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Abstract: An approach to classification of three different imaginary movements based on linear discriminant analysis transformations
and applicable to brain-computer interface implementations is considered. First, search for discriminative frequencies individual for
each subject and each movement is conducted. It is shown that this procedure leads to an increase in classification accuracy compared
to conventional common spatial patterns algorithm followed by linear classifier considered as a baseline approach. In addition, an
original approach to finding discriminative time segments for each movement is tested. This approach led to further increase in accuracy
if Hjorth parameters and inter-channel correlation coefficients were used as features calculated for the found segments. Particularly,
classification by the latter feature led to the best accuracy of 69,4% averaged over all subjects. Besides, scatter plots demonstrated that
two out of three movements pairs were discriminated by the approach presented.
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1. Introduction and Overview
Currently, intelligent methods of data processing start

to play an important role in the personalization of various
human activity areas. Among those, one can distinguish in-
teractions between human and technical systems also called
‘human-machine interfaces’. The availability and miniatur-
ization of computer technology have created the prereq-
uisites for the widespread use of new generation human-
machine interfaces, such as the Brain-computer interface
(BCI), or Neural interface [1], [2]. The development of BCIs
is one of the most promising areas in applied research at the
intersection of information technology and neuroscience.
Its main goal is to create a new communication channel
for the rehabilitation of people with speech and muscle
disabilities [3], [4]. BCI implements communication by
decoding the individual’s mental commands that are formed
in his brain activity. However, at present, the limiting factor
for the practical implementation of such systems is the lack
of sufficiently developed intelligent data processing meth-
ods that provide automated individual interface adjustment,
taking into account the individual characteristics of the
user. This leads to the unsolved urgent problem of bringing
such systems out of scientific laboratories to the end-user
environment. One of the unsolved problems hindering to
achieve that is the exclusion of the laborious participation of
an expert researcher, who forms training samples manually,
from the process of tuning the neurocontrol system. That

is why it is urgent to develop computational methods
facilitating tuning BCI-systems in an autonomous mode.

In numerous BCIs based on the patterns of the ideomo-
tor acts electroencephalogram (EEG), at the stage of setting
up the system, stimulus-dependent experimental paradigm
is used. In such systems a user is presented with different
stimuli corresponding to execution of different movements
(Berlin BCI [5], Graz BCI [6], Wadsworth BCI [7]. What is
good in this paradigm, configuring, testing, and further use
of control EEG commands classification methods are utterly
convenient. However, external cues affect EEG and thereby
distort the motor imagery pattern [8], [9]. Subsequently,
this complicates the operation of the BCI configured in this
way in the control mode, in which ideomotor activity is
performed by the user in an arbitrary manner with no refer-
ence to external stimuli. Therefore, it is urgent to develop a
BCI adjustment procedure that does not use external stimuli
that induce the execution of single ideomotor acts. Methods
for detecting EEG patterns of target ideomotor acts are a
key element in the implementation of tuning autonomy in
a completely stimulus independent BCI.

In stimulus-independent BCI, motor imageries – volun-
tary mental commands in form of imaginary movements
of different limbs – are actively used. This approach is
advantageous since such mental tasks do not require ex-
ternal cues and they are absolutely arbitrary, allowing the
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user to work at an arbitrary pace and mode, as well as to
form commands for controlling external devices at arbitrary
times at will. Existing methods of accounting for individual
characteristics of brain activity and BCIs based on mental
performance of movements [10], [11], [12], [13] were
proposed only for particular tasks, with a fixed set of a priori
known EEG commands and are difficult to implement for a
completely stimulus independent autonomously tuned BCI.

The non-invasive approach based on electroencephalo-
gram (EEG) signals proved to be extremely useful for
the development of Brain-computer interfaces technology.
The EEG method has convincingly proved its high safety
and reliability, primarily in the framework of providing
new a channel of communication with the outside world
to patients if they are immobilized for various reasons
[14]. The BCIs neural communication system does not
require any pronounced muscular activity from the user,
so it is actually able to function even in patients with
severe neurodegenerative diseases of the motor system and
disorders caused by spinal cord injuries [15], [16].

Due to the nonstationarity of the analyzed activity, a
very wide range of features can be distinguished in the EEG
to describe the most informative patterns of a multidimen-
sional EEG. In addition, there are significant differences
in informative EEG features in different subjects [17]. In
particular, despite the fact that within the framework of
target motor imagery EEG patterns classification problem,
the main significant frequency ranges, such as µ (10-13
Hz), β (13-25 Hz) and γ (25-70 Hz), have already been
identified earlier [3], the most effective frequency range
and its severity are purely individual [17]. It has been
also shown that the ability of a person, in principle, to
voluntarily induce patterns of brain activity, for example,
when mentally performing a movement with a certain limb,
is purely individual [18], [19], [20], therefore, the BCI
user is not always able to operate with the set of control
commands offered to him. Thus, in existing systems, there
is still a problem of finding and consolidating a new pattern
(command). In this regard, it is necessary to develop uni-
versal and noise-resistant approaches that make it possible
to isolate informative signal components for detecting EEG
patterns of target ideomotor acts.

In this paper an approach to the classification of the
mental movements EEG is proposed (Materials and meth-
ods, D). It consists in i) determination of informative
frequency ranges individually for each subject and class of
mental movement, ii) determination of a short time segment
containing a pattern of target mental movement, which
also minimizes the noise; and iii) the selection of infor-
mative signal features by linear transformation of the high-
dimensional original feature vector by linear discriminant
analysis.

2. Materials andMethods
A. Dataset and Subjects

The dataset used consists of 16 experiments conducted
on 16 different subjects of different genders (12 men, 4
women), aged 18 to 25 (mean age 21.5 ± 3.5 years). Each
subject signed a protocol of voluntary consent to participate
in the study prior to the experiment. The experimental
technique was approved by the Ethics Committee of the
Southern Federal University.

B. Experimental design
The experiments included 3 series of executing different

voluntary movements. Duration of each series was 180 s
(15-20 executions of each movement). Voluntary movement
execution took place for 2 seconds in a randomly mode
with, the the gaze was simultaneously fixed on the monitor
screen. Hands movements implied clenching them into fists.
Legs movements consisted in their simultaneous bending at
knee joints and then unbending them back. The schematic
of the experiments is given in Figure 1.

In the next series, the subjects executed the same real
movements, but each of them was followed with the corre-
sponding motor imagery.

Finally, the motor imagery preceded the actual imple-
mentation of the corresponding movement execution in the
third series. After that, the epochs containing eye blink
artifacts were removed from the sample in series 2 and 3
(eye blinks were detected using EOG signals). Ultimately,
on average, the following numbers of MI classes examples
were left for each subject: right hand MI (RHMI) - 35.9
± 9.7, left hand MI (LHMI) - 35.1 ± 9.1, legs MI (LMI)
- 32.9 ± 9.2). In total, 2240 non-artifact EEG epochs for
resting state and motor imagery classes were analyzed.

C. EEG recording
EEG signals were recorded using a biopotential ampli-

fier Encephalan (Medicom MTD LLC, Taganrog, Russia) in
a room protected from light and sound. 17 channels were
used (F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1, O2) with their locations defined as in the
international 10-20 system. The sampling frequency was
250 Hz. To remove network crosstalk a notch filter was
used (50 Hz).

D. Data labelling
The surface electromyogram (EMG) of both hands was

recorded in the superficial muscles on the hands (Brachio-
radialis and Flexor digitorum superficialis muscles) and the
legs (Tibialis anterior muscle). Brain potentials associated
with motor imagery (motor imagery-related potentials) were
distinguished and stored relative to the tags of real move-
ments onsets in electromyogram channels (EMG). Events
were detected after the EMG signal was bandpass filtered
(0.1-4 Hz). The threshold level of movement detection via
EMG was 10 µV. The threshold of the movement onset
was determined at the rising front of the smoothed EMG

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 37-47 (Jan-2023) 39

Figure 1. Timing representation of a scenario with the participation of volunteers in the task of movement execution (ME) and motor imagery (MI).
(1) – Rest with eyes open (EO, 60 s); (2) – Instructions, 60 s; (3) - Series 1 (ME) (180 s), (4) - Rest after a series 1, 60 s; (5) - Series 2 (ME +
MI repetition) (180 s), (6) - Series 3 (MI + M) (180 s)

channels. The EEG epoch of the analysis of motor imagery
potentials was 2 s after the completion of myographic
activity in series 2 and 2 s before the start of EMG in
series 3.

E. Classification
The logistic regression implemented in Python (scikit-

learn library) was used for classification and further cal-
culation of accuracy scores [21]. The L2 penalty function
was used; for optimization, the L-BFGS algorithm was used
with a tolerance (stopping criteria) of 0.0001. To find the
optimal value of the regularization parameter C, we per-
formed a grid search over the following values: 0.001, 0.01,
0.1, 1, 10. Next, accuracy score of two-fold cross-validation
was used to evaluate the quality of classification. In the
preprocessing stage, all feature values were converted to z-
scores, and the entire sample of motor imagery examples
was randomly mixed. The described classification procedure
was applied separately to the data and the final score was
calculated as the mean value of all scores of subjects.

F. Linear transformations
For feature vectors transformation, linear discriminant

analysis (LDA) with SVD (singular values decomposition)
as a solver method and the tolerance (stopping criteria) of
0.0001 was used. To highlight the most informative, i.e.,
discriminative, frequency ranges, the transformation method

based on LDA was applied to the raw feature vector of
length 153 (17 channels × 9 frequency bands):

1. For each class of movements, a separate model of
a 1-component LDA-transformer model was trained: the
training sample included examples of the given class and
as many background signal examples;

2. On the transformation completion, 153 values of
features collapsed into one being a linear combination,
while, for each class, there was a specific set coefficients;

3. Upon tuning all class-specific transformers, the final
feature vector was 3-dimensional (1 feature for each class).

A schematic of this transformation procedure is shown
in Figure 2.

During the complementing search for the most informa-
tive segments of time domain for each two-second segment
of each motor imagery, a sample of examples of two classes
was created: the movement considered and the background
(resting state) signal. The feature vector was constructed
of the differences between feature vectors of all windows
combinations with each window having the length of 750
ms and a shift being 100 ms within a given motor imagery
signal epoch and a 2-second long background signal epoch.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


40 Anton Saevskiy, et al.: Motor Imagery Patterns Classification by Finding ...

Figure 2. The procedure of transformation for finding informative frequencies

If frequency spectrum (power spectral density) features
were used, they were converted to 3 components in the
way described above. For other features, a single frequency
band with the highest absolute weight value was extracted
from the weights of each frequency LDA transformer.
Finally, multiband filtering using the frequencies found in
the previous step was applied to the signals processed.

The 750-ms window was used because of the best
classification accuracies (compared to 500 and 1000 ms). In
2 seconds, 13 different 750 ms windows are accommodated
with 100 ms shift. This gave us 13 examples of the target
class of a given mental movement. Each of these examples
consisted of differences between a particular background
window and all 13 windows of a given motor imagery
epoch. 13 additional examples presented the background
class and consisted of differences between pairs of back-
ground signal epoch windows in the same manner. Thus,
each motor imagery signal epoch was first presented as a
26 × 153 sample, and then the latter was used for training
of a two component LDA-based transformer. Before adding
to the final sample, each example was transformed in the
following way: another example was created from the dif-
ferences of the averaged feature vector over all background
signal windows and all shifts of the given mental movement

example, which was then transformed by a trained two-
component LDA. A detailed stepwise description of this
transformation is shown in Figure 3.

G. Frequency spectrum features
We used nine commonly recognized EEG frequency

bands: δ or delta (1-3 Hz), θ (3-7 Hz), α (7-10 Hz), µ
(10-13 Hz), β-1 (13-25 Hz), β-2 /γ-1 (25-45 Hz), γ-2 (55-
70 Hz), γ-3 (70-90 Hz), γ-4 (90-110 Hz). PSDs (power
spectral densities) of these bands were computed via the
Welch method (Hanning filtering window, 50% overlap of
consecutive windows) [22]. Once the PSDs were calculated,
we converted them to the feature vector by summing the
PSDs of frequencies lying between the boundaries of each
band.

H. Frequency filtering
Frequency filtering was conducted using a Butterworth

filter with an infinite impulse response of the 5th order.

3. Results and Discussion
In order to conduct further comparative analysis, accu-

racy was initially obtained using the traditional combination
of Common Spatial Patterns (CSP) + linear classifier [17]
(logistic regression). Wherein, in addition to the described
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Figure 3. The procedure of transformation for finding informative segments (if the frequency spectrum features are used then spectrum is computed
and the previously trained informative frequency LDA-transformers are applied; otherwise, if Hjorth parameters or inter-channel correlation
coefficients are used as features, 3 frequency bands corresponding to the biggest absolute values of the previously trained informative frequency
LDA-transformers weights are extracted, then multiband frequency filtering is performed, and features are calculated)

adjustment of the logistic regression regularization coeffi-
cient, the optimal number of CSP filters in the 1-9 range was
optimally selected during cross-validation. This approach
showed an accuracy of 51.1 ± 10.8%, i.e., even with a
fairly efficient and tuned model, the accuracy was low. In
the next stage, the original algorithm was tested to select
the most informative frequency ranges. For each class, the
best combination of the ranges considered was determined
for its separation from the background signal, but this
also contributed to the separation between three classes
themselves. In other words, in such an offline approach, for
each subject, we first trained different 1-component LDA
models for each of 3 types of motor imagery. In practice,
this procedure can be done in the same manner as training
is usually done in the conventional BCI paradigm. So, at
this stage, there is not a single model trained to classify
several motor imagery types, rather there are 3 models, each
one to independently discriminate a single motor imagery
type with background signal. Surprisingly, the application
of these models to transform the raw EEG signal and obtain
3 output features (one by each motor imagery type specific
model results in better discrimination of 3 motor imagery
types themselves: after applying such a transformation,
the accuracy increased to 65.4 ± 9.1% if power spectral
densities are used as features. This increase with respect

to CSP-LDA was statistically significant according to t-test
results (t = 4.05, p-value < 0.001). Additionally, Hjorth
parameters [23] and the coefficients of inter-channel corre-
lation were tested as features. The classification accuracy by
the Hjorth parameters and the correlation coefficients was
53.9 ± 11.4% and 53.7 ± 8.2%, respectively (Table I). The
advantage in accuracy caused by power spectral densities
is most likely due to their frequency domain origin, that
is, despite ignoring temporal effects, these features may
still reflect if there was some short and specific frequency
event within the longer signal analyzed. In contrast, inter-
channel correlation and Hjorth parameters focus mostly on
bulk spatial peculiarities, and some shorter events may be
suppressed while calculating the features for longer signal.

Moreover, in this approach, the dimension of the feature
vector has decreased by more than 50 times, which is
important for the computational efficiency and compact
representation of the feature space [24]. Further refinement
was the addition of the search for the most informative seg-
ment within 2 seconds of each mental movement act. Since
the moment and duration of its execution was completely
arbitrary, it seems reasonable to search for the informational
segment separately for each act of mental movement. This
approach was tested on three features: power spectral den-
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TABLE I. Classification accuracies in different approaches

Approach Feature Classification accuracy

CSP + LR CSP-patterns 51,1 ± 10,8%

Search for informative frequencies

Frequency spectrum 65,4 ± 9,1%

Hjorth parameters 53,9 ± 11,4%

Inter-channel correlation coefficients 53,7 ± 8,2%

Search for informative frequencies and segments

Frequency spectrum 59,5 ± 4,8%

Hjorth parameters 68,2 ± 4,2%

Inter-channel correlation coefficients 69,4 ± 2,3%

sities, Hjorth parameters, and inter-channel correlation co-
efficients. The corresponding classification accuracies were
59.5 ± 4.8%, 68.2 ± 4.2%, and 69.4 ± 2.3%. The latter
accuracy is significantly higher than that obtained for CSP-
LDA conventional approach (t=6.63, p-value < 0.001),
however, there was no significant difference between this
accuracy and that of pure informative frequency search (t=-
1.7, p-value=0.09 > 0.05). Nonetheless, one cannot deny
that there is an improvement in accuracy caused by infor-
mative time segment search. Moreover, the p-value obtained
is not much higher than the conventional threshold of 0.05,
and it is more likely caused by the large standard deviation
of the search for informative frequencies accuracies. When
comparing the mean values and standard deviations of these
two searches, although there is no significant difference, the
mean accuracy of the more extensive approach comprising
the search for informative time segments is greater, while
the corresponding standard deviation is lower. The latter
indicates higher stability of this approach among subjects
in addition to a somewhat improved accuracy. In detail,
what was done for each subject is consecutive application
of the search for informative frequency ranges resulting
in 3 LDA models described above and the search for the
most informative time segments within each motor imagery
epoch based on the features determined during the first
step. At this stage, initial search for informative frequencies
was performed using power spectral densities by default, as
they were previously shown to lead to better accuracies for
the search. As one can see, the accuracies obtained in this
approach for different features are opposite compared to
those obtained for the pure search for informative frequen-
cies, that is, while searching for informative time segments,
Hjorth parameters and inter-channel correlation coefficients
provide better results than power spectral densities. The
decrease in accuracy based on the power spectral densities
is probably due to the use of only 750 ms of the signal rather
than all 2 seconds. Indeed, it is nearly impossible to obtain
high-quality spectrum for such a short signal, especially
when using windowed FFT-based methods such as Welch’s.
In contrast, Hjorth parameters and inter-channel correlation
coefficients are practically not affected by the small signal
length and are capable of reflecting signal peculiarities even

in smaller time scales. However, it can be argued that the
sequential search for informative frequency ranges and for
the informative time segment, albeit using different fea-
tures (power spectral densities and inter-channel correlation
coefficients, respectively), leads to an improvement in the
classification results. It is noteworthy that the signals of each
ideomotor act are processed independently, but accuracy
growth is also observed when they are combined back again,
i.e., the method identifies general invariant patterns. Another
advantage of the method is resistance to noise, because
all pairwise differences between background and the target
signal windows are used in the calculations. Thus, by using
different subtractions for each time segment, one can expect
that at least some of them minimize the noise and highlight
informative events.

Finally, this two-step subject-specific approach can also
be implemented in the conventional BCI paradigm as initial
training and the following operation. The classification re-
sults using various features and approaches are summarized
in Table I. The scatter diagrams in the space of the LDA
components obtained are shown in Figure 4 for the two
most successful features. In these figures, two detached
clusters can be distinguished, which corresponds to two out
of 3 motor imagery types being completely discriminated
and the corresponding accuracy of 65-70%. Unsurprisingly,
motor imageries of feet and left hand are almost the same
in this space since it is a common problem caused by most
of the subjects being right-handed.

Currently, spontaneous EEG analysis methods, including
both linear classifier models [25] and ANNs (artificial
neural networks), have become widespread for solving
neural communication problems [20], [26]. The comparison
results show the superiority of nonlinear neural network
algorithms, especially in terms of the efficiency and adap-
tivity [27], [28], [29]. This is achieved via the devel-
opment of new ANN methods [30] that integrate great
customization capabilities and the advantages of various
approaches that can effectively detect specific and invari-
ant motor imagery patterns of bioelectric brain activity.
However linear classifiers are still a clear and easy-to-
interpret method; moreover, their computational load is low.
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Figure 4. Scatter plot for all subjects in LDA components space after search for the in-formative frequencies and segments using Hjorth parameters
(A) and cross-channel correlation coefficients (B)

However, since quasi-stationary EEG can form non-linear
discriminant functions, such classification is not always
highly accurate at detecting control commands in the BCI
framework. Therefore, improving the accuracy of linear
methods needs additional preprocessing and highlighting
significant features to find invariant EEG patterns [31].
Thus, the results of the classification of multiclass motor
imagery patterns based on our original approach showed
that the method is capable of increasing the accuracy (on
average up to 70%) of detection of randomly generated
control commands in the BCI circuit. These results are con-
sistent with available data indicating that neural interfaces
based on motor imagery (MI) and approaches for solving
neurofeedback problems can provide a reliable and effective
non-muscular communication channel. On the other hand,
it requires the development of new techniques and scenarios
for user training, as well as via training and adaptation of
the methods themselves [32], [33]].

Finally, our results agree with the well-known char-
acteristics of event-related desynchronization (ERD) and
synchronization (ERS) phenomena in the mu- and beta-
rhythm of the EEG. They are primarily considered as events
reflecting the performance of motor imagery or mental
movements [34], [35], [36]. The ERD phenomenon do not
only occur while performing a real movement, but also
during motor imagery (mental movement or sensation) [37],
[38], [39]. The authors also note a specific somatotopic
localization of the effects: in the contralateral hemisphere
tj the hand involved, the ERD is more pronounced [40].
These EEG phenomena are usually obtained statistically
by averaging (summation) EEG signals obtained during
different mental tasks of identical content using lower
(delta-, theta-, alpha- (mu-)) or higher (beta- and gamma-
) rhythms. Analysis of single events in the EEG is used
quite rarely, especially if time intervals are short [41],
[42]. Comparative analysis has shown [43], [44], [45] that
using single implementations of short (up to 500 ms) EEG
segments, one can identify the visual stimulus indicating
the movement direction and the brain areas involved in its
processing. Moreover, even shorter EEG epochs (up to 200
ms) may be sufficient to identify the readiness potential,
indicating the lateralization of the upcoming motor act.
However, analysis epochs not shorter than 500-700 ms seem

to be the most reliable motor intent identification [46],
[41] . We have also shown previously [47], [9] that motor
imagery leads to additional activation of both the central
motor cortex and the frontal and temporal cortical areas.
Additionally, sufficiently pronounced phenomena at gamma
frequencies associated with motor imagery. We suggest that
the growth of the power of gamma frequency band can
be considered as a consequence of the growth of specific
information processes associated with voluntary forms of
motor behaviour regulation. The specificity of these changes
is indicated, in particular, by their close connection with the
target areas of the cortex that are contralateral to the motor
imagery being performed, as well as those involved in the
formation of spatial images and their relationships. This is
confirmed by studies involving fMRI and MEG methods,
in which local growth of high-frequency gamma activity
was observed within the somatosensory cortex in the motor
imagery task [48], [49].

4. Conclusions
Thus, it is clearly shown that brain motor imagery

activity is accompanied by a number of electrographic
phenomena useful for BCI. Motor imageries are used by a
number of groups [2], [25], [29] to create such systems and
are not inferior to systems operating on other phenomena
in terms of efficiency (reliability, speed control, etc.) , in
particular, on the basis of P300 evoked potentials. Their
great advantage is that they do not require external cues and
are associated with comparatively local cortical phenomena,
and. On the other hand, their peculiarity is a relatively short
duration, which is crucial for real-time systems. Neverthe-
less, currently, it is only possible to form a pretty limited
alphabet of control MI commands. This, apparently, is due
both to the lack of effective MI activity skills in a person, in
addition to mental or inner speech [50], and the complexity
of classifying electrographic patterns correlated with visual
and proprioceptive types of MI. The development of BCI
technology depends on a number of factors, an important
one of them is improving the reliability of methods for
detecting and classifying invariant EEG patterns in the brain
of a person forming control commands in an voluntary
and anthropomorphic mode. The successful solution of
the above mentioned problems can provide effectiveness
and stability of neural communication systems, which will
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lead to the rapid spread of the technology among disabled
individuals. These technologies are highly demanded both
in the scientific research and in the mass market for mon-
itoring the functional state of a person, as well as for the
creation of a new non-muscular, auxiliary control channel
for external devices for various purposes [51], [52]. In this
work, it was shown that the problem of classifying the
mental equivalents of real movements is most effectively
solved by searching for specific frequency ranges for both
each subject and for different types of mental movements.
The procedure for finding the best time segment to classify
target patterns within the entire time range of an ideomotor
act also contributed to improving the classification accuracy.
The best accuracy was obtained when the following steps
were conducted: a) search for informative frequency bands
as separate LDA-components for different types of motor
imagery for a given subject using power spectral densities
as features; b) search for shorter informative time segments
using inter-channel correlation coefficients calculated for
EEG filtered in the bands found in a) (i.e. bands corre-
sponding to the greatest weights in LDA-components in a)).
Moreover, unlike similar investigations [53], our approach
does not rely on prior knowledge of an approximate wide
informative frequency band, so it is universal in some sense.
The preliminary results obtained will form the basis for
further development of BCIs. However, in order to create
successful classification models for practical applications,
significant improvements and development of the exploited
experimental paradigm are required. In particular, the use
of deep learning methods may improve the accuracy and
reliability of the classification of mental equivalents of real
movements. The development of such models based on the
present study’s results is the subject of our current work.
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