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Abstract: Resource allocation is a crucial challenge for network virtualization (NV) in a cloud environment. Virtual network embedding
(VNE) approaches exemplify NV technologies’ critical utility, which must efficiently deal with potential network issues. To promote
cloud infrastructure flexibility, software-defined networking (SDN) has been adopted as a network practice to centralize the manageability
of the data centre network (DCN) resources. This paper introduces a classification approach that ensures an accurate starting point
for solving the VNE problem in a distributed system. The solution implementation is based on measuring the importance of each
DCN using the spearman rank correlation coefficient. Afterward, we devise a constructive algorithm that classifies DCNs in clusters
from unsupervised data learning. This DCN management allows us to direct the VNE process to a small number of DCNs, which will
reduce the dimensionality of the search operation in a distributed environment. Ultimately, we adopt various metaheuristics as a VNE
optimizer for the selected DCN. Numerical results verify that the Jenks natural breaks classification outperforms similar methods in
terms of resource utilization and acceptance ratio.
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1. Introduction
Resource management remains one of the biggest chal-

lenges for cloud technologies, including operational effi-
ciency and business flexibility [1]. Specifically, the tra-
ditional infrastructure provider (InP) was the main entity
responsible for the service deployment (mostly creating vir-
tual resources) and physical network resource management
within an NV application. Besides that, service providers
(SPs) have the role of synthesizing the deployed virtual
resource in virtual networks (VNs).

Over the last decade, cloud computing’s evolution has
taken a substantial step towards a sustainable reckoning
paradigm that entails a distributed accessing of services [2].
SDN is one of the most effective network technology
that has been notably endorsed within cloud facilities, and
this is stemmed from the gained benefits in architecture
adaptability at a minimal cost. According to the open net-
working foundation (ONF) [3], the SDN concept establishes
a thorough process of separating the forwarding function
(InP tasks) from the network managing servers (SP tasks).

In networking, SDN establishes an orchestration de-
sign to centralize network provision at lower operating
charges [4]. The modern concept of SDN-enabled focuses

on offering innovative deployments for VNE policies, in-
cluding resource allocation and utilization. The goal of VNE
is to locate the ideal mapping approach from a set of virtual
network requests (VNRs) to a substrate network (SN) [5].
So far in the literature, three different optimizing strategies
were used to improve the performance of VNE:

• Exact approaches [6] address the small instance of the
initial problem and set up a formulated solution that
usually depends on an Integer Linear Programming
(ILP) model.

• Heuristic methods [7] tend to solve the VNE problem
in a low execution time while counting on the exact
solution as a baseline strategy and extend it to large
size problems.

• Metaheuristic methods are considered the most com-
monly exploited methods due to their suitability with
real-world cloud scenarios, where near-optimal solu-
tions are generated within a reasonable period.

When the cloud infrastructure is based on distributed
datacenters, the perspective of solving a VNE problem is
derived from an initial plan of choosing the appropriate
DCN to meet the VNRs requirements; ergo, a higher level
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of governance is potentially required. In this study, we take
advantage of the SDN features such as programmability
and controllability to apply a cluster-based method as a
pre-embedding solution. The challenge of clustering-based
DCN selection aims to determine a DCN cluster that can
accommodate a maximum number of VNRs [8]. The main
problem with DCN selection is identifying the resemblance
property in which a collection of DCNs can provide the
best possible physical resources in one group. The DCN
clustering strengthens the pursuit of reducing resource usage
and increasing acceptance ratio. Furthermore, because of the
distributed environment, essential questions must be asked.
Which DCN is the best to fulfill the VNs requirements?
How to reduce the optimization runtime while solving the
VNE problem? To tackle these problematics, we present the
following main contributions:

• A two-part approach is proposed to solve the VNE
problem. Substantially, it executes a data clustering
method for DCNs classification, following with a
metaheuristic-based embedding procedure associated
with the physical and virtual properties.

• Adopt a topological information structure (logical
heap) to classify the DCN clusters and speed up the
search operations for optimal SNs. This structure-
driven DCNs partitioning attempt to classify the
DCNs based on a correlation analysis of their capacity
and relative availability.

• Abstract the SDN control plane’s impact in the multi-
datacenter cloud by focusing fundamentally on the
monitoring aspect to efficiently conduct the meta-
heuristic solving process to the right DCN.

• Several comparisons of well-known metaheuristics
have been conducted to solve the VNE problem.
The results show the promising improvements of the
cluster ranking correlation in increasing the VNRs
acceptance ratio and while lowering the embedding
cost.

This paper is arranged as follows: the most correspond-
ing works to our approach are presented in Section 2. In
Section 3, we explain the essential incentives behind our
research. Next, Section 4 depicts the VNE problem within
an SDN-enabled distributed cloud. Section 5 outlines the
problem statement. A description of our solution proposal is
discussed in Section 6. In Section 7, sufficient experiments
are conducted to evaluate the effectiveness of the DCN-
clustering method. Finally, we conclude in Section 8.

2. RelatedWork
Although recent research has addressed the consolida-

tion of SDN technology in the cloud [9], little attention
has been given to solving the VNE problem in a multi-
datacenter cloud. Alaluna et al [10] present a novel approach
for NV to avoid a cloud with a single datacenter. The
proposed VNE technique (SecVNE) is formulated using a

Mixed Integer Linear Program (MILP) to provide security
assurance over a multi-cloud deployment. The authors have
implemented a multi-cloud network virtualization platform
called Sirius, which leverages the SDN structure to build
the DCNs in private and public clouds. Furthermore, the
data-paths in the data plane are configured via the SDN
controller in the switches’ forwarding rules. In [11], the
authors proposed a VNE algorithm that maximizes the
VNR acceptance ratio in a distributed cloud. This cloud
revenue improvement is based on a novel metric that can
model cloud resources’ dynamic workloads. It provides
accurate knowledge of periodic resource demands to the
embedding algorithm by combining shared resources with a
complimentary resource utilization ratio. The performance
evaluation shows that the proposed policy approach out-
performs similar heuristics by scoring a higher revenue by
31%.

Alhazmi et al [12] studied the resource provisioning
for VNE in geographically distributed cloud datacenters
with SDN-based VN management. The proposed method
(OVNP) is formulated using the MILP model to optimize
the VN provisioning, relying on the SDN controller’s full
awareness of the network’s physical resources across dat-
acenters. This provisioning procedure allows dealing with
the VNE problem in an online fashion (i.e. no advanced
information about the VNRs is available for the SDN
controller) by integrating a flow-metrics-based approach to
conducting the VNRs to the suitable SN in a single stage.
The authors evaluated the proposed work against similar
approaches; the OVNP approach showed improved results
in terms of profits, computational resource utilization and
the ratio of provisioned VNRs.

Alzahrani and Shahin [13] proposed an energy-aware
VNE approach (EA-VNE) for the multi-datacenters cloud.
It adopts the Particle Swarm Optimization (PSO) algorithm
to reduce energy consumption and embedding costs. The
proposed system aims to deal with a distributed environment
by generating a coarsened graph by partition each VNR into
sub-graphs using Heavy Clique Matching (HCM) technique.
Each node in the coarsened graph is allocated to the
proper datacenter while initiating a modified PSO to find
the nearest optimal result for the VNE problem. The EA-
VNE approach was tested against various algorithms, which
results in observing a higher acceptance ratio up to 70%
scored by EA-VNE along with 9% less energy consumption
compared with the other works. Xin et al [14] present a
request portioning heuristic within a networked cloud. It
proceeds by partitioning the VNR into k connected nodes
(subgraph isomorphism) using the minimum k-cut algo-
rithm. An initial cost function was proposed to balance the
VNR loads across multiple cloud sites. The authors studied
the VNE problem in a multi-provider cloud environment
where they classified the VNR into bound and unbound.
This classification supports the selection of a suitable InP
while assuring a cost-effective embedding.
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Several VNE approaches have employed the concept
of clustering in a distributed environment to provide a
proprietary picture to networks where similar resources are
grouped in a single cluster. In [15], the authors proposed a
VN splitting method based on a max-flow/min-cut theory
in a multi-InP environment. This approach creates first a
binary tree of the InPs to reduce the splitting complexity
(two-domain splitting only) using a partitioning method
based on probability. Following this, a capacity network
constructing mechanism is presented to convert the two-
domain splitting into a max-flow/min-cut problem and solve
it via the shortest augmenting path algorithm. The simula-
tion results show an efficiency improvement in VN splitting
with a preserved embedding cost scored by the proposed
compared versus other VN splitting methods.

Xue et al [16] proposed a method consists of node clus-
tering and dynamic service balance awareness (NC-DSBA)
based on a divide-conquer strategy. This approach maintains
the quality of service (QoS) of each VNR requirement,
where virtual nodes (VNods) have different embedding
location preferences. A VNR is divided into several clusters
of sub-requests and then dispatched to the nearest local SN,
relying on a concurrence policy. The authors implemented a
discrete event simulator to evaluate the employed algorithms
with other existing methods. The results showed that NC-
DSBA has a lower time complexity and a more balanced
load distribution. In [17], heuristic and exact algorithms
are proposed and combined with conceptual clustering
techniques to find the optimal VNR splitting across multiple
InPs. In addition, an exact embedding algorithm is presented
to ensure that the VNE is performed in a single stage. The
VNE problem is formulated as a mixed-integer program
(MIP) with the aim of increasing the acceptance ratio while
decreasing the provisioning cost for the InPs. The followed
splitting and embedding algorithms outperform the existing
approaches.

Prior mentioned studies mainly focus on designing a
dedicated method for the VNE problem in a distributed
environment, targeting only the VNR management includ-
ing resource splitting and rating. However, in our work,
we focus on delivering a VNE model that primary conduct
multiple DCNs to enable a feasible policy of physical
resource availability. Our VNE approach promote the cloud
infrastructure supervision via SDN control plane, which will
push a top-notch trusted SNs for the mapping of various VN
types while improving VNE objectives.

3. Motivation
At present, a distributed cloud environment appears

to be the most adopted real-life scenario versus a single
datacenter cloud that tends to be abandoned over the course
of the cloud’s evolutionary vision. With that been said, SDN
structures make it far simpler to build an operative multi-
datacenter environment by connecting a cloud provider to
a network structure that is already set up to incorporate
cloud services. In this work, we focus on optimizing the

VNE process as one of the essential types of NV technology
offered by the modern cloud utilities. Our VNE model stems
from the following motivations:

• An SDN multi-cloud environment allows cloud
providers to make seamless decision-making and flex-
ibility through an omniscient controller when manag-
ing VNR requirements.

• SDN structure solves many connectivity issues within
distributed cloud by providing an automated net-
working that can eject the exigency of implementing
a distributed algorithm. Through a single platform,
InPs could easily interconnect datacenter locations
globally as they grow their business and reach new
customers.

• As many VNs need to be embedded across multiple
DCNs, our approach seeks to maintain an affinity
relationship between the VNRs and SNs while pre-
serving the network design during the embedding
process.

• A straightforward embedding of a whole VNR (no
operation has been performed, such as splitting) will
firmly uphold the user integrity and avoid redundant
computational procedures for each VNR, which will
eventually reduce the overall embedding runtime.

• To address the issue of avoiding the redundant cost of
VNR management, we attempt to explore the existing
DCNs in the interests of determining the most suitable
DCN for any VNRs within a VNE framework. Conse-
quently, this DCN management leads to formulating
an optimal classification scheme for the data plane.

• Existing metaheuristic approaches provide the best
results for a VNE problem with large SNs. But when
the problem scale grows to multiple DCNs, these
approaches’ performance may degenerate due to the
curse of dimensionality. Hence, the selected DCN
from the exploring policy encloses the search space of
metaheuristics in one DCN at a time for each VNR.

This paper introduces a cluster-based VNE method
for a distributed cloud. Accordingly, the SDN structure
enhances the DCNs management intelligently and automat-
ically. Moreover, the SDN-enabled cloud offers a consistent
orchestration to launch a metaheuristic algorithm that ratio-
nalizes the matching between the classified DCNs and the
requirements of the received VNRs.

4. Virtual Network Embedding in SDN- Enabled Dis-
tributed Cloud
Among the cloud service models, Infrastructure as a

Service (IaaS) permits the public tenants an opportunity
to rent virtualized computing resources in a pay-as-you-go
manner, which will accurately meet their exigencies. In this
section, we briefly review the SDN structure’s effect to cope
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with the VNE problem in a distributed cloud environment.

A. SDN-Enabled Cloud
Current cloud architectures rely on dole out the shared

resources on many DCNs that may be found in different
geographic locations. To improve cloud services’ reliability,

Figure 1. Overview of the SDN-enabled distributed cloud for VNE

SDN technologies are adopted to promote more innovation
in network design and management. In this regard, the
deployment of VNs has been undeniably enhanced due to
system monitoring that carries out efficiently the mapping
process. Fig. 1 depicts an overview of the VNE plan in an
SDN-enabled cloud with multiple DCNs.

A user submits a set of VNRs, and the system plans a
low-cost embedding and orchestrates requests to multiple
cloud DCNs. From Fig. 1, we can identify three standard
SDN layers or plans:

1) Application Plane: A platform that describes the
service-aware performance while receiving and han-
dling the VNRs by the SDN broker. This layer
cannot be remotely programmable to prevent any
network cyberattacks. It separates the actual software
operation panel, such as a firewall, from the firewall
hardware.

2) Control Plane: It represents the critical source of
network intelligence carried out by a management
server noted as an SDN controller. This latter enables
policy-based management of network resources. The
controller’s programmability feature sets out an au-
tomatized VNE solution that conducts the given
VNR to the most suitable DCN in the data plane.

3) Data Plane: It accommodates all the networking
equipment, including switches and routers, which
handles the data forwarding rules from the SDN
controller to a specific DCN.

In real cloud practices, the exchange of information be-
tween the three layers is achieved using several application
programming interfaces (APIs); designated as northbound
interfaces (NBIs) between the control plane and application
plane, East-west API within the control plane in case
of the existence of multiple SDN controllers; southbound
interfaces (SBIs) are the link between the control plane and
data plane. NBIs and SBIs are situated in the control plane
in which they communicate with higher component via
programmable network platforms, and forward data traffic
to the data plane via protocols, respectively.

B. Virtual Network Embedding Problem
The process of VNE can be abstracted into an optimal

assignment of VNs to an SN subject to resource constraints.
In accordance with Fisher et al [5], the VNE optimization
(VNEO) problem is related to two main functions, includ-
ing node embedding f unction (NEF) and link embedding
f unction (LEF).

VNEO is defined in Formula (1), where S N = (S Nod,
S Lin) includes a number of substrate nodes (SNods) and
links (SLins); VNRi = (VNodi, VLini) denotes the i-th VNR
with VNods and virtual links (VLins).

VNEO :
{

NEF : VNodi → S Nod
LEF : VLini → S N′ ⊆ S N (1)

The NEF ensures the mapping of every VNod to a
particular SNod. Similarly, LEF will map each VLin into a
SLin or more. We emphasize that an SN represents a single
DCN, which is selected based on a VNE policy.

Figure 2. Example of a VNE solution
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Fig. 2 shows an illustration of a VNE process that maps
a pair of VNRs onto a single SN. A VNE solution typically
features virtual resource allocation into a substrate resource
where it should be used most economically. Indeed, a
successful mapping of virtual resources depends on physical
hardware’s capacity. We note that an accepted VNR (all
virtual resources can be mapped) must be mapped entirely
onto one merely SN. A SNod can only host a single VNod
from the same VN. Nevertheless, a VLin can be mapped
onto multiple SLins, cross different SNods between two
VNods, as shown in Fig. 2, between a to b and d to e.

5. Problem Statement
In this work, the VNE under study is based essentially

on managing the interconnected DCNs. This management
consists of classifying the DCNs in labeled clusters. Under-
standing that the NP-hard problem is a common characteris-
tic for solving a VNE [18] and clustering optimizations [19]
will enforce the difficulty of providing an adequate solution
in these circumstances.

To address this challenge, a complexity reduction must
be applied to one of the involved topics. As the VNE
problem remains NP-hard even in reducing the unsplittable
flow mapping of VLins into a single substrate path [20],
we have only the option of simplifying the data clustering
problem. Therefore, we focus on the dimensionality aspect
of clustering by lowering the variables’ number into one
variable. This shift initiative relies on the definition of the
employed metrics that will assess the similarity of variables.
As a result, we deal precisely with a one-dimensional
(1D) partitioning problem while the results are directed on
hierarchical ranking design.

Commonly, a 1D partitioning is a data segmentation that
can be done by partition it using eye-tracking (visualize
the data distribution through a histogram) in case of a
small dataset. However, it is not evident for a big dataset.
Hence, many straightforward 1D partitioning methods have
a low execution time, such as percentilization, quantiles,
discretization, and minimum distance. Besides that, sev-
eral advanced methods were employed to produce ratio-
nal solutions (based on specific measurements) including,
kernel density estimation (KDE), gaussian mixture model
(GMM), bayes information criterion (BIC), expectation-
maximization (EM) and k-means based heuristics such as
Ckmeans.1d.dp [21].

We note that all mentioned methods (simpler and ad-
vanced) require initializing a desired number of clusters.
In cluster analysis, choosing the right number of groups
is a challenging task for users and considered a major
drawback of these methods. However, in this work, we deal
with a ranked data that allows us to fix a priori several
clusters in organized classes. Indeed, we suggest clustering
the DCNs into four classes based on their possible state
of capacity including very high, high, medium and low.
Thus, the proposed technique focuses on finding multiple
cut-off thresholds in an unsupervised dataset, as we know

its possible output. Fig. 3 summarizes the fundamental steps
that address the VNE in a SDN-enabled distributed cloud.

Cloud 
user

Service provider

NOS

Application Plane

SDN-enabled cloud

Control Plane

Data Plane

DCN 
managment

Mapping
process

Submits 
VNRs 

SDN switch

SDN broker 
checks the VNRs

SDN controller 
initiates a two-stage 

policy

DCN1 DCN2 DCN3 DCN3 DCN1 DCN2

Figure 3. Flow diagram of the proposed two-staged VNE approach

6. Proposed Approach
With the expansion of the multi-datacenter cloud, the

rate of the received VNRs has also been highly increased.
This positive correlation drove the cloud SPs to establish
an operations function in advance that will enhance the
decision-making strategies. To diminish the cost manage-
ment, we follow a throwaway strategy based on two parts:

1) Determine DCN’s level of importance.
2) Conduct and apply the metaheuristic-based VNE

method to the fittest DCN.

A. Part One: DCN Management
Data clustering algorithms rely critically on being given

an effective metric over the provided inputs. For instance,
the process of data clustering can be done in many tenable
ways, and if a clustering algorithm fails to find meaningful
clusters to a user, perhaps the only resort is to manually
adjust the metric until sufficiently helpful clusters are found.
Our main idea is based on two steps, as shown in Fig. 4.

The first step of the DCN management part consists of
initiating a preliminary task that creates a sorted array of
DCNs according to their importance values, which will be
injected as input to the second step called adaptive data
clustering. This latter relies on the Jenks natural break
optimization(JNBO) [22] to partition and classify the DCNs
dynamically, resulting in building a labeled heap.
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Figure 4. Functional diagram of the overall DCN management

1) DCN importance
In our model, we provide a systematic way to cluster

DCNs based on defining variables that are relevant to
the VNE settings. Two main criteria must be satisfied for
VNRs: processing requirements and the number of VNods.
These criteria are often verified for the concerned SN.
Accordingly, capacity and availability are the most common
parameters from an operative DCN perspective in which
they reinforce the VNE process.

DCNcap =

n∑
i=1

S Nodcap
i +

∑
DCNbw (2)

S Nodcap =
∑

(CPU,RAM, BW, S torage) (3)

DCNav =

∣∣∣∣∣α.∑ S Nodocp

S Nodal − β.S Nod f r
∣∣∣∣∣ (4)

The DCN capacity (DCNcap) is determined by summing
the capacities of the SNods S Nodcap(each S Nodcapis deter-
mined by summing its local resource capacities) and DCN
total bandwidth (DCNbw). In this work, we assume that
all the underlying physical resources are running regularly,
with no possibility of downtime occurring (DCN is always
responsive). Hence, the proposed DCN availability (DCNav)
variable is associated with the current state of the total num-
ber of SNods (S Nodal), including the number of occupied
SNods (S Nod ocp) and the number of free SNods (S Nod f r).
The relative factors α and β are used for elevating the values
of S Nod ocp and S Nod f r where α < β. The greater the value

of S Nod f r, the higher DCN is promoted.

Finally, DCNcap and DCNav are the two based variables
entrench the importance of a given DCN. The importance
attribute is defined through three steps. In the first step, we
rank the data of DCNcapand DCNav, the highest value rank
is equal to the data size. The second step consist of applying
Spearman’s rank correlation coefficient (ρ) in (5) to measure
the similarity between all DCNs, which is defined as the
following:

ρ = 1 −
 6.

∑
d2

i

(n3 − 1)

 (5)

Where n is the number of DCNs and di is the difference
in the i-th rank when the values of the two variables
are sorted. The value of ρ will always be between 1
(variables are positively correlated) and -1 (variables are
negatively correlated). The third step is dedicated to define
the importance value of every DCN (DCN imp). This value
is determined based on ρall (correlation coefficient for all
DCNs) and ρs (correlation coefficient for all DCNs except
the k-th DCN) by calculating the average similarity between
the k-th DCN and other DCNs. The importance of a given
DCN can be calculated as follows:

DCN imp
k =

∣∣∣∣∣∣ ρall − ρs

(n − 1).ρall

∣∣∣∣∣∣ , k = 1, 2, . . . , n (6)

The larger the value of DCNimp
k the more important the

k-th DCN is. This process of defining the DCN importance
served us to fulfill our purpose of reducing the dimension
of the data clustering problem to one dimension. We note
that every value in (6) is added to an array in ascending
order.

2) Adaptive data clustering
The term clustering is often employed when facing a

multivariate data issue. However, it requires sophisticated
methods to generate desirable solutions. In this paper, we
used a classification method called natural breaks, which is
a kind of clustering technique but with a univariate dataset.
JNBO applies a simple data-driven partitioning to improve
the classification results by discovering hidden patterns in
data.

Given an array A ={x1, x2, . . . , xn} of positive values
that represent the importance values of the DCNs, which
are sorted in ascending order x1<x2, . . . , < xn where x1
can be associated with any DCN (x1 does not necessarily
label the first DCN). The array A satisfies the constraint
of the 1D partitioning problem that necessitates a single
attribute (DCN importance) with a uniform representation
of values. Our objective is to classify the DCNs into four
ordinal classes (k) categorized as: Low, Medium, High and
Very High. The JNBO objective function Z : A(x) → k is
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defined as the following:

Min Z =
k∑

i=1

S DCM
(
Asub

i

)
(7)

Where SDCM is the sum of squared deviations for
each subarray (class) Asub mean. The adopted method is
statistically rigorous as it is designed to minimize the
within-class variance (reduce the overlapping) while maxi-
mizing between-class differences (increase deviation). The
iterative algorithm of DCN classification based on JNBO is
instructed as follows:

1) Calculate the sum of squared deviations for the A
mean (SDAM).

2) Divide the ordered data in A into four classes
(k=4) and calculate the squared deviation of the
generated combination of classes (SDCM). This step
is repeated to investigate all the possible classes’
combination through the splitting tasks.

3) Calculate the goodness of variance fit (GVF) to
minimize the SDCM. While the value of GVF is
always between 0 (worst fit) and 1 (best fit), the
classes’ combination with a GVF value closer to
1 will be selected as the optimal solution for A
partition. GVF is calculated as:

GVF = 1 −
(S DCM

S DAM

)
(8)

4) Create a Max-Heap hierarchical design where each
node represent a clustered class that is labeled by the
highest DCN importance value.

We note that the partition solution has kept the ascending
order for each class. The logical hierarchy of our parti-
tioning approach is configured as a heap in step 4 (heap
by a complete binary tree) where each node represents a
cluster of DCNs. This additional step enriches the obtained
natural classes by laying out a meaningful labeled-data
representation, which will ultimately reduce the search
time of substantial substrate resources during the VNE
procedure.

Fig. 5 illustrates the DCN classification strategy, which
ensures from the start the availability of the best DCN for
any VNR received. Since the data plane is structured as
Max-Heap topology, our approach consistently pushes the
most important DCNs to the top. These DCNs are logically
grouped in a cluster labeled by the highest importance value
of a DCN. Therefore, the most frequent operation has the
complexity of O(1) to identify the prominent DCN and O
(log n) in case of reordering the heap clusters during the
VNE process.

We note that the DCNs at the same level have strictly
higher importance values than those of the DCNs be-
low. The communications between the SDN controller and

Figure 5. Proposed systyem architecture with a clustered data plane

DCNs are made via four SDN switches (programmable
switches), one at each cluster. Practically, a real cloud
application of our approach can simply instantiate the SDN
switch ID by the simulated group ID, which allows the SDN
switch to play the role of a cluster since it is connected
directly to the DCNs.

B. Part Two: VNR Mapping
VNE is one of the key enablers for multi-tenancy pro-

cedures that require a full oversee of the system resources.
Mainly, metaheuristics tend to balance the exploration and
exploitation functions to achieve a near-optimal solution.
However, in a large scale environment, the system will
suffer from communication overhead triggered by the ex-
tension of complex operations. To avoid this matter, the
first part of our approach (pre-processing) outlined a con-
structive algorithm that plays an essential role in boosting
metaheuristics efficiency for solving the VNE problem.

This second part exhibits our primary embedding goal
of reducing resource utilization while accommodating as
many VNs as possible. The principal tasks of our proposed
VNE policy are presented in Algorithm 1. To map each
VNR, we employed a list of well-known population-based
metaheuristics dedicated to solving the VNE problem. The
metaheuristic exploitation and exploration search phases
are restricted to the max-cluster size (subarray from H)
targeting DCN with the highest importance value. We
emphasize that each metaheuristic algorithm apply a mutual
fitness function defined as:
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Max S =
∑(

S NodS + S LinS
)

(9)

S ub ject to :

S Nodcap ≥ VNodreq (10)

S Lincap ≥ VLinreq (11)

S Lincap, S Nodcap ≥ 0 (12)

VLinreq,VNodreq > 0 (13)

Where SNodS= SNodcap/
∑

VNodreq and
SLinS= SLincap/

∑
VLinreq are the stress rates of S Nods

and S Lins , respectively. The goal of this function is
to maximize the local resource utilization in each SNod
(Storage, RAM and CPU) and SLin (Bandwidth) until
it cannot host any additional virtual resources. This
maximization process depends on the virtual resource
requirements VNodreq and VLinreq (similarly to substrate
local resources) in each VNR, the smaller the fitness value
the more DCN stress is maximized.

In essence, our VNE approach is executed in an offline
mode where the user will receive a notification (accepted
or rejected) after his VNRs got processed. This notification
would take some time, especially when there are other
prior VNRs arranged in a first-in-first-out (FIFO) queue.
Algorithm 1 takes as inputs the Max-Heap array H and
two lists of VNRs and metaheuristics (MHs). In line 2,
we initialize the VNR requirement (VNRrqm) similar to the
calculation of DCN capacity (as in (2) and (3)). In line
3, we extract the first cluster from H, which its ID is the
importance value of the most valuable DCN. Based on
the selected DCN, we initialized its capacity to establish
a capacity verification in line 5. This test will allow us to
avoid further computations as the condition is not verified.

A VNR can be scheduled for later mapping (line 14)
if the current DCNcap and initial DCN capacity DCNcap

ini
are respectively less than and greater than (or equal to)
its requirements. This simple delay mechanism consists
of passing a given VNR for mapping when one of the
current mapped VNRs has completed its resource allocation
duration while the importance condition is verified.

We note that Max-Heap is rebuilt when a DCN is
updated (VNR got mapped or unmapped). The result of
this rebuilding task is exclusively illustrated in two possible
sorts:

1) Preserve the clusters’ rank while only change the ID
of the max-cluster.

2) Rearrange the clusters’ position (adjustment in clus-
ters’ categories) when a bigger DCN imp is found in
lower levels. Essentially, the SDN controller decides
what heap-rebuildment manner (line 11) the data

plane should apply based on the DCN imp values
that are sent from the four SDN switches after each
accepted VNR.

C. Evaluation Metrics
Since our primary objective is to lower the exploitation

rate of substrate resources, we introduce the most accurate
performance measures related to InP to assess work objec-
tives effectively:

• Network utilization: The entire network usage is
referred to as the total engagement of both node and
link utilization for the i-th VNR regarding the total
network capacity calculated in (2).

Netu =

[∑
i∈VNR S Nodi

cap +
∑

i∈VNR S Lini
bw

DCNcap

]
.100%

(14)
Where SNodcap and SLinbw are node capacity and
link bandwidth, respectively.

• Embedding runtime: This metric describes the time
of successfully mapping a given VNR regarding the
runtime of Algorithm 1. Moreover, it is estimated
by the CloudSimSDN simulator [23] through a set
of events managed by the network operating system
(NOS) class that has the role of SDN controller.

• Number of active nodes and links: This metric counts
the average substrate resources that were involved in
the embedding process by summing the active nodes
and links. It manifest a crucial aspect of improving
the embedding quality by saving the total energy cost
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of DCN.

ActNod =

(∑
S Nodocp∑
S NodS N

)
.100% (15)

ActLin =

(∑
S Linocp∑
S LinS N

)
.100% (16)

Where Nodocpand Linocp are the number of occupied
nodes and links, respectively. We note that the func-
tion defined in (9) promotes the reduction of active
substrate resources.

• Acceptance ratio: In VNE research, the acceptance
ratio (AR) is defined as a measure of the rela-
tionship between the number of accepted VNRs
(VNRacp) that are fully mapped, and the total pro-
cessed VNRs (VNRpr).

AR =
(∑

VNRacp∑
VNRpr

)
.100% (17)

7. Performance Evaluation
This section demonstrates our policy objectives through

a set of performance evaluation simulated out of DCN and
VNR designs.

A. Simulation Settings
For SN, we implemented a DCN called Diamond (Fig.

6) created by [24] that has only two layers (Core and edge)
as an enhanced physical topology to the Fat-tree [25] DCN
with an additional aggregation layer.

TABLE I. Servers and VMs requirements from the generated DCNs
and VNRs

Server VM

Number of CPUs 4-20 2-8
RAM 2-16GB 512MB-8GB

Storage\Size 5GB-1TB 1-20GB
Bandwidth 2-100GB 100MB-5GB

Figure 6. Diamond topology with 4 pods and 16 servers

We have generated 80 DCN instances of the Diamond
topology that has a random number of servers from 16 to
128. On the virtual side, we have generated 300 VNRs with
a random number of virtual machines (VMs) from 4 to 122.
Further resource specifications are presented in Table 1.

We note that all algorithms are implemented using Java;
simulations are performed on a computer with Intel(R)
Core(TM) i5-6200U CPU up to 2.80GHz and 4GB of RAM.

B. Comparison Metaheuristics and Data Classification
Methods
In our work, we have used the CloudSimSDN toolkit

(based on object-oriented paradigm with Java) that simpli-
fies the flow interactions between the three layers of SDN
structure by integrating non-sophisticated traffic shaping
methods. We recall that our policy benefits from the stronger
optimization capability and acceptable time execution of
VNE metaheuristic-based solutions. Table 2 presents all the
compared metaheuristics in their basic implementation (no
modification has been made).

To ensure that the VNE problem is solved in one stage
coordinated process, we combine each metaheuristic with
a breadth-first search (BFS) algorithm to embed VNods
and VLins concurrently. The metaheuristic with the best
performance will be selected as a VNE solution based on
univariate data classification techniques (similar to JNBO).
The compared classification schemes are listed in Table 3.

It is noteworthy that our policy has overcome critical
limitations engendered in the previous metaheuristic-based
studies for distributed VNE, including:

1) Solve the problem with no focus on implementing
a prioritization scheme for the DCNs in the data
plane, resulting in extra power consumption since no
mechanism is incorporated to the search and select
the appropriate DCN during the embedding process.

2) The exigency of employing a distributed algorithm
in order to manage the traffic (i.e., additional for-
warding mechanism to guide the network packets).

3) Lack of a baseline solution (initial checking) that
assures conformity between the VNRs and the avail-
able DCNs, which will prevent unnecessary comput-
ing during the embedding process.

As a solution to the previously mentioned limitations,
we suggest the following refinements:

1) Adjust the metaheuristic solution to be adapted with
the diverse requirements of the arrived VNRs using
a pre-processing procedure so that a VNR is rejected
or scheduled for a later mapping round if it does not
meet the DCN capacity.

2) Adopt an innovative network architecture such as
SDN Software-Defined Data Centre (SDDC) to in-
crease the metaheuristic solution accuracy (only fo-
cus on dealing with VNE problem) while a control
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TABLE II. Compared algorithms

Notation Algorithm description

PSO-VNE [26] Particle swarm optimization-based solution where the operations and parameters of particles are
redefined tosuit the VNE problem.

AC-VNE [27] Inspired by the behavior of an ant colony to find the optimal path towards the food source.
It split VNRs into sorted sub-VNRs to be assigned optimally.

GWO-VNE [28] The VNE problem is solved based on an inspired behavior of the grey wolves during the
hunting process which improves the search for the fittest resources.

GA-VNE [29] A classic genetic algorithm to solve the VNE problem by taking advantage of the selection,
crossover, mutation and feasibility checking operations.

HS-VNE [30] Harmony search algorithm exploits an inspired improvisation process performed by musicians
based on probabilistic rules to determine a pleasant harmony (set of DCN resources in VNE).

TABLE III. Compared univariate data classification methods

Unsupervised data classification Description

Defined-intervals A partitioning method that divides a normal distribution into four classes where
each class can have a random number of data included in [5-40] while the total
size of all classes equal 80.

Quantiles An algorithm that computes three quartiles Q1(25th percentile), Q2(median or
50th percentile) and Q3(75th percentile,) which will divide a sorted distribution
into four quarters where each will have 25% of the data.

Exponential interval An algorithm that generates classes so that the number of observations in each
class interval increases exponentially.

Standard deviation A classification method that breaks the dataset based on how much it differs
from the mean. In our case, we have four classes to define, which means two
standard deviations must be calculated, one above the mean and one below the
mean.

unit handles the networking operations.

C. Results Analysis
In this subsection, we investigate the impact of classified

DCNs (using JNBO + Max-Heap design) on the VNE
quality within a distributed system. The designed clustering
policy has transformed the data plane plan into a multistage
structure.

Fig. 7 illustrates the case where the pre-embedding pro-
cess is excluded, including the importance computations and
the heap tree construction. We can observe that despite the
low rate of network utilization and active nodes and links,
GWO-VNE has managed to provide the best acceptance
ratio; this is due to the developed agents that improved
the matching mechanism. Conversely, HS-VNE scored the
worst performance resulting from the ability to reach a high
number of iteration while not improving the final solution.

Fig. 8 depicts the result effects of applying a preliminary
resource rearrangement (DCN management). Notably, the
metaheuristics performance has been improved due to rate

Figure 7. Performance comparison among metaheuristics without
clustering integration

reduction for network usage and the number of active nodes
and links. Moreover, an overall increasement (more than
10%) in acceptance ratio is captured, especially in the
case of AC-VNE, where more VNRs got mapped due to
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Figure 8. Performance comparison among metaheuristics with clus-
tering integration

Figure 9. Total VNE runtime comparison between metaheuristics
without clustering integration

the ability to adapt with the DCN capacity updates (i.e.,
assured convergence in low-dimensional problem) during
the reconstruction of Max-Heap.

Figs. 9 and 10 show the time execution of VNE-based
metaheuristics over a set of processed VNRs. In Fig. 9, we
notice that GA-VNE, PSO-VNE and GWO-VNE yield a
convergent runtime performance in the first half of VNRs.
Nevertheless, GWO-VNE has scored lower time execution
at the end of the simulation. Via a classification framework,
the runtime results in Fig. 10 show a positively correlated
performance as Fig. 9, yet with a significantly reduced
time running (up to 6 seconds). Particularly, PSO-VNE
outperforms GWO-VNE by providing a short computational
time due to the few parameters to adjust.

Overall, the initiative classification has enhanced the
objective model of VNE prospects in a distributed cloud
environment. This improvement is supported via the SDN
centered management plan. A good VNE algorithm should
essentially engender a balanced performance in reducing
the cost of the engaged physical resources while increasing
the long-term profit from the accepted VNRs. Accordingly,
the previous results from Figs. 7, 8, 9 and 10 have yielded
the following conclusion (the symbol > indicates that the

Figure 10. Total VNE runtime comparison between metaheuristics
with clustering integration

prior algorithm outperforms the next one): GWO-VNE >
AC-VNE > PSO-VNE > GA-VNE > HS-VNE.

Based on the latter result, we ran conclusive tests to
validate the efficiency of JNBO compared with similar unsu-
pervised techniques. Figs. 11 and 12 represent the compared
results of the classification techniques using GWO-VNE as
a metaheuristic-based solution.

Fig. 11 shows dissimilar results between the compared
methods caused by our policy orientation, which targets
for each VNR the max-cluster (with very high capacity
of DCNs) only. Hence, we observe a tremendous amount
of network utilization and high average of active nodes
and links for the exponential interval, which led to deliver
almost the same acceptance ratio as JNBO. The defined-
intervals method scored the lowest VNE performance due to
the randomization argument that requires a prior knowledge
of the VNRs condition.

Fig. 12 shows that the exponential interval algorithm
scored the highest runtime at an increasing rate. Quantiles
and standard deviations methods show a near-matched per-
formance with a lesser runtime for the quantiles method.

Figure 11. Performance comparison of classification methods within
a VNE framework
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Figure 12. Total VNE runtime comparison between different uni-
variate data classification methods

The defined-intervals algorithm has attained an unstable
performance due to the frequent change in the class size
with each VNR. Based on these remarks, we deduce the
following main factors that affect the policy results: (i)
Number of DCNs (class size) at the Max-cluster; (ii)
Rational offline mode where the VNRs are processed in
a FIFO manner (no predefine order-based) with different
resources requirements.

To sum up, the VNE policy based on JNBO classifi-
cation and GWO-VNE has provided the most convenient
performance for all VNE objectives with a reasonable
runtime.

8. Conclusion and FuterWork
Cloud resource management becomes more diligent

with the rapid development of network technologies. Thus,
InPs have established dedicated network policies that rely
on innovative task automation and advanced accessibility.
In this paper, we adopt a distributed cloud datacenters based
on an SDN structure to solve the VNE problem. Indeed, our
policy guarantees the delivery of resource discovery, control
and VN mapping.

The VNE process is conducted through a DCN man-
agement based on data classification (importance identifi-
cation) and metaheuristic-based solution. In the sense of
resource allocation, the mapping solution is undertaken by
static substrate resource capacity with no mechanism of
virtual resource migration. Simulation results indicate that
the proposed DCN-clustered strategy achieved a favorable
impact compared with similar methods.

Since the DCN architectures are much broader and
more divergent, we strive to develop a distributed network-
aware policy that manages heterogeneous cloud DCNs
while defining the VNR types (tailored to their diverse
needs) in favor of ensuring an efficient VNE solution with
low power consumption.
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