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Abstract: The presence of fault(s) in any web services-based system threatens its performability and dependability at large. To ensure
dependability in the presence of faults or failure, service-oriented systems are implemented on scalable fault-tolerant architectures.
However, the performability of these service systems under the influence of fault is vital for assessment to determine the behavioural
impact on service provision and delivery. In this study, the performability of a fault-tolerant architecture implemented on software
agent’s capabilities has been assessed via a compile-time fault injection technique under a replica-fault load in terms of service time
efficiency, response stability, and computational effort. The assessment and findings empirically established that the impact of software
fault injection is no degradation to the performability of the architecture solution. That is, the architecture performability under a
fault load is significantly time-efficient in service delivery with guaranteed response stability at a reduced computational overhead
(high throughput) compared to without fault injection. The recognition of the evaluation, results, analysis, and emphasis will serve
as a veritable tool in increasing the opportunity of building web services solutions on a fault-tolerant architecture with appreciable
performability for service-oriented communities.
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1. Introduction
The cutting-edge standards in building quality and de-

pendable service-oriented systems are web services, fault
tolerance, performance, reliability, and scalability [1],
[2], [3], [4]. Service-oriented systems (service systems)
are highly dependent on web services with fault-tolerant
capabilities to ensure robustness in both business logic and
persistent service provisions. K. Farj et al. [5] conveyed
that “one of the obstacles of the adoption of the Web
service paradigm in such composed systems is the problem
of assessing their overall service quality, since services
are inherently distributed, heterogeneous, and are often
invoked with little understanding of their reliability and
performance”. That is, web services are usually distributed
over the Internet without the guarantee that all parts of
the service are highly reliable, thus, SOAP-based solutions
are particularly associated with tolerance and performance
overheads in the presence of faults [6].

Fault tolerance and performance are critical attributes
for service solutions, but ascertaining their performability
under a fault load is an assessment relevant to this work.
Performability is an attribute of software quality and a
product of fault tolerance and performance. Performance
identifies as a key attribute of dependability in terms of
speed, throughput, and regularity of responses characterized
by event arrival [1]. Bala and Chana [7] underlined the

necessity of fault tolerance in Service-Oriented Computing
(SOC) and a plethora of researchers have published their
interests in ensuring the dependability of services offered
across the internet and cloud at large [5], [6], [8]. In
a topical perspective regarding the advancement of SOC
with the cloud, [9] highlighted that “there has been a
paradigm shift from trying to avoid failures at all costs to
embracing faults as opportunities for making the system
more resilient. The amount of effort put into fault tolerance
and resilience of service-based applications is often deter-
mined by the trade-offs between development effort, costs
for redundancy, availability, and consistency”. Regardless,
the performability of service systems is threatened by faults,
and their occurrence results in erroneous system states that
may cause the failure of some components or the entirety
of the system. This critically drags the notion that fault
tolerance must be considered, implemented, and assessed
to determine the impact of faults on the system’s tolerance
mechanism and its behavior under fault loads [10], [11].
One way of assessing this impact and determining the
resilience of service systems against fault threats is via the
simulation of software fault injection.

Fault injection plays an important role and has been
singled as a feasible solution and veritable tool to expose
a system’s dependability in terms of performability (fault
tolerance and performance) – that is, software fault injection
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techniques have been largely used as means for evaluating
the dependability of systems in presence of certain types of
faults [3], [4], [12], [13].

Fault-tolerant approaches enable the handling of faults
but, “being able to identify the magnitude of fault toler-
ance in a system would be a useful analysis tool for its
performance” [14], while increasing efforts in determining
and studying how faults could impact the behavior of
fault-tolerant service systems under a certain fault type.
This conception, as a result, motivated the researcher to
examine the performability of the web service-based so-
lution implemented on a fault-tolerant architecture under
a fault condition. Further objectives were to: implement
a fault-tolerant architecture adopting the software agent’s
capability for coordination and adaptability; then assess
the architecture solution via fault injection to analyze its
impact on the solution’s performability. The rest of the
paper is organized as follows: Section 2 gives background
information on the underlying technologies, tools, and tech-
niques for building a fault-tolerant web services solution
with related literary works; Section 3 covers the proposed
architecture, its descriptions, and workability: Section 4
entails the experiments, evaluation results, and analysis; it
concluded with section five.

2. Background Information
Service-Oriented Architecture (SOA) in similar customs

is described by the Open Group as “an architectural style
that supports service orientation for a community of service
providers and consumers for mutual value” [15]. It is a
technological paradigm for development and delivery of
software functions as services callable by itself or other ser-
vices. Explicating this description leaves SOA to “an evolu-
tion of distributed computing based on the request/response
design paradigm for synchronous and asynchronous ap-
plications” [16]. It summarizes a paradigm advancing
distributed applications with service-oriented technological
changes. SOA was designed with the use of Web Services as
one of the core standards broadly used in business settings
due to their significant capabilities in the integration and
interoperability of business solutions. SOA is realized or
implemented via web services technologies to create and
deploy constructive blocks of service functions which are
readily available on the internet and accessible via standard
sets of protocols [17]. Thus, service on its own is described
as a unit of work done by a service provider to achieve the
desired result for a service consumer.

Studies show that web services (or a collection of them)
are a realization of SOA [15], [16], [18], denoted as
software entities that are specified by universal resource
identifiers, and their general interfaces are defined and
interpreted using XML, in which other systems, services, or
entities are allowed to communicate with by a resolute be-
havior and following its service descriptions and definitions
[17]. Quoting [19], “web service model’s main roles are
as service providers, service consumers and service registry

with core artifacts being services and service descriptions
based on a find-bind-use approach”. In web service-based
systems, service solution is characteristically dynamic so
that services are discovered, selected, and composed, pos-
sibly at runtime. However, web services based on SOAP
solutions are associated with tolerance and performance
issues in the presence of faults [5], [6], [8].

Similar studies exposed that “web services provide a
better solution to solve the problems of platform depen-
dency and incompatibility issues across various technolo-
gies but, the technology itself is also lagging reliability
and performance” [10], [18], [20]. This reiterates the
necessity of a fault-tolerant attribute in service systems
to ensure the delivery of available and reliable services
over a period of time. Fault tolerance (FT) is a critical
feature and has remained a key issue to service systems
dependent on web services. FT is one way to ensure
service availability for consumption and this is achievable
via different techniques exposed in terms of redundancy
– an approach that encompasses replication as a strategy
in achieving FT either as active or passive replication;
diversity with N- Version Programming – building replicas
with different design diversity by different vendors [11],
[21], [22], [23], [24], [25]. The degradation associated with
service-based systems arises with the performance tradeoffs
in tolerating fault(s) or the impact of its component failure
– yielding undesirable performance in service systems. The
impact of switching or recovering from failed replicas is
consequential on response time which adversely affects the
performability of the system.

A. Fault Injection: Tools and Techniques
The uninterrupted nature and availability of service

systems make them more susceptible to faults that in-
tend to drive the system in erratic behavior and thereby,
threaten the survivability of the system’s entirety. Faults
are unavoidable defects that alter the goal of any services
system. Faults could be classified as hardware/physical
(permanent, transient, or intermittent), or software [26].
A fault-tolerant service system aims to perform suitably,
its desired functionality irrespective of fault occurrence to
ensure efficient service provision, availability, and delivery.
To assess FT of service solutions, fault injection plays a
vital role and several classes of fault injection have been
identified in the literature [27]”:

• Hardware fault injection, where the actual hardware
system is affected by external physical sources;

• Simulation-based fault injection, where the target
system and the faults are modeled and simulated with
a fault simulator;

• Emulation-based fault injection, where the target sys-
tem is emulated (usually with FPGAs) and faults are
injected in the emulator”.

A plethora of software fault injection (SFI) techniques
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and tools (Jaca, RIFLE, Xception, LFI, LIFTING, etc.) ex-
ists in aiding the introduction of faults into a system solution
to evaluate the performance of the system while assessing
the fault-tolerant mechanism under a simulated fault. A
detailed survey of simulation-based tools for fault injection
and its tolerance techniques was summarized in [25], [27],
noting fault injection as a veritable tool that permits the
evaluation of systems dependability. Fault injection in a
software-based solution is usually time-based – either at
compile-time or runtime. Compile-time encompasses code
mutation or insertion at a specific location of the solution’s
source codes. Fault injection experiments the system’s tol-
erance capability with emphasis to expose its behavior and
possible weakness or other salient faults. The goal, however,
is to assess the impact of faults on the system behavior
towards improving performability and dependability.

B. Performability in Service Systems
Dependability in service systems particularly depen-

dent on web services subsumes service attributes which
collectively enables the system to avoid service delivery
failure that can frequently and severely result in the system
than acceptable. These attributes are (but are not limited
to) availability, reliability, performance, and maintainability
which are also subsumed as software quality attributes
[27]. Reliability and availability connote fault tolerance but
combined with performance connote the performability of
the system. Performability in service systems is adjudged
relatively over an interval of time rather than an instant
of time: where the solution performs continuously in a
foreseeable behavior without interruption under a simulated
or real condition.

Thus, the research scope is aligned to performability
attributes of FT and performance for building dependable
systems. FT, connoting the means (among others: fault
prevention, fault forecasting, and fault removal) towards
ensuring and increasing the dependability of service systems
against undesired threats – faults, error, and failure. Perfor-
mance is the timing attributes involved in service delivery
and a means measured via throughput and response time
with regularity in responses over a period of time with
tools like JMeter, SoapUI, and Storm [8], [18], [28], [29].
Emulated faults are usually injected to assess the system’s
performability with these metrics.

To establish the performability of service systems de-
pendent on web services under a fault load, the researcher
proposed software agents as a feasible solution towards
ensuring dependability in terms of FT and performance.
Software agents have been underlined in literature as the
fundamental for developing fault-tolerant-based software
solutions [30], [31].

C. Software Agents and Fault Tolerance
Software agents have predominantly gained adoption

and popularity over the years in distributed systems imple-
mentation and details of its approaches were documented
in correlated literature [30], [32]. Software agents are

entities with distributed and partitioned characteristics ca-
pable of performing specific tasks autonomously [33].
The distributed entity is a property common to SOA and
software agents in building distributed systems. One of
the descriptions of SOA regarding other related computing
paradigms such as Agent-Oriented Computing (AOC) was
highlighted in [14] as “an architectural style whose goal
is to achieve loose coupling among interacting software
agents”, noting how important their roles are on behalf of
their owners as providers and consumers. A collection of
two or more denotes multi-agents and key attributes such
as autonomy, reactivity and pro-activeness were noted in
related studies [7], [10], [24], [34].

Explicating software agents with relevance to FT in
service systems based on web service solutions, a commu-
nication challenge burdens the amalgamation of SOA and
AOC paradigms but, a solution addressing this has over the
decade witnessed realization with the sociability attribute
and even supported that FT is improved by replicating
agent services in the related field of research [35], [36],
[37]. However, [30] asserted that “fault tolerance is fun-
damental for the development of agent-based applications”,
and it is noteworthy that, this study emphasizes software
agents as the top consideration – given their coordination
and adaptability capability to changing requirements and
environments towards addressing the trending issue of per-
formability associated with fault-tolerant service systems.

D. Related Works
In [38], it was warned that fault-tolerant systems partic-

ularly with a replication approach for message-exchanging
are considered with performability issues and proposed a
pipeline approach to mitigate the performance overhead but,
how the system behaved was with little transparency under
faulty scenarios.

A fault injection toolkit was developed in [5] to
test the dependability of service systems in terms of FT
and performance without modification to the system being
tested. The impact of fault tolerance protocol deployed at a
service client was studied via the toolkit and packets were
tempered and monitored given their focus on fault injection
on the network layer and not the application layer.

Also, [9] exposed that most SFI models are not suitable
as they do not cater to the dynamic aspect of software
failure. Thus, a structural approach with fault injection-
driven development was suggested for applying SFI.

The work of [24] emphasized that “it is important to
eliminate failures or minimize the impact of failure” and
proposed an algorithm to identify an optimal fault-tolerant
candidate for critical configurations of the software system.
However, their FT approach was based on replication by
exploiting application behavioral characteristics – perfor-
mance. Their work employed configurations using suitable
FT candidates to improve the reliability of fault tolerance
of a software system. They employed fault injection in their
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assessment for reliability.

In another related effort, [11] vented on fault injection
as a tool for performance testing of web services in a
composite manner. Their architecture captured “coverage
criteria to guide fault injection testing of performance-
related issues in composite web services by generating fault
injection configurations that follow the defined test criteria
for systematic fault injection and effective evaluation” of
performance in terms of response time but the impact on
its FT was not highlighted.

Summarily, it is construed from the review of related
literary works that:

1) fault injection plays a vital role towards assessing
the behaviour of fault tolerant systems under a fault
load

2) the performability of fault tolerant architecture under
fault injection is worthy of assessment to determine
the system’s survivability and dependability.

Consequently, the study proposes a research approach that
adopts software agents to amalgamate coordination and
management of logical time replica activities during exe-
cution.

3. Methodology - The Proposed Approach
This research aligns itself with an approach that sys-

tematically describes a service system from an architectural
context through designs, implementation, deployment, ex-
periment, and assessment.

A. The Proposed Architecture
Reiterating SOA by its defined functionality, Figure 1

depicts an architecture proposed with capabilities of a fault-
tolerant system with acceptable performance under a fault
load.

The architecture proposed is an integrated framework
amalgamating replication, diversity, and N-Version tech-
niques to ensure efficiency in service availability and de-
livery. It subjects logical redundant services to the coor-
dination of Multi-Agent Services (MAS) depicting core
components of the architecture and also uniquely active
for service replica management and fault handling. The
architecture components are highlighted as follows:

1) Client Interface: for service requests and responses
2) Service Integration Gateway: Web Service Inte-

gration Gateway (WSIG) component provides com-
munication handshakes between web services and
agent services. It receives service requests as SOAP
messages, converts them into Agent Communication
Languages (ACL) messages for agent services and
activities, and then return ACL messages as SOAP
responses to the response handler for client con-
sumption.

3) Agent Management Services (AMS) is the environ-
ment for managing all software agents designated
for the system’s task – a multi-agent system. This
environment is provided via the Java Agent DEvel-
opment (JADE) platform hosting agent services in
which agents can live and execute their designated
services. JADE is the most suitable platform for
developing MAS [37], [39]. AMS is the major
strength and heart of the architecture highly re-
sponsible for MAS including creation, registration,
behavior, communication, deletion, and agency in ac-
cordance to the Foundations for Intelligent Physical
Agents (FIPA) specification. It is also saddle with
coordination of all logical activities involving replica
group creation, replica addition, and replica process
management for every replica solution present. In
this way, a faulty replica or faults are detected
and handled via a client-transparent method. This
coordination mechanism is unique to the proposed
architecture for managing fault tolerance and re-
sponse stability in service delivery.

4) Fault Manager: this component is burdened with
the role of stressing the solution with faults and com-
municating faulty logs with the MAS coordinator for
appropriate actions. Notably, the MAS Component
coordinates the services of several software agents
in managing faults and replica services. Thus, the
fault manager is bound under the services of MAS
to manage the FT scheme/mechanism towards testing
(injecting faults) the dependability of the service
solutions within its confinements.

5) Replica Solution: is an N-Versioned scheme for
building vendor-transparent replica service solutions
by different service vendors or providers. In the
proposed architecture, each replica solution stands
as a stack of at least four N-Version sets of replica
groups with n-1 of them active and running concur-
rently for each group and a passive standby providing
the computational services with logical activities
managed by MAS.

6) Replication Solution Selection Scheme: is a crucial
component of the architecture responsible for solu-
tion response selection from n number of Replica
Solution (RS) services. As observed in the literature,
performance is degraded as a result of latency – de-
layed response, possibly due to switching from faulty
replicas during fault occurrence. Owing to this, AMS
employed a selection mechanism to manage replica
solution results from n replica sets.

7) Message Bus: communicates error message logs
with notification from RS services to the fault man-
ager.

B. Architectural Deployment Specification
The technical specifications for knitting several compo-

nents of the proposed architecture are captured in Figure 2.
That is, the specification and logic designs required for
implementation and their interfaces with emphasis on their
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Figure 1. The Proposed Architecture for Building Fault-Tolerant Service Solution.

bindings and communications from a deployable client
space and backend services

A simple test study was emphasized in [40] stressing
the need to ensure that the heart of the architecture is
heavily-weighted (such that the client service is a simple
solution service for request and response) to be able to
assess the dependability of the service provider in terms
of availability, response time stability, and the unit of the
request processed per second – throughput. Figure 3 depicts
the replica management by MAS with a selection scheme
for quick response.

Owing to this, the functionality of the proposed archi-
tecture was modeled after a lightweight test case – a simple

Grade Point Average (GPA) calculator, which agrees with
the work of [40], [41]; shifting the workload from the client
end to the architecture solution to over-engage it with large-
scale simultaneous requests such that latency is increased on
service responses to expose the tolerance mechanism under
a fault load.

C. Fault-Tolerant Mechanism and Injection
The fault-tolerant approach aligned in this study en-

compasses a replication technique with diversity based on
N-Versioned programming. Replication is a major fault-
tolerant approach towards ensuring service availability by
building replicas. With this FT mechanism, replica solutions
were built with diversity employing the N-Version technique
of at least four N-Versioned sets of replica groups with n-
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Figure 2. Deployment Specification for Implementing the Proposed Architecture Solution.

Figure 3. Replica Solution Management
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1 of them active and running concurrently for each group
and a passive standby as captured in Figure 1. To tolerate
fault within each group, service replicas were anchored with
a design and code diversity to handle service defects and
fault propagation associated with the replication approach
[42]. That is, the propagation of faults to other replicas
are avoided due to diversity in service vendors, and should
there be a faulty or crashed service replica solution, oth-
ers will actively continue a transparent service provision
due to agent coordination mechanisms also providing fault
management services to affected replica(s). This FT mech-
anism being managed by MAS ensures that services are
readily available irrespective of faults or their occurrence to
enhance service delivery efficiencies in the proposed fault-
tolerant architecture solution.

Explicating the notion that, fault-tolerant mechanisms
may cause service delivery inefficiencies in service systems,
this work aligns itself with multi-agent services in imple-
menting logical activities associated with services replicas
when faults occur and replica switching and selection is
done without performance overhead in service delivery as
shown in Figure 2. The efficiency is in the coordination
capability of MAS to ensure performance while avoiding
delays in switching from a faulty replica to another among
the active or passive replicas. This does not only ensure FT
but guarantees the reliability of the results and availability
of services. However, a concerning note on this service
delivery efficiency is how accurate and consistent services
remain in the presence of faults, and fault injection is one
way to ascertain this notion.

Fault injection is apposite in assessing the reliability of
service-based solutions via any SFI scheme. Given the fact
that the performability of service systems is threatened by
faults, their occurrence can lead to erroneous system states
that may cause the failure of some components or their
entirety. Thus, the SFI technique – static code-based fault
model (code mutation/insertion) was simulated in injecting
replica crash faults at compile time and identifying replica
service solutions with the erroneous state at runtime [43],
[44], [45], [46], [47], [48]. Employing this technique, Figure
4, and Figure 5 captured the steps required for fault
injection and notification of a replica crash type.

The pseudocode follows a structural construct with a
Boolean controlled mechanism on lines 12 and 13. If the
Boolean value is set (true), then the fault injection construct
is activated on the selected sets of replica service groups or
processes. If the crash service occurs for the targeted replica
solutions, then the AMS is informed with a construct of
error messages as an ACL message notification via the fault
manager module for potential actions.

D. Configuration and Deployment
The JADE platform was configured as the agency for

housing multi-agent services and necessary files were ex-
tracted into appropriate directories to set up parameters,
system environment, and user variables before subjecting

Figure 4. Pseudocode 1a: Fault Injection via Code Mutation

Figure 5. Pseudocode 1b: Fault Response and Notification
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the fault-tolerant web services solution to testing. The dia-
gram in Figure 6 depicts a successful configuration and the
technical gluing of several software components to enable
service provision and consumption of the proposed solution.
Web services were deployed on the Universal Description,
Discovery, and Integration (UDDI) servers as agent services
and vice versa with multi-agent capabilities.

4. Experimental Study and Results
Using the compile SFI, a replica crash fault was injected

into the service solution and subjected to a performance test
to ascertain its impact. The experiment was a simulation of
a performance evaluation using Apache JMeter with per-
formance indicators – response time, throughput, response
stability (standard response deviation). Two versions of the
solution were configured at 25,000 per unit time at a large
scale from random ten services request channels for testing
– that is, without a fault load and with fault injection. The
solution’s behavioral data from the performance evaluation
were captured as depicted in Figure 7, and Figure 8.

Figure 7 and Figure 8 are the evaluation summary
reports from the experiments of the architecture solution
without fault injection (Figure 7) and with fault injection
(Figure 8). In both figures, a total of 25,000 sample service
requests were distributed randomly through ten different
service request channels. The reports captured the average,
minimum, and maximum response times for each request
channel with an overall of 4072, 28, and 10885 for the
architecture solution without a fault load and 1173, 27,
and 2565 for the architecture solution with fault injection.
Other evaluation attributes captured were error%, through-
put, request size per second, and standard deviation which
represents the regularity or stability of service responses
to requests. It tells the rate of variation from the expected
service responses to requests. For Figure 7, it shows that
an average of 5.35 KB/sec request size was processed at
a ramp-up time of 2.4/sec for throughput with a standard
deviation of 655.06 at an error rate of 0.00%. Also, Figure 8
shows that an average of 18.6 KB/sec request size was
processed at a ramp-up time of 8.5/sec for throughput with
a standard deviation of 165.80 at an error rate of 0.00%. The
error rate indicates a 100% error-free evaluation, meaning
no arbitrary or incoherent (byzantine) responses to service
requests for the entire sample requests of 25,000. To ap-
preciate the results, the maximum response time (which
is the worst case), standard deviation (response stability
or regularity), and throughput (computational effort) were
considered for graphical representations and further analysis
in line with standard practices for performance evaluation.

From Figure 7 and Figure 8, graphs were plotted for
both versions of the architecture’s solution as shown in
Figure 9 and Figure 10: where SWOF(x) represents the
architecture’s Solution without Fault Injection and SWFI(y)
represents the Solution with Fault Injection. The experiment
results for performance attributes of response time and rate
of the regularity of responses – response stability were

captured in Figure 9 and Figure 10.

Although throughputs for both scenarios were fascinat-
edly observed from the experiment results to be an average
of 2.4sec (SWOF) and 8.5sec (SWFI). To buttress the
impact of fault injection on the experiment, the response
time and response stability were selected in consonant with
performance evaluation practices in literary work [19].

However, it was evident in Figure 9 and Figure 10 that
the performability of the SWFI is better appreciated because
responses are more stable with better response time when
the fault was injected into the architecture’s solution – an in-
dication of reliability in service response to a service request
in the presence of faults, or faulty/failed replica(s). Thus,
performance was capped within an acceptable rate of reg-
ularity in service delivery of fault-tolerant service systems
but in statistical terms, the rate in regularity difference with
response time for SWFI solution over SWOF is empirically
grey. Thus, statistical interpretation was paramount.

A. Result Analysis
Consider xi and yi to be sample variables, such that x and

y are the solution versions without and with fault injection,
and i denotes the assessment attributes for performance
– response time, response stability, and throughput. The
goal is to examine the architecture solution without fault
injection (x) against the solution with fault injection (y), and
determine whether or not injecting fault into the architecture
solution will:

1) for i = 1; reduce the response time efficiency of the
solution

2) for i = 2; worsen the response stability of the
solution, and

3) for i = 3; increase computational overhead –
throughput of the solution

Thus, for each of the performance instances, the follow-
ing hypotheses are tested:

instance 1: for i = 1, the following hypothesis holds:

1) H0: µx = µy indicating no significant impact of fault
injection on response time efficiency for SWF and
SWFI.

2) H1: µx > µy indicates that the impact of fault
injection significantly increases time efficiency in
SWFI over SWOF.

3) H2: µx < µy indicates that the impact of fault in-
jection significantly reduces time efficiency in SWFI
over SWOF.

instance 2: for i = 2, the following hypothesis holds:

1) H0: µx = µy indicating no significant impact of fault
injection on response stability for SWOF and SWFI.

2) H1: µx > µy indicates that the impact of fault
injection significantly guarantees response stability
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Figure 6. Successful Configuration and Deployment of Solution Services.

Figure 7. Evaluation Summary Report without a Fault Load.

Figure 8. Evaluation Summary Report with Fault Injection.

Figure 9. SWOF vs SWFI Line Graph for Response Time.

Figure 10. SWOF vs SWFI Line Graph for Guaranteed Responsive-
ness.
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in SWFI over SWOF.
3) H2: µx < µy indicates that the impact of fault

injection significantly degrades response stability in
SWFI over SWOF.

instance 3: for i = 3, the following hypothesis holds:

1) H0: µx = µy indicating no significant impact of fault
injection on computational overhead for SWFI over
SWOF.

2) H1: µx > µy indicates that the impact of fault injec-
tion significantly reduces computational overhead in
SWFI over SWOF.

3) H2: µx < µy indicates that the impact of fault
injection significantly increases the computational
overhead in SWFI over SWOF.

Two (response time and response stability) of the three
categories of hypotheses are to be tested for each per-
formance attribute (instances). Thus, let x represent the
normal solution SWOF and y represent the affected solution
SWFI. To validate the hypothesis, the t distribution test was
adopted for analysis because of the sample size (n = 10).
Thus, x and y are normally distributed with means µx and µy
and with the same variance σx = σy and a random sample
of sizes nx and ny. Thus, the sample means and variance are
denoted by x̄ and ȳ, S 2

x and S 2
y , then the difference between

two means for both versions with the same samples on the
stated hypothesis is given by [49]:

t =
(x̄ − ȳ) − (µx − µy)√

(nxs2
x + nys2

y)

√
nxny(nx + ny − 2)

nx + ny
(1)

Where nx + ny − 2 represents the degrees of freedom. Since
the sample sizes are equal i.e. nx = ny = 10; therefore,
Equation 1 can be summarized to:

t =
(x̄ − ȳ) − (µx − µy)√

(nxs2
x + nys2

y)

√
90 (2)

Assuming that σx = σy, then, Equation 2 becomes Equa-
tion 3 respectively:

t =
(x̄ − ȳ)√

(nxs2
x + nys2

y)

√
90 (3)

But, the sub-component is calculated in Equation 4

nxs2
x =

n∑
i=1

(x − x̄)2 (4)

Also, Equation 5 becomes:

nys2
y =

n∑
i=1

(y − ȳ)2 (5)

TABLE I. ns2 Computation for Response Time

Size SWOF (x) x − x̄2 SWFI (y) y − ȳ2

1 4070 2.89 1174 1.44
2 4046 660.49 1180 51.84
3 4088 265.69 1163 96.04
4 4073 1.69 1174 1.44
5 4049 515.29 1176 10.24
6 4064 59.29 1172 0.64
7 4086 204.49 1175 4.84
8 4077 28.09 1170 7.84
9 4071 0.49 1167 33.64

10 4093 453.69 1177 17.64
x̄= 4071.50 nxs2

x = 2192.10 ȳ= 1172.80 nys2
y = 225.60

TABLE II. ns2 Computation for Response Stability

Size SWOF (x) x − x̄2 SWFI (y) y − ȳ2

1 653.08 2.84 169.52 14.66
2 679.04 589.23 173.83 66.24
3 651.07 13.66 165.89 0.04
4 666.68 141.94 164.50 1.42
5 633.67 445.04 166.83 1.30
6 656.22 2.11 168.58 8.35
7 672.33 308.49 166.85 1.34
8 630.02 612.36 160.77 24.22
9 648.29 41.94 160.65 25.41

10 657.26 6.22 159.49 38.45
x̄= 654.77 nxs2

x = 2163.85 ȳ= 165.69 nys2
y = 181.43

It is vital to calculate the value of t and observe if it
exceeds its critical value of 2.228 for the sample size of 10
at 0.025 from the students t table, and also determine the
confidence limits for µx−µy. First, the subcomponents were
calculated. Table I and Table II show the computation of
ns2 for both solution samples with performance attributes –
response time and response stability. The computed t values
are given in Table III with subcomponent calculation details
in Table IV.

The computed t values from Table III for both versions
of the built architecture solution in terms of response
stability and response time are 95.81 and 559.31, and the
critical value of t from the student’s t table for a one-
tailed sample size of 10 at 0.025 (95% confidence level) is
2.228. Thus, interpreting the performance attributes instance
validates the following hypothesis:

instance 1: for i = 1, the calculated value of t is 559.31,
which is greater than 2.228. Therefore, H1 : µx > µy is valid
and accepted; indicating that the architecture performability
under a fault load (SWFI) is with a significant increase in
time efficiency over SWOF.

instance 2: for i = 2, the calculated value of t is 95.81,
which is greater than 2.228. Therefore, H1 : µx > µy is valid
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TABLE III. Computed t Value

Variables Time Efficiency Response Stability

(x̄ − ȳ) 2898.90 489.08
nxs2

x + nys2
y 2417.70 2345.28√

nxs2
x + nys2

y 49.17 48.43
(x̄−ȳ)

√
(nx s2

x+ny s2
y )

58.96 10.10

t 559.31 95.81

TABLE IV. Computed Confidence Limit

Variables Time Efficiency Response Stability

2.228 * (
√

nxs2
x + nys2

y)/(
√

90) 11.55 11.37
α 2887.35 477.70
β 2910.44 500.45

%Per f ormance = (α
√

x) ∗ 100 70.91 72.96

and accepted; indicating that the architecture performability
under a fault load (SWFI) significantly guarantees response
stability over SWOF.

instance 3: for i = 3, the observed throughputs from
the resulting experiment were 2.4 (SWOF) and 8.5 (SWFI),
which are both greater than 2.228. Therefore, H1 : µx <
µy is valid and accepted; indicating that the architecture
performability under a fault load (SWFI) is with reduced
computational overhead in SWFI over SWOF.

This significant impact on the performance instances is
caused by the injection of fault into the sample solution and
it’s important to calculate the significant percentage impact
where the 95% confidence limit for µx − µy is denoted by:

|t| < 2.228 (6)

substituting Equation 2 in Equation 6 reduces Equation 6
to:

α < µx − µy < β (7)

where α and β are the lower and upper limits respectively
and given by:

α = (x̄ − ȳ) − 2.228(
√

nxs2
x + nys2

y)/
√

90 (8)

β = (x̄ − ȳ) + 2.228(
√

nxs2
x + nys2

y)/
√

90 (9)

The impact of fault injection or the presence of fault
shows from Table IV, that the architecture solution can only
ascertain α unit of significance (α/β%) for response time
and response stability. Thus:

1) the performability of the architecture solution under
a fault load (SWFI) is time-efficient with service

response delivery by about 70.91% over SWOF with
a confidence limit of 95%.

2) the performability of the architecture solution under
a fault load (SWFI) is guaranteed with response
stability by about 72.96% over SWOF with a confi-
dence limit of 95%.

3) the observed performability of the architecture so-
lution under a fault load (SWFI) is with a signifi-
cant reduction in computational overheads by about
77.98% over SWOF with a confidence limit of 95%.

The statistical results are in harmony with the graphical
results and this further validates the statistical instrument
asserting that the the performability of the implemented
fault-tolerant architecture under a fault load is significantly
worthy of dependability in the presence of faults or failure
of some service replicas.

B. Discussions
Analyzing the impacts of faults in fault-tolerant software

systems has received extensive reviews for some time now.
Unfortunately, how they impact the system opens research
for evaluation of the overall system’s performability under
a given fault load. Studies on FT in service systems reveal
two approaches such as replication and diversity with N-
Versioned programming and most often include empirical
evaluation of actual fault rates. In concordance, the pro-
posed methodology implemented a fault-tolerant service
solution on software agent technologies with more concen-
tration on evaluating the performability of the architecture
solution under a given fault – replica crash, to ensure service
availability and improved performance.

The proposed architecture is limited to FT of replica
crash fault load at the application layer. It does not provide
support for multiple fault injection techniques. Thus, it
can only accommodate fault injection at compile time
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for the targeted system and hence, a fault outside the
application layer may result in different performability
outcomes. However, several studies quantified FT under
faults for applications spanning large configurations and
considered response time and availability of services as
their performance metrics [5], [9], [48]. With a focus
on the application layer, this study used the compile-time
technique for fault injection and checked the performability
with key attributes of the observed throughput, response
time, and response stability on two versions of the proposed
architecture solution – with and without fault injection.

The experimental study and results were graphically
presented for both versions in Figure 9 and Figure 10 de-
noting the performability in the SWOF and SWFI versions
in regards to response time and stability in responsive-
ness. It was graphically greyish to empirically contrast the
performability with the impact of fault injection on SWFI
over SWOF for a period of time. As emphasized in [50],
a statistical interpretation was paramount to ascertain the
empirical and significant difference. With service quality
attributes of throughput, the response time (time efficiency),
and response stability (guaranteed responsiveness) [51],
[52], [53], [54], [55], the experimental study and results
were statistically analyzed with indications that the archi-
tecture solution demonstrates robustness in performability.
Thus, findings established that:

1) the performability of the architecture solution under
a fault load (SWFI) is time-efficient with service
response delivery by about 70.91% over SWOF with
a confidence limit of 95% at a high throughput –
reduced computational effort.

2) the performability of the architecture solution under
a fault load (SWFI) is guaranteed with response
stability by about 72.96% over SWOF with a confi-
dence limit of 95%.

The research findings assert, therefore, that the architec-
ture solution is significantly time-efficient in the presence of
a fault and guarantees the regularity of service responses by
about 70.91% and 72.96% with a confidence level of 95%
– undoubtedly as a result of the fault-tolerant mechanisms
implemented via software agent services. This implies that
the performability of the architecture solution (solution’s
behavior) without and under a fault load unveiled a match-
ing uniformity with appreciable stability or regularity in
responses and this aligns with related efforts in [5], [10],
[11], [24], [25], but is contrary to the performability issues
observed in other efforts [21], [22], [51], [52].

The findings further established that the performability
of web service solutions was improved averagely by about
71.9% regardless of the impact of fault injection. The
experimental study and findings thus, contribute to the
pool of knowledge steered towards the field of service-
oriented communities for the advancement and deplorability
of dependable service systems.

5. Conclusion
In this study, the influence of a replica-fault load on the

performability of a fault-tolerant architecture implemented
on software agent’s technologies for web services solutions
has been simulated and assessed via a compile-time soft-
ware fault injection technique. The study’s assessment and
findings established that the architecture (and its solution)
is significantly worthy of performability in the presence of
fault while emphasizing the adoption of software agents as
a feasible solution for building dependable service systems
on fault-tolerant architectures. The simulation may not
exactly mirror the real-world environment but, the resultant
conclusion is a significant advancement in performabil-
ity assessment with veritable analysis for building fault-
tolerant service systems with good performance for service
providers and consumers.

Further study is required to determine the performability
of the architecture solution under the influence of a fault
load outside the application layer for service-based systems.
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