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Abstract: In recent years, resource-constrained Internet of Things (IoT) devices have been incorporated in many domains. However,
malicious users and attackers in the cyberspace have been taking advantage of these technological advancement, to gain unauthorized
access to these devices. It is essential to identify all connected devices uniquely, to improve network security as well as preserve user’s
privacy and safety. In this paper, a device fingerprinting scheme have been proposed by utilizing device-originated communication
traffic attributes from a single transmission control protocol (TCP)/internet protocol (IP) packet information. Nine features have been
extracted for the proposed scheme. This approach has been evaluated using five machine learning algorithms: J48, Random Forest,
Random Tree, Bagging, and Stacking, on three IoT datasets: the IoT Sentinel, UNSW, and D-Link IoT, to study the trade-off between
classification performance and processing time. Experimental results have shown that the Bagging classifier achieves 96.6% precision,
and 96.4% recall and f-measure using the D-Link IoT dataset, respectively, however, requiring a significant amount of time. On the
other hand, the J48 classifier achieves comparable performance whilst requiring only a minimum time. The result is significant as the
proposed device fingerprinting scheme can be used to increase security of an IoT network.
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1. Introduction
The Auto-ID center first instigated the term Internet of

Things (IoT) in 1999, with a vision of identifying individual
physical world object using globally unique identifier by
means of radio frequency identification (RFID) [1], [2] tag,
and allowing the objects to interact with one another over
the Internet [3], [4]. Since then, IoT network has expanded
rapidly and has been incorporated in many heterogeneous
objects, technologies, and applications. Numerous commu-
nication protocols have also been developed to connect the
physical world objects to the digital world. IHS Markit
predicts that the total number of connected IoT devices
worldwide will surge to approximately 125 billion by 2030
[5]. A wide range of IoT devices has made possible the
development of different smart applications in our everyday
life. These applications may be grouped into different do-
mains, including smart city, smart home, smart agriculture,
smart transportation, smart health, and fitness [3], [5], [6].

People are adapting to these technological advancements
personally and socially, for industry and business purposes,
due to their low cost, simplicity, and ease of use. For
instance, smartphones and web applications now allow its
user to control devices remotely over the network, and
internet protocol (IP) camera can be used for the remote
monitoring of home or office. However, these heteroge-

neous IoT devices [3], [7], which commonly are relatively
resource-constrained in terms of memory, processing power
and energy, are sometimes connected to the Internet with
naive security configuration [7], [8]. This imposes new
security and privacy challenges in the cyberspace, including
device management, anomaly detection, and authentication.
To mitigate these issues, device identification plays a vital
role in an IoT network. In a network, communicating
devices can be identified based on either explicit user-
defined identifiers, such as internet protocol (IP) and media
access control (MAC) addresses, or network traffic analysis,
such as through analysis of packet, frame and radio sig-
nal attributes. Unfortunately, explicit identifiers have been
shown to be easily mutable by knowledge of networking
and even, with the use of some freely available software
[9]. Some researchers [10] have successfully utilized radio
signal as identifiers. In reference [10] the authors have
utilized received signal strength indicator (RSSI) to identify
position of a WiFi-enabled system in indoor un-ideal envi-
ronment, with the classifier achieving respectable accuracy.
However, these radio signal-based approaches commonly
require an expensive hardware tool [11] for implementa-
tion. Consequently, many researchers have proposed distinct
device fingerprinting (DFP) methods based on network
traffic analysis (packet or frame), by utilizing machine
learning (ML) or deep learning (DL) algorithms for device
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Figure 1. Basic structure of the standard communication models

identification [12], [13], [14].

Device fingerprinting [9], [15], [16] is one of the
techniques that may be used to identify both connected
IoT (specific-purpose devices, such as door sensor, smart
switch/plug, smart bulb) and non-IoT (general computing
devices, such as smart phone, tablet, and computer) devices
in a network or the Internet without utilizing explicit
identifiers. It has emerged as a significant solution in
improving network security, due to its resistance against
vulnerabilities, such as node forgery and masquerading
attack. DFP can be categorized into either active or passive
fingerprinting approaches [9]. In an active fingerprinting
approach, a profiler is required to send a request to target
systems, in order to capture corresponding responses for
DFP analysis, whereas in a passive fingerprinting approach,
a system captures target network communication traffic
traces (both inbound and outbound network traffic traces),
without actively making any request to any particular sys-
tem [9], [15].

In this paper, a DFP approach to classify IoT devices
based on the analysis of passively observed network packet
traces, which devices use to communicate over the network,
has been proposed. DFP may be extracted from different
layers of the communication models, including the open
systems interconnection (OSI) model and the transmission
control protocol/internet protocol (TCP/IP) model [17].
The network and transport layers protocols are used to
generate DFP for classification purpose in the proposed
DFP model. Subsequently, these selected fingerprints have
been used to train various ML models, including J48,
Random Forest (RF), Random Tree (RT), Bagging (BG),
and Stacking (ST), and it has been shown that the proposed
DFP model achieves better performance by utilizing the J48
algorithm, in terms of device identification and processing
time. 91.4% precision, and 91.1% recall and f-measure have

been achieved by the J48 algorithm using IoT Sentinel
dataset within 19 seconds, whilst utilizing the UNSW
dataset precision and f-measure reach up to 96.7% and
94.6% in 331 seconds, respectively. On the D-Link IoT
dataset, the scheme attains over 95.7% precision along with
95.2% recall and 95.1% f-measure within 1,079 seconds.
The main contributions of this work are:

• Identifying a set of key attributes (TCP, UDP, IP
protocols features) from network traffic traces, which
can be used to characterize a cohort of IoT devices
uniquely.

• Evaluate the proposed DFP model performance based
on the selected nine features, to classify IoT devices
using different supervised machine learning algo-
rithms.

• Performance metrics (precision, recall, f-measure and
RMSE) have been used, to find a trade-off between
processing time (including training and testing times)
and accuracy.

The remainder of this paper is organized as follows.
Section 2 describes related works to the topic. IoT device
data and collection process, network traffic analysis, the
proposed machine learning based IoT device identification
model, and performance measures are given in Section 3,
followed by an exploration of the model performance using
different datasets and ML algorithms in Section 4. Finally,
Section 5 concludes the paper.

2. RelatedWork
Device fingerprint or signature for IoT devices can

be generated from different layers of the communication
models [17], [18], as shown in Figure 1, based on the
analysis of distinct feature vectors, such as the network
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packets [12], [15], [19] in the network layer, MAC frame
[14], [20] in the data link layer, and radio signal [21], [22] in
the physical layer. Many researchers have proposed different
DFP models utilizing only network traffic traces, due to
the availability of network traffic in a local area network
(LAN) or wide area network (WAN), as well as the low-cost
hardware required to capture communication traffic traces
for analysis.

Miettinen et al. [12] have proposed an automated IoT
device identification framework based on the analysis of
passively observed network traffic traces, in order to enforce
security and privacy in IoT networks. To generate unique
device fingerprinting, 276-dimensional feature vectors (12
x 23 features) are extracted from 12 consecutive network
packets, including from the link, network, transport, and
application layers protocols information. These feature vec-
tors are then utilized to train a machine learning model per
device type, in order to uniquely classify IoT devices. The
scheme achieves 81.5% accuracy (global ratio) over 27 IoT
devices. The relatively low model performance is due to the
presence of multiple devices from the same manufacturer
in their dataset.

In reference [23], the authors have used five packets
(forming a session) to construct DFP (5 x 20 features),
from packet header protocols and payload attributes. The
features are then used to train ML algorithms to give
99% accuracy over 10 devices from different manufacturers.
Statistical set of features of attributes from individual device
communication flows (n number of packets), have been
extracted in references [24], [25], [26], to characterize the
devices. These selected features are then utilized to train
various ML models for classification.

Aksoy and Gunes [27] have proposed a DFP model
referred to as SysID, based on the analysis of 212 features
from a single TCP/IP packet information, with features
extracted from different layers including from the network,
transport, and application layers distinct protocols features.
Accuracy of 82% has been reported using the IoT Sentinel
dataset (23 devices), with key features selected using a
genetic algorithm to improve the classification accuracy.
Following this scheme, reference [15] has utilized metric
entropy calculation to identify the suitable subset of features
for DFP to reduce complexity.

3. Methodology
A. Datasets

The proposed method has been evaluated using two
publicly available online datasets [12], [24], and an ex-
perimental testbed dataset of D-Link IoT devices [28], as
listed in Table I. The IoT Sentinel dataset [12] comprises
of 31 smart home IoT devices from different manufactur-
ers, including from D-Link, Edimax, Fitbit, Ednet, Belkin,
Withings, TP-Link, HomeMatic, PhilipsHue, and Smater,
with the dataset consisting of individual device setup phase
communication traffic only. In this dataset, network traffic

Figure 2. An experimental testbed of an IoT network

traces have been captured from cameras, smart-bults, smart-
plugs, smart-switches, and smart electronic gadgets. On the
other hand, the UNSW dataset [24] incorporates both IoT
(22 devices) and non-IoT (7 devices) devices traffic traces
that have been captured for a long period of time from
a smart laboratory setup environment. Lastly, the D-Link
IoT dataset [28] is comprised of 14 IoT devices from the
same manufacturer but of different categories, including
cameras, door-sensors, hub, smart-plugs, as well as Z-
Wave-enabled IoT devices (two D-Link door sensors). All
the communication traffic traces have been captured in a
controlled laboratory environment. The data collection setup
for the D-Link IoT dataset is described in the next section.

B. Data Collection Methodology
Network traffic traces are digital footprints of connected

devices in a network. Basically, IoT devices leave traffic
traces during communication either with other network-
connected devices, or with servers in two cases [29]:
(i) autonomous traffic, including domain name translation,
clock synchronization, and device-to-device interaction, and
(ii) traffic generated by human/object interactions, including
remotely on-off operation of a smart device, pre-defined
activities triggered by motion sensor, and video transfer over
the network from IP camera.

In this paper, traffic traces from both scenarios have
been collected passively, with experimental testbed shown
in Figure 2, which forms the D-Link IoT dataset. All
inbound and outbound traffic traces from the connected IoT
devices have been captured on the access point (AP) using
tcpdump (4.9.2.-4) utility [12], [28], [29] (an open-source
command-line packet sniffer or analyzer). The utility allows
the reading of packet contents via a network interface (WiFi
or Ethernet interfaces) [30]. For instance, the following
command is used to capture and store network packets from
a network interface (-i flag): tcpdump -i interface name -w
file name.pcap. A laptop, running Ubuntu (18.04) as host
operating system (OS) and Kali Linux (2020.3) as guest
OS over VMware Workstation Player (15.5.2), has been
configured as an AP using software packages – hostapd
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TABLE I. Details of the datasets

Dataset Devices Instances TE IO Traffic PCM AT AP Source

IoT Sentinel 31 102,226 Real All Setup tcpdump – Laptop [12]
UNSW 22 6,844,821 Real All All tcpdump Cron Gateway [24]

D-Link IoT 12 15,308,711 Real All All tcpdump Cron Laptop [28]
Note: Testbed Environment - TEP, Inbound & Outbound - IO, Packet Capture Module - PCM, Automate Tasks
- AT, Access Point - AP

[31] and dnsmasq [32], with a WiFi adapter attached to
the laptop functioning as a WiFi interface (interface mode
- master) for the Kali Linux.

Additionally, an external Ethernet adapter is connected
to the same system, which acts as the Ethernet interface.
The laptop gets its internet services through the university
network over its built-in Ethernet port. A local server
is connected to the same network for data storage and
processing. This experimental testbed has been setup in the
network systems and signal processing (NSSP) laboratory,
Universiti Brunei Darussalam (UBD), with 14 D-Link IoT
devices, as listed in Table II.

TABLE II. List of D-Link IoT devices

Category Model Devices Connectivity

Camera DCS-936L 2 WiFi
DCS-930L 6 WiFi/Ethernet

Smart Plug DSP-W215 3 WiFi
Home Hub DCH-G022 1 WiFi/Ethernet

/Z-Wave
Door Sensor DCH-Z112 2 Z-Wave

C. Network Traffic Features Analysis
Feature vectors for DFP can be attained from different

dimension of network traffic traces, including single packet
information [15], [27], sequence of packets [12], [33],
statistical features of packets [19], [33], [34] and combi-
nation of statistical and measurement values [34]. Traffic
traces originating from devices are filtered by utilizing
individual IoT device MAC addresses. These traces may
carry unique characteristics of a device communication
pattern, which may be used for DFP. From the collected
traffic traces, 82 features are extracted from the network
(IP) and transport (transmission control protocol (TCP) and
user datagram protocol (UDP)) layers of the communication
models, according to individual packet information. TShark
utility [35] has been used for extraction.

Subsequently, these features are evaluated, by utilizing
an attribute evaluator (GainRatioAttributeEval) and
a search algorithm (Ranker) from Weka tool [36],
to identify a significant subset of features that can
be used for device fingerprinting. Subsequently,
features uncorrelated to devices with gain ratio
threshold value <= 0, have been removed. Time
dependent attributes (such as tcp.options.timestamp.tsval,

tcp.options.timestamp.tse-cr), attributes with very limited
values (such as tcp.option kind, and ip.dsfield.dscp),
attributes with negative/hexadecimal/binary values (such
as tcp.window size scalefactor, udp.checksum, and
tcp.flags.ack), have been removed from the feature list.
Finally, the feature list has been narrowed down to only
nine features: ip.len, ip.ttl, ip.proto, tcp.srcport, tcp.stream,
tcp.ack, tcp.window size, udp.srcport, udp.stream, to
be used as the proposed DFP feature set for the IoT
devices. These features are deemed to carry significant
information on the individual device characteristics. For
instance, tcp.window size [23] values depend on the
individual device internal memory capacity and processing
speed, whilst ip.len specifies each packet length in bytes,
including total bytes in an IP header and data without
considering actual information of a packet.

D. Proposed DFP Model
The proposed DFP scheme architecture, to classify IoT

devices using network traffic traces is shown in Figure 3,
with network traffic traces originating from any of the three
datasets: IoT Sentinel, UNSW, and D-Link IoT datasets.
This flowchart depicts a complete process; from data col-
lection to device identification/ classification, including the
proposed DFP model. These devices originated traffic traces
are filtered, to extract a set of the selected nine features,
which have been deemed to be significant for DFP of the
IoT devices. Each of the IoT datasets is then randomly split
into two subsets: 80% for training, and the remaining 20%
for testing. The labelled training subsets are used to train
the different ML classification algorithms, and subsequently,
the trained ML classification algorithms are tested, by
classifying the testing subsets for the classification task.
Different performance measures are calculated from the
outcome of the classification tasks.

These training and testing datasets are then used to train
and test different ML classification algorithms using a shell
script (a command line interpreter is designed for running a
computer program by using the Unix shell [37]), to measure
the performance of the proposed DFP model.

E. Classification Models
Five ML classifiers: J48 (C4.5), Random Forest (RF),

Random Tree (RT), Bagging (BG), and Stacking (ST),
have been used to evaluate the proposed DFP model. In
this study, only trees-based different ML algorithms are
considered for classifying devices. From the existing works
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Figure 3. A flowchart of the proposed IoT device classification model
architecture

in references [10], [12], [15], [24], [27], [38], [39], it has
been observed that these trees-based ML models give better
classification performances compared with other types of
ML algorithms, such as rules-based, Bayes theorem-based.

• J48 (C4.5): J48 is an extended version of the Iterative
Dichotomiser 3 (ID3) classifier. In Weka, the C4.5
classifier is known as J48, which produces a decision
tree based on information theory for the classification
approach [36]. It allows investigating a significant
subset of features, to utilize for classification [15].

• Random Forest (RF): RF classifier is a supervised ML
algorithm, which can be used for both classification
and regression problems. It produces decision based
on a set of decision trees estimations, either using
majority voting or average results of n number of
decision tree [12], [24], [36].

• Random Tree (RT): RT classifier consists of a combi-
nation of single model trees and RF algorithms, which
is used for classification and regression problems
[36]. A model accuracy improves by using a set of
uniformly distributed random trees. For a classifica-
tion problem, this classifier measures a final decision
based on the majority voting of ensemble trees [40].

• Bagging (GB): Bootstrap aggregating (or Bagging)
is an ensemble meta-algorithm utilize for both clas-
sification [41] and regression. It assists in reduc-
ing variance and over-fitting problem of a model.
For classification, this classifier predicts actual value
based on average probability estimations [40].

• Stacking (ST): This classifier can be used for both
classification and regression based on stacking [42]
homogeneous and different classifiers [36]. Instead
of averaging or voting classifiers results to estimate
a final result, the Stacking classifier trains a meta-
learner based on all the classifiers results as input to
a meta-learner to produce an ensemble result.

F. Performance Measures
The performance of the DFP model with the different

classification algorithms, have been measured in terms of
device classification performance as well as processing
time. Three evaluation metrics have been used: precision
(Equation 1), recall (Equation 2), f-measure (Equation 3),
and RMSE (Equation 4), to measure classification perfor-
mance. These metrics quantify the effectiveness of the DFP
model using the different ML classification algorithms, for
device classification.

Precision =
T P

(T P + FP)
(1)

Recall =
T P

(T P + FN)
(2)

F − measure =
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
(3)

RMS E =

√∑N
i=1(xi − x̄i)2

N
(4)

where true-positive (TP) is the total number of positive
samples correctly classified. False-positive (FP) and false-
negative (FN) represent the total number of positive and
negative instances classified incorrectly, respectively. In
Equation 4, xi and x̄i represent actual and predicted values,
respectively, of the available traffic instances in a dataset
and N defines the total number of instances available in
this dataset.

4. EVALUATIONS AND RESULTS
The proposed IoT device identification model has been

evaluated on a Dual core Intel i5-5200U CPU at 2.20GHz,
Dual channel DDR3L-1600MHz 8GB RAM x 2, and an
addlink SATA SSD 512GB hard-drive, running an Ubuntu
(18.04) operating system (OS) with waikato environment
for knowledge analysis (Weka) tool (3.8.5) [36].
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TABLE III. LIST OF HYPER-PARAMETERS TUNED FOR THE CLASSIFIERS

Alg. B. Size D BP C MC Num. F Num. I CF

J48 100 1 – – – 3 – 0.25
RF 100 1 100 – – – 100 –
RT 100 1 – – – 0 – –
BG 100 1 100 J48 – – 10 –
ST 100 1 – J48,BG J48 10 – –

Note: Num. – Number, CF – Confidence Factor, B. Size – Batch Size, D – Seed, C – Classifier,
MC - Meta Classifier, F- Folds, I – Iterations, Alg. – Algorithm, BP – Bag Size Percent

TABLE IV. THE PROPOSED DFP MODEL CLASSIFICATION PERFORMANCES USING DIFFERENT DATASETS AND ALGORITHMS

Alg. Precision Recall F-Measure

J48 .914 .967 .957 .911 .938 .952 .911 .946 .951
RF .904 .972 .954 .903 .937 .953 .903 .947 .953
RT .879 .968 .946 .878 .933 .945 .878 .942 .945
BG .924 .967 .966 .921 .943 .964 .921 .949 .964
ST .924 .968 .967 .922 .938 .963 .921 .947 .963

Note: Alg. – Algorithm, Bagging – BG, Stacking – ST, Datasets (color) – IoT Sentinel,
UNSW, D-Link IoT

Two online datasets: the IoT Sentinel and UNSW
datasets, and one experimental dataset: the D-
Link IoT dataset, have been used to measure the
performance of the proposed DFP model. These
datasets have been divided into 80:20 training:testing,
using the unsupervised instance resample function
(weka.filters.unsupervised.instance.Resample [43], which
subsamples dataset instances randomly. The proposed DFP
model then extracted 9 carefully selected features from
the network and transport layers. These nine features are
deemed to carry significant information which can be used
to uniquely identify the IoT devices. The features were
then used for training the ML classifiers, which have been
obtained from the workbench ML open-source (Weka) tool
[36].

Performance of the DFP model have been measured in
terms of precision, recall, f-measure, and RMSE. Addition-
ally individual classifier processing time (combination of
training time and testing time) has also been considered in
the context of a specific system, to investigate the trade-off
between classification results and computation time. Table
III shows the list of hyper-parameters, which have been
tuned to control the learning process of the classification
algorithms.

Figure 4 and Table IV show classification performances
of the proposed DFP model on the IoT Sentinel, UNSW,
and D-Link IoT datasets, respectively, using different ML
classification models. As can be seen, all the ML algorithms
are able to classify individual IoT devices effectively based
on the selected subset of features by using the proposed
DFP model. Random Tree (RT) classifier gives the lowest
performance in recall and f-measure as compared to all the

other classifiers, while the Bagging algorithm classifies IoT
device with the highest accuracies on all three experimental
datasets. Bagging and Stacking machine learning classifiers
attain more than 92% precision, recall, and f-measure, while
J48 classifier attain over 91%.

In reference [12], the proposed automated IoT device
identification method achieves overall accuracy of 81.5%
using 27 devices out of the available 31 devices in the
IoT Sentinel dataset. Using similar dataset, average clas-
sification accuracy of the SysID has been shown to be
82% by considering 23 devices [27]. As can be seen from
Figure 4a, the proposed DFP model gives precision of
up to 92%, particularly using the Bagging and Stacking
algorithms, despite the presence of devices from the same
manufacturer in the dataset. However, it should be noted
that for performance evaluation, two IoT devices: iKettle2
and SmarterCoffee devices, have been excluded due to the
minimal number of traffic traces available in the dataset as
compared to other devices.

On the UNSW dataset, as shown in Figure 4b, the J48
and RT classifiers give low performance in precision as
compared to the Random Forest (RF) algorithm, although
the difference between the algorithms are less than 1%. It
can also be seen from Figure 4b that the Bagging algorithm
effectively identifies all the IoT devices, to give over 94%
for all performance measures using the selected set of
features based on a single TCP/IP packet information. In
reference [24], the researchers achieve over 99% accuracy
using a set of n number of packets information (network
flow) from different layers of the communication models on
the UNSW dataset. However, network features need to be
computed on an hourly basis to generate device fingerprints,
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(a). IoT Sentinel dataset

(b). UNSW dataset

(c). D-Link IoT dataset

Figure 4. Classification performance results using different datasets:
(a) IoT Sentinel (b) UNSW, and (c) D-Link IoT datasets

which somehow limit the effectiveness of the method.

Figure 4c depicts individual IoT device classification
performance metrics using the D-Link IoT dataset which
has been collected in the laboratory. All the selected ML
algorithms show good performance results in identifying
the IoT devices, despite the devices coming from the same
manufacturer. Using the Bagging and Stacking classifiers,
the proposed DFP model attain over 96% classification
results based on the selected subset of features, while the
J48 and RF classifiers attain over 95%. These results have

(a). IoT Sentinel dataset (processing time)

(b). UNSW dataset (processing time)

(c). D-Link IoT dataset (processing time)

Figure 5. Processing times (including training and testing times) of
ML classification algorithms: (a) IoT Sentinel (b) UNSW, and (c)
D-Link IoT datasets

demonstrated that the proposed model is very effective in
identifying IoT devices, irrespective of the devices coming
from the same manufacturer or of similar categories of
devices.

In Figure 5 and Table V, processing times of the selected
ML classification algorithms on the different datasets are
presented. Time scales for the different datasets vary be-
tween 0 – 1,800 seconds for the IoT Sentinel dataset, 0
– 25,000 seconds for the UNSW dataset, and 0 – 80,000
seconds for the D-Link IoT dataset, based on the recorded
processing times. Figures 5a, 5b, and 5c follow similar
patterns for the different algorithms, irrespective of the
datasets, with the Stacking and Random Tree classifiers
representing the slowest and the fastest classifiers, respec-
tively. Although the Random Tree classifier performs the
fastest, the algorithm gives lower performances as compared
to the other algorithms. On the IoT Sentinel dataset, the RT
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TABLE V. THE PROPOSED DFP MODEL CLASSIFICATION
PERFORMANCES BASED ON PROCESSING TIME

IoT Datasets
Algorithm IoT Sentinel UNSW D-Link IoT

J48 19 sec 331 sec 1,079 sec
RF 183 sec 3,735 sec 12,321 sec
RT 9 sec 196 sec 576 sec
BG 156 sec 2,306 sec 7,393 sec
ST 1,437 sec 23,557 sec 70,301 sec

Note: Bagging – BG, Stacking – ST, Second – Sec

classifier requires only 9 seconds for data processing but
achieves only over 87% identification accuracies. On the
other hand, the Bagging classifier achieves 92% accuracies
but requires 156 seconds for processing. Overall, the Stack-
ing classifier requires much longer processing time but has
not provided significant performance improvements over the
other classifiers. On the D-Link IoT dataset, the stacking
classifier requires 70,301 seconds of processing time to give
96% performance. On the other hand, the Bagging classier
achieves similar result whilst requiring only 7,393 seconds
of processing time, as shown in Figure 5c. Additionally,
it has also been observed that the J48 classifier exhibits
good performance results in identifying IoT devices within
a short time scale.

Figure 6. Evaluation of the proposed DFP model using RMSE

In Figure 6, classification performances of the selected
five ML algorithms, in terms of their RMSE values, are
presented on the three different IoT datasets. The pro-
posed DFP model gains better performances in identifying
individual IoT devices on the IoT Sentinel dataset by
utilizing the Bagging classifier, with the classifier giving
the lowest RMSE value of 0.0586 as compared to the other
classifiers. However, the Stacking classifier gives RMSE
values of 0.0423 and 0.0587 on the UNSW and D-Link IoT
datasets, respectively, which are the minimum error rates as
compared to the other four ML classifiers. On average the
Stacking classifier gives the lowest RMSE value of 0.0543,
whilst the RT classifier gives the highest RMSE value of
0.0669, in classifying IoT devices on all the experimental
datasets.

Figure 7 shows the confusion matrix of the pro-
posed DFP model classification performances in identifying
known and unknown (intruder) IoT devices on the D-
Link IoT datasets. 11 known and 1 unknown IoT devices,
with 305,051 and 12,270 instances, respectively, have been
considered. The supervised ML J48 classifier has been
selected due to its minimal requirement on processing time
during training and testing, as compared to the other 4 ML
classifiers. Overall, 98.96% accuracy and 0.0328 RMSE
value have been obtained using the J48 classifier. It can be
observed that the proposed DFP model is able to identify
unknown D-Link IoT instances with 100% accuracy, despite
misclassifying some of the known IoT device instances
as an unknown device. For instance, 28 instances from
the DDCam2 93 device have been incorrectly classified
as unknown instances. On the UNSW dataset (21 devices)
with the addition of 1 unknown device, accuracy and RMSE
value 97.38% and 0.0383, respectively, have been obtained.
The proposed DFP model reported 99.8% accuracy in iden-
tifying unknown instances on the UNSW dataset. It is noted
that in the context of identifying unknown instances, the IoT
Sentinel dataset is not suitable to use for demonstration,
as this dataset only consists of setup traffic traces. For
identification of unknown instances with high accuracy, it
is required that the ML model learn known IoT devices
behaviours appropriately along with setup traffic instances.

5. Conclusion
Identification of heterogeneous IoT devices, which may

come from different manufacturers, connected in a network
is essential to network security. Despite being a neces-
sity for communication over a network, explicit device
identifiers such as IP/MAC addresses, are not suitable to
uniquely identify all these devices due to MAC address
randomization and IP/MAC addresses spoofing attacks. In
this work, a DFP approach has been proposed to uniquely
identify devices in a network, based on the analysis of
device originated communication traffic from two layers. A
subset of 9 features has been extracted from different pro-
tocols headers information without considering deep packet
inspection, and hence, the method preserves users’ data
privacy and safety. An IoT network with fourteen devices
has been setup in a laboratory to collect network traffic
traces for analysis. Different ML classification algorithms
have been used to evaluate the proposed model performance
on three IoT datasets. Results have illustrated that the
proposed DFP model achieves over 96.6% precision, and
96.4% recall and f-measure, respectively, on the D-Link
IoT dataset using the Bagging classifier, albeit requiring
a significant amount of time. On the other hand, the J48
classifier obtains almost similar result (less than 1%) as
compared to Bagging algorithm, but within a shorter time
scale. The proposed DFP method reports overall accuracy
of 98.96% in identifying known and unknown IoT devices
on the D-Link IoT dataset. These illustrate that the proposed
DFP model is relevant and useful for network administrators
or operators in improving network security in the context
of identification of unknown traffic traces, and significantly
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Figure 7. Confusion matrix of the proposed DFP model for classifying known and unknown IoT devices from the D-Link IoT dataset

point to the applicability of the proposed DFP method for
device identification in an IoT network.

As a future direction, more device-specific features may
be analyzed to increase accuracy of the device identification
task even further. Furthermore, different non-IoT devices
datasets as well as IoT devices datasets with multiple
intruder IoT devices (or malicious devices) may be con-
sidered, to further evaluate the performance of the method.
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