG that uses multiple independent actors 

learning together in parallel and write together to a shared 

experience reply buffer. This improvement allows building 

models that command multiple robot arms instead of one. 

This improvement as well shows superior learning 

performance as it reduced the training time by almost 90% 

with a highly reduced number of training episodes. However, 

testing the trained models (agents) from both the DDPG and 

the D4PG algorithms shows very comparable robust 

performance. 

The architecture of both the actor and critic networks of 

both the DDPG and D4PG show a significant impact on 

mainly the training convergence but not much on the 

convergence speed. It is observed that the size of the actor 

should be bigger or at least the same size as the critic for a 

better convergence, while the learning rate of the critic is 

recommended to be larger. Moreover, employing a GPU 

speed up the training process by almost double. Furthermore, 

both the DDPG and D4PG algorithms successfully employ 

the Ornstein-Uhlenbeck Process to improve the exploration 

phase. 

Finally, the experimentation and the testing results show 

the robust performance of the DDPG algorithm for 

empowering robot arm maneuvering in complex 

environments. 

6. FUTURE WORK

Several suggestions can be carried out to further 

understand and improve the performance of the Reacher:  

1. Trying other algorithms such as REINFORCE, PPO,

A3C, A2C, GAE, TRPO, and TNPG, and compare the

results with the DDPG.

2. Applying the D4PG algorithm for a 3-joint robot arm

environment.

3. Implementing Rainbow Algorithm [27] which combines

good features from different algorithms to form an

integrated agent.

4. Another avenue of future research is to use Multi-Agent

DDPG (MADDPG) [28][29] to coordinate the work of

multiple cooperating robot arms to fulfill a single task.

5. Studying more deeply the effect of the noise parameters

of the Ornstein-Uhlenbeck Process [25] on the training

performance and the convergence [30][31][32][33].
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