
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  
11	
  
12	
  
13	
  
14	
  
15	
  
16	
  
17	
  
18	
  
19	
  
20	
  
21	
  
22	
  
23	
  
24	
  
25	
  
26	
  
27	
  
28	
  
29	
  
30	
  
31	
  
32	
  
33	
  
34	
  
35	
  
36	
  
37	
  
38	
  
39	
  
40	
  
41	
  
42	
  
43	
  
44	
  
45	
  
46	
  
47	
  
48	
  
49	
  
50	
  
51	
  
52	
  
53	
  
54	
  
55	
  
56	
  
57	
  
60	
  
61	
  
62	
  
63	
  
64	
  
65	
  

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 1, No.1 (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Load Balancing in Fog Computing: A Detailed Survey
Kavitha M S1, Naidila Sadashiv2 and Dilip Kumar S M3

1Silicon Realization Group, Synopsys, Bangalore, India
2Department of Computer Science & Engg, JSS Academy of Technical Education, Bangalore, India

3Department of Computer Science & Engg, University Visveswaraya College of Engineering, Bangalore, India

Received 11 Mar 2022, Revised 24 Jul 2022, Accepted XX Mon. 2022, Published XX Mon. 20XX

Abstract:Fog Computing (FC) enhances the proficiency and performance of cloud with the objective of bringing selected computing
capabilities to the network edge to reduce latency, enhance location awareness, provide mobility support, etc. In the FC environment,
resources could not be utilized completely due to the wide variation in execution duration and specifications for computing nodes.
Therefore, Load Balancing (LB) for the computing nodes in the FC environment is an essential aspect that avoids the situation of under-
or over-loaded fog nodes during the execution of Internet of Things (IoT) applications, especially. This paper starts by presenting several
FC architectures, their comparisons and LB strategies in different computing environments. An empirical survey of the existing LB
mechanisms has been presented along with trade-offs in their performance metrics. Various possible LB metrics have been investigated.
Finally, potential challenges, case studies and future directions on LB in FC environments are presented.

Keywords: Fog Computing, Load Balancing, Architecture, Computing Environments

1. INTRODUCTION
With the proliferation of intelligent devices, it is envi-

sioned that industrialists and researchers can predict risks
and take precautions ahead of time to conserve valuable
resources. Many new applications have emerged from the
Internet of Things, including smart parking, traffic control,
smart cities, Internet of Vehicles (IoV), smart meters, smart
grids, and greenhouses. Since these real-time applications
involve computations, a demand exists for resources, and
they generate an enormous amount of data. As a result,
networks should be able to cope with a wide range of
networking issues related to IoT, including heterogeneity,
congestion, routing, energy conservation, reliability, scala-
bility, and Quality of Service (QoS).

With the inefficient usage of cloud resources, need
for high bandwidth, mobility issues, and federated infras-
tructures, some drawbacks persist, including high latency,
increased congestion, and sizeable idle energy consump-
tion. Furthermore, even though the IoT paradigm provides
perpetual connectivity to objects anywhere and anytime,
this connectivity is ineffective if the data gathered and
sensed are not used on time. Researchers have attempted
to address the earlier needs of emerging compute-intensive
applications by exploring a new computing approach called
fog computing. Fog computing extends cloud computing
by enabling end-user devices to digitally connect with data
centers to perform processing, storage, and networking. Fog
resides in the middle of the cloud and IoT devices. Protects

data, accessibility, scalability, and location awareness and
provides high QoS for time-critical applications such as
telemedicine with low latency. IoT devices sense data trans-
mitted to fog nodes in a fog environment. Smart devices,
smart routers, and gateways are used as data hubs in fog
architectures to streamline data processing. The resulting
reduction in data sent to the cloud is significant. With an
increasing rate of data generation, some fog nodes become
overloaded, leading to a significant delay in the delivery of
services. Fog nodes’ computational load is directly propor-
tional to delivery time. Therefore, a heavy processing load
on fog nodes results in a longer delivery time. Coordination
among fog nodes is vital to resolve this type of issue, and
specific nodes should be able to delegate tasks to lesser-
overloaded nodes if they are overloaded. This is required
both on physical nodes as well as on virtual machines.
This LB mechanism disperses the load evenly across virtual
machines and hosts. An optimal load balance among fog
nodes will minimize resource consumption and response
times. Fog employs two approaches for implementing load
balancing, viz static and dynamic.

A. Search Criteria
The abstracts of all searches included the keywords

”load balancing” and ”fog computing”. Nonetheless, it is
a common method and takes a lot of time. Many keywords
and synonyms are being used to match our results includ-
ing ”load distribution” and ”load scheduling”. The study
includes the works that have been carried out between 2015

E-mail address: kavitha.to@gmail.com, naidila@jssateb.ac.in, dilipkumarsm.uvce@gmail.com http:// journals.uob.edu.bh

IJCDS 1570795818

1

http://dx.doi.org/10.12785/ijcds/XXXXXX
http://journals.uob.edu.bh


190 Kavitha, et al.: Load balancing in Fog Computing

to 2022.

B. Publications in Load Balancing in Fog Computing
Fig. 1 gives the percentage of papers reviewed from

different sources in which majority of works on LB have
been appeared in IEEE, Elsevier & Springer journals.

Figure 1. Publications in Load Balancing in Fog Computing.

C. Contributions of the Paper
The contributions of this paper are summarized as

follows:

1) A comparative study of different fog architectures.
2) An in-depth review of the different load balancing

algorithms, strategies, techniques and methods in FC.
3) Provide a detailed view on categorization of works

on load balancing in fog environment based on
performance metrics.

4) A brief description of challenges in fog based load
balancing is presented.

5) Finally, a discussion on case studies of fog comput-
ing in real time applications.

Fig. 2 depicts the structure of this paper. Following is
an outline of the remainder of the paper:
Section 2 presents a brief overview of fog architectures.
Section 3 discusses various load balancing strategies em-
ployed in computing environments. Subsection provides a
brief on different load balancing algorithms Section 4 pro-
vides classification of recent works on load balancing in fog
infrastructures. Section 5 reviews the various performance
metrics for measuring a new load balancing technique or
algorithm. Section 6 summarizes the various challenges
existing in fog load balancing. Section 7 outlines some
of the case studies of fog real time applications. Finally
Section 8 concludes this paper.

2. Fog Computing Architecture
The fog computing model extends the traditional cloud

model in which applications are developed and implemented
across several network layers. According to the literature
review findings, the Fog architecture is composed of three
layers, as depicted in Fig. 3.

Figure 2. Structure of This Paper.

Figure 3. A Typical Fog Architecture.

http:// journals.uob.edu.bh

2

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 191

The IoT layer is the foundational layer of the fog
architecture. The devices in this layer sense and collect data
from heterogeneous geographic locations. Examples include
smartphones, sensors, smart cars, readers, smartcards, etc.
Fog nodes are the devices in the fog layer collectively re-
ferred to as the fog layer. Access points, routers, gateways,
base stations, and fog servers are the devices found in this
layer. A fog node resides between cloud data centers and
end-user devices on a network; it may be static, e.g., located
in a coffee shop, airport, or mobile.

The cloud layer at the top contains large storage
devices and high-speed servers that can provide high
computing performance, computation analysis, and data
storage permanently for users’ backup and to provide
access to personal data. As a rule, information not required
in the client vicinity is stored in a cloud layer. OpenFog
RA [16] describes multiple perspectives and stakeholder
views needed for a specific fog computing deployment
or scenario. OpenFog Consortium has defined the fog
architecture, which encompasses several perspectives:
performance, security, manageability, data analytics,
control, business applications, and cross-fog applications.
Three views are identified and discussed in detail: system
view, software view, and node view.
Table I provides a detailed comparison of some of the
Fog architectures as proposed by the different authors.
From various authors viewpoints, application specific fog
architectures are discussed below:
Talaat et al. [75] proposed a 3-layer IoT-Fog architecture
for healthcare system. The middle fog layer, which handles
the requests forwarded by the IoT layer, is comprised
of 2 main modules: Load Balancer Agent (LBA) and
Adaptive Weighted Round Robin (AWRR). LBA decides
the suitable fog server for servicing the request. AWRR
employs a reinforcement learning-based Q-learning model
to allocate fog nodes and migrate service requests. Neto
et al. [56] proposed architecture with a fog management
layer responsible for distributing the load based on
the statistics of the node maintained in the tables and
also considered the Tenant Maximum Acceptable Delay
(TMAD), which is the permissible delay for any tenant. But
this approach does not consider the resource requirements
of a tenant and only concentrates on the allowable delay
component of the tenant. Manju et al. [52] proposed a
4-layer fog architecture consisting of four layers: IoT
users, unreliable fog nodes, reliable network resources,
and cloud datacenters. Each location’s controller node is
updated on the idle resources available at that location and
nearby sites. The controller decides the suitable fog node
to service the request based on these updates. Min-Min
algorithm is implemented to achieve the same. Osanaiye
et al. [59] have proposed a 3-layer architecture with APIs
interfacing the adjacent layers. APIs for the Orchestration
layer perform analysis, planning, resource allocation, and
enforce decision-making. By hiding the heterogeneity of
platforms, the fog abstraction layer exposes a uniform
and programmable interface that reveals CPU, memory,

and network resources seamlessly through a generic API
system.
Verma et al. [79] have proposed a 3-tier architecture with
the ground tier consisting of IoT devices, and the fog layer
acts as a middleware with each fog node comprising a Fog
Server Manager (FSM) that serves the requests by looking
at the availability of data and load handling capacity. When
the primary fog server cannot fulfill a request, it will pass
to the adjacent node, the edge network, and finally to the
cloud if the request cannot be fulfilled anywhere. Aazam et
al. [2] constructed a layered architecture of fog by defining
the functionalities of the fog layer as far as extracting and
processing data from IoT devices and finally uploading
the preprocessed secured data to cloud storage. Zakria et
al. [93] proposed a three-tier architecture with numerous
smart buildings with controllers at the bottom layer, a fog
network with virtual machines, a microgrid at the middle
layer, and a cloud at its top layer. Several smart buildings
are connected to fogs, and controllers in each cluster
control supply and demand from or to smart buildings.
According to Zhu et al. [94], video applications and
services were processed and transmitted using fog
computing, including proxy-aided rate adaptation and
intelligent caching for on-demand video streaming. Real-
time real-world video surveillance for surveillance cameras
will thus improve the Quality of Experience (QoE) of the
virtual desktop infrastructure. Truong et al. [78] presented
a novel Vehicular Adhoc Network Architecture FSDN,
which combined two emerging technologies, Software
Defined Networking (SDN) and FC, for low latency and
location-aware services that could satisfy future VAN
requirements.
Gazis et al. [24] introduced a flexible operating platform
that caters to the operational requirements of a fog
computing infrastructure in an industrial context by
providing an end-to-end management capability. Marbukh
et al. [53] shows a ”bird view” architecture of Fog
computing architecture as defined by Marbukh, National
Institute of Standards and Technology (NIST). Bonomi et
al.[10] have proposed a Fog architecture that represents
a simplified version of the idealized infrastructure that
can adapt to future IoT applications. The Smart Fog
architecture proposed by Kimovski et al. [45] consists
of three distinct layers: (1) Cloud layer, (2) Fog layer,
and (3) IoT layer. As SmartFog uses Cloud and IoT
components, it can independently evolve and allow for
high degrees of interaction between both. Chun et al.
[15] have proposed the Fog architecture based on a
publish/subscribe model. Fog nodes communicate based on
a topic-based publish/subscribe model, where the publisher
sends a message to a subscriber with a ‘topic’, and the
subscriber receives the message if the issue is of interest.
Guibert et al. [30] proposed a Content-Centric Network
(CCN) based Fog model. The CCN elements are spread
in a three layer scheme. The preprocessing layer, which
preprocesses the received data with some caching policies,
is followed by the orchestration layer, a controller for other
layers. Finally, data packets are forwarded using CCN

http:// journals.uob.edu.bh

3

http://journals.uob.edu.bh


192 Kavitha, et al.: Load balancing in Fog Computing

TABLE I. Comparison of Fog Architectures

Author #
Tiers

Technique/Algorithm
Employed

Description # Nodes Advantages

Talaat et al.
[75]

3 Reinforcement learn-
ing based Q-learning
model

Load Balancer Agent (LBA) and
Adaptive Weighted Round robin
(AWRR) with each fog server’s
cache size, RAM size, CPU usage
and adaptive weight (AW) are con-
sidered

2 OL, 2 UL
and 3 bal-
anced nodes

Optimal migration
from overloaded
nodes to
underloaded
nodes

Neto et al.
[56]

3 Multi-tenant
load distribution
algorithm

Fog management layer (FML) dis-
tributes load based on the nodes
statistics table by considering Ten-
ant maximum acceptable delay
(TMAD)

20 nodes
(with 5
tenants)

IoT end-
users(Tenants)
are serviced as per
their plan

Manju et al.
[52]

4 Min-Min algorithm
employed

Fog layer is comprised of unreli-
able fog nodes and reliable network
devices such as routers, gateways
etc which act as controllers to for-
ward the user requests to suitable
fog nodes

5
datacenters
with 5 fog
nodes each

Perfroms better
than RR and
other priority
algorithms,
Suitable for a
small number of
cluster nodes

Osanaiye et
al. [59]

3 Abstraction and
Orchestration layer
APIs providing a
seamless interface
for resource
management

Providing a layer of fog orches-
tration with small software agents
called foglets that allow fog nodes
to monitor their current state

NA Probing, analyzing
retrieved data and
efficient resource
management with
the help of APIs

Verma et al.
[79]

3 Real-time efficient
scheduling (RTES)

Fog Server master and fog co-
processors in each region ensure
availability of fog nodes for user
requests

100 tasks
per vm

Maximum
throughput
with minimum
execution time

Aazam et al.
[2]

6 Specific layers with
individual function-
ality

Functionality is split across dif-
ferent layers for monitoring, pre-
processing, temporary storage, se-
curity and transport of data

NA Enhanced
modularity and
hence easy to
implement

Zakria et al.
[93]

3 Round Robin (RR),
Throttled and Short-
est Remaining Time
First (SRTF) algo-
rithms

Fog nodes are connected to cluster
of small buildings, Controller in
each cluster manages demands of
each cluster

6 (3 regions
with 2 fog
nodes and 2
clusters in
each region)

Increased resource
utilization and re-
duced cost

standard exchanges with cloud and fog at the forwarding
layer.

3. Classification of Load Balancing Strategies in Com-
puting Environments
Load balancing is perhaps the central aspect of any

computing environment. Before a problem can be executed
on a system, the work must be partitioned among different
processors. Due to uneven processor utilization, load imbal-
ance can happen, leading to degraded performance. Hence,
it is required to have appropriate load balancers in the
environment. A load balancer prevents servers from becom-
ing overburdened by requests. It can be either a software
device or a hardware device. It distributes the network traffic

between its servers using an algorithm. Load balancing is
two-fold. A static load balancing algorithm does not adjust
traffic routing. It distributes traffic evenly among all the
servers in a group, either in a specified order or at random.
Dynamic load balancing makes use of algorithms that take
into account the state of each server and distribute traffic
accordingly. Algorithms that simulate dynamic workload
redistribution continuously monitor changes in load and
alter the load accordingly. They can be classified as adaptive
or non adaptive and centralized or distributed. Most of the
literature work classifies load balancing strategies based on
the type of algorithms used, the different load balancers
used, based on system state, and based on initiation process
[26, 80]. A pictorial representation of the different load
balancing strategies is depicted in Fig. 4.

http:// journals.uob.edu.bh

4

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 193

Figure 4. Load Balancing Strategies.

1) Based on System State: Some of the algorithms
consider the current state of the system. Parameters
such as the system’s memory, the storage capacity
of the nodes, and processing power can be used to
determine the state of a system. Depending on the
system’s state, algorithms can be further classified as
static and dynamic.

a) Static - Static load balancing algorithms rely
on the assumption that all the factors influenc-
ing their decisions, such as job characteristics,
communication networks, and node locations,
are known in advance. Static algorithms are
classified as deterministic and probabilistic
algorithms. A deterministic or probabilistic
load balance is determined during compila-
tion phase, and it remains constant throughout
runtime phase. In addition to being easier
to implement, this approach involves minimal
runtime overhead.
i) Deterministic - These algorithms take into

account the properties of nodes and char-
acteristics of the processes to be sched-
uled.

ii) Probabilistic - The probability algorithms
formulate simple rules for the placement
of processes by considering static at-
tributes of the system (e.g. nodes, pro-
cessing capacity, topology).

b) Dynamic - Dynamic load-balancing algo-

rithms attempt to make smarter decisions
based on runtime state information. A central-
ized location may make global decisions, or
multiple distributed locations can share the re-
sponsibility. It results in a better performance
compared to static load balancing. They can
be classified as Adaptive and Non-adaptive.
i) Adaptive - These algorithms adapt their

parameters or even their scheduling policy
itself to take account of the global state
of the system. Previous decisions and
changes in the environment will affect
scheduling decisions, which will consider
past and current performance.

ii) Non-adaptive - Unlike adaptive balanc-
ing, in non-adaptive balancing the pa-
rameters remain untouched by the past
behavior of the system.

iii) Centralized - A central global controller
must have knowledge of the whole fog
infrastructure and IoT requirements. Load
balancing in such architecture with a sin-
gle control point can be implemented
easily. However, it lacks scalability, fault
tolerance and can become a performance
bottleneck if not maintained [25, 14].

iv) Distributed - All nodes participate in
load-balancing decisions in this approach.
The cost of obtaining and maintaining
state-of-the-art information for the system
becomes prohibitive for each node. The
state information is shared among the
nodes that manage their resources and al-
locate tasks in their queues to other nodes.
Frequent information exchange between
processors results in communication over-
head [25, 48].

2) Based on Initiation Process: As stated by Rathore
et al. in [64], depending on the current load on the
node and the originator of the request, load balancing
techniques can be classified as:

a) Sender Initiated - A specific task periodically
checks for load on the nodes and if an over-
loaded node is found, it distributes the load
evenly to less loaded nodes.

b) Receiver Initiated - An idle processor pulls
the load from a busy processor. But both
sender initiated and receiver initiated are not
mutually exclusive in the computing environ-
ment.

c) Symmetric - This approach employs a com-
bination of both push and pull. The Linux
scheduler and the ULE scheduler available for
Free BSD systems employ this approach.

Sender and receiver initiated processes employ dif-
ferent policies for selection of nodes for load trans-
fer. A dynamic algorithm considers the current state

http:// journals.uob.edu.bh

5

http://journals.uob.edu.bh


194 Kavitha, et al.: Load balancing in Fog Computing

of the system, as already mentioned. Some of those
policies are:

a) Information policy - This policy keeps track
of all resource information in the system. In-
formation about the nodes is collected through
agents, centralized polling, and broadcasting.
The time during which data should be col-
lected also plays a significant role in this
policy.

b) Location policy - This policy finds an under-
loaded node and moves the tasks to them for
processing. Several approaches can be used
to determine the destination node for task
migration, including probing, negotiation, and
randomization.

c) Transfer policy - This policy identifies a
task to be transferred to other nodes in 2
approaches. Either it moves all current tasks
or the last task received at the node.

d) Selection policy - With this policy, tasks trans-
ferring from one node to another are selected
from those that will cause the most negligi-
ble overhead, the fewest number of nonlocal
system calls, and the shortest implementation
time.

3) Based on Types of Load Balancer: For specific
network issues, several load balancing techniques
are available, including SQL Server load balancing
for relational databases, DNS server load balancing
to ensure domain name functionality across multiple
geo-locations, and global server load balancing for
troubleshooting. They can be categorized based on
their functionality and configuration as follows:

a) Based on Function:
i) Network Load Balancer/Layer 4 (L4)

load balancer: The L4 load balancer
does not consider application-level pa-
rameters such as the type of content,
cookies, headers, locations, application
behavior, etc. Instead of inspecting the
contents of discrete packets, it translates
network addressing without inspecting
packets. This allows it to direct traffic
based solely on network layer informa-
tion.

ii) Application Load Balancer / Layer 7
(L7) Load Balancer: A L7 load balancer
distributes requests based on different pa-
rameters. The L7 load balancer evaluates
variables such as HTTP headers and SSL
sessions, as well as a wide range of data,
and distributes loads according to several
factors.

iii) Global Server Load Balancer
(GSLB)/Multi-site Load Balancer:
GSLB ensures an efficient global load

distribution without compromising end-
user experiences, by extending the L4
and L7 capabilities across various data
centers.

b) Based on Configurations:
i) Hardware LB: Essentially, this is a piece

of hardware on-premises that distributes
traffic on several servers. While they can
handle a lot of traffic, these systems are
quite expensive and moderately flexible.

ii) Software LB : These are computer ap-
plications that are installed on a system
and function similar to hardware load
balancers. They map virtual IP addresses
(VIPs) to Direct Internet Protocol ad-
dresses (DIPs), which are part of a cloud
service pool of workload balanced VMs
within the datacenter.

iii) Virtual Load Balancers: A hardware
load balancer and an application running
on a virtual machine make up the vir-
tual load balancer. Virtualization mimics
the software-driven infrastructure, as soft-
ware applications are executed on vir-
tual machines to redirect traffic appro-
priately. Although not equipped with a
central management system, these load
balancers present similar challenges to in-
house physical balancers, including less
automation and fewer scalability options.

A. Load Balancing Algorithms
Algorithms are designed as static and dynamic algo-

rithms based on the system state, as mentioned earlier.
One of the major aspects of the design of load balancing
algorithms is determining the appropriate load index to use.
The load index can be used to determine the node’s status in
terms of their availability for accepting additional workload
at every instant. A multi-core system load index depends on
the number of cores per node and the computing power of
each node. Determining a load index does not rely on the
same set of parameters.

It varies as per the algorithm designer’s needs. Dif-
ferent parameters are considered to calculate the load index,
including CPU occupancy, memory usage, system I/O use,
and network bandwidth usage. Algorithms are designed by
considering these. Early researchers conducted experiments
using some of the classical load balancing techniques like
Round Robin, Least Connection, Throttled, etc. Table II
presents a brief view of classical algorithms.

Random allocation, Round-robin, etc., are classic
algorithms that solely use different network parameters
to determine where incoming data should be forwarded,
without consulting any other components of the computer
system such as the quantity of data being collected by the
applications and databases.

http:// journals.uob.edu.bh

6

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 195

TABLE II. Classical Load Balancing Techniques

Author Algorithm Type Description Advantages Disadvantages
[70], [19] RR algo-

rithm
Static Using the available servers’

list, it forwards each task
equally to each of them in
the order of arrival

Easy to install, Not
much complexity on the
programmer’s end

Lacks an understanding
of resource capacities,
priorities and length of
tasks, which leads to re-
source starvation

[31] 2019 Weighted
Round
robin

Static Its cyclical assignment
method is similar to RR,
but in that the node with the
highest capacity receives
the most requests, despite
being similar to RR in other
aspects

More requests can be
sent to servers with
higher capacity and han-
dling load

Capacity calculations
can be difficult in some
situations, for example
if the packet size varies

[73] 2018 Least con-
nection

Dynamic Servers with the fewest ac-
tive transactions are selected

It prevents server over-
load by monitoring the
number of connections

Counts current connec-
tions without taking the
server capacity into ac-
count

[73] 2018 Weighted
Least con-
nection

Dynamic Keeps a weighted list of
active connections between
application servers

To prevent overloading
and crashing, both the
server’s capacity as well
as current connections
are taken into account

Suitable for clusters
only

[35] 2012 Weighted
Active
Monitor-
ing

Dynamic Based on the processing
power of each server, it as-
signs weight to each in real-
time

Optimized response
time and processing
time of data

The selection of a suit-
able server does not take
into account the server’s
capacity

[60] Min-Min
algorithm

Static It considers all unmapped
tasks and finds minimum
completion time for each
task and maps it to the cor-
responding server

Minimizes makespan Larger tasks starve for
longer period

[60] Max-Min
algorithm

Static Finds set of minimum com-
pletion times M from un-
mapped tasks and assigns
maximum completion time
from M to resembling ma-
chine

Gives a much better per-
formance than Min-Min,
Makespan reduced by
executing tasks parallely

Waiting time of smaller
tasks is increased and
leads to starvation

[60] LBMM
algorithm

Dynamic LBMM utilizes Min-Min
for the first phase, then
reschedules tasks to use the
underutilized resources for
the second phase

Minimizes makespan
and improves response
time, Utilizes resources
effectively

Average response time
for smaller tasks is in-
creased

[77] 2018 Tabu
search
Meta-
heuristic
method

Dynamic An integer optimization al-
gorithm to find the size of
the tasks in order to make an
appropriate assignment for
each one

Reduced memory usage
and computational costs

Lot os tuneable parame-
ters in the approach con-
sumes more iterations
and hence increases time
complexity

[82] 2018 Throttled
algorithm

Dynamic In the data center, load bal-
ancers manage a table of
VM indexes and their lo-
cations. In response to the
customer’s request, the data
center locates a suitable vir-
tual machine

Improved response time
compared to other algo-
rithms

There is no simulation
for a specific workload
situation and no limit on
the duration

http:// journals.uob.edu.bh

7

http://journals.uob.edu.bh


196 Kavitha, et al.: Load balancing in Fog Computing

TABLE III. Conglomerate Load Balancing Techniques

Author Algorithm Description Advantages Disadvantages
[63] Central Load

Balancing
Decision Module
technique
(CLBDM)

Acts as monitor and impacts
on forwarding decisions on
load balancers

Dynamic allocation of re-
sources between the VM’s,
Signals the Load balancer if
a server is in trouble and un-
able to accept new sessions

Having a single point
of failure will cause
erratic decisions and
requests to bounce
between nodes, lead-
ing to poor perfor-
mance and an un-
pleasant user experi-
ence

[62] Randomized
algorithm (Balls
into Bins via
Local search)

Bins(servers) represent
nodes in graph and edge
weight represent distance
between bins. Minimum
spanning tree is generated
to find suitable server for
execution

Workload difference
between the nodes is
minimized

Best results are seen
only when no of
tasks is atleast 2000

[21] Divide-and-
Conquer
combined
with throttled
algorithm

Requests from clients are
distributed to load balancer
and suitable real time re-
quests are forwarded to Re-
quest handler (RH) and vir-
tual machine deals with
simulation environment

Resource utilization maxi-
mized, Total execution time
reduced

Not tried to simulate
differing workload
situations, Task
deadlines are not
considered

[69], [92] Stochastic Hill
Climbing (SHC)
associated with
Join Idle Queue
(JIQ) algorithm

SHC with JIQ find a suit-
able virtual machine for the
execution of job

Improved response time,
Better resource utilization

Not suitable for large
no of requests

The work in [63] proposed a centralized load balancing
software model that periodically interacts with load bal-
ancers and application modules. But this approach of having
a centralized decision-making system poses the challenge
of a single source of failure, bringing the entire system
to a halt. Few works have improvised a base algorithm or
combined different algorithms to arrive at their results. For
example Stochastic Hill Climbing (SHC) algorithm with
Join Idle Queue (JIQ) to find a suitable virtual machine
(VM) for igration of load [69]. Table III presents the works
considering such conglomerate algorithms.

Apart from the above generic method, some of the
works have considered categorizing the algorithms based on
the nature of tasks as Natural Phenomena based and some
based on the concept of intelligent agents and are classified
as Agent based algorithms. Table IV presents several LB
techniques inspired by natural phenomena. Recent works
discuss the usage of hybrid algorithms like Cuckoo search
with Levy walk distribution, combination of Honey bee with
enhanced weighted RR algorithm, and Chaotic social spider
algorithm. The chaotic social spider algorithm achieves a
minimum makespan and utilizes resources efficiently. The
work lacks in identifying trusted nodes for load distribution.
Addressing the problem of migration of tasks between VMs
leaves the Cuckoo search algorithm a good choice for

balancing the loads on nodes.
Some real-time applications like the Smart industry con-
sider the installation of intelligent agents for their smart
decision-making systems to automate complex tasks. For
example, smart industry applications consider smart shop-
floor objects such as machines, conveyors, and products to
be associated with terminals. Smart objects are classified
into various types of agents who can make autonomous
decisions and do distributed cooperation amongst them for
discovering the resources and negotiating and balancing the
resources. The agents will perform these functions automat-
ically and continuously to fulfill the design objective. The
work on agent-based information retrieval is insignificant
and suits specific applications like smart factories. Table V
gives a detailed view of the load balancing techniques that
employ agent nodes for deriving the node statistics for load
distribution.

4. Load Balancing in Fog Environment
This section examines the limited number of Fog com-

puting based LB survey works and also classifies existing
LB approaches based on different performance parameters.

http:// journals.uob.edu.bh

8

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 197

TABLE IV. Load Balancing Techniques Inspired by Natural Phenomema

Author Technique Objectives Advantages Disadvantages
[36] 2019 Cuckoo search

along with Levy
walk distribution
and Flower
pollination LB
algorithm

Reduce delay and la-
tency issues and in-
crease performance
of fog

Have considered 6 differ-
ent smart communities aka
smart home, smart city,
smart grid etc, Increased
response time, processing
time and reduced cost

problem of migra-
tion of tasks between
VMs and bin pack-
ing problem are un-
resolved

[61] 2019 Modified Honey
bee behaviour al-
gorithm with en-
hanced Weighted
RR algorithm

To achieve minimal
completion time and
to improve CPU pro-
cessing time

Modified honey bee algo-
rithm for handling prior-
itized tasks and weighted
round robin for non prior-
itized tasks, Improved sys-
tem performance and re-
source utilization, Minimum
completion time

Migration costs in-
crease considerably
due to shifting of pri-
ority tasks to suitable
VM, Waiting time
increases due to mi-
gration

[86] 2018 Chaotic social
spider algorithm
(CSSA)

To achieve minimum
makespan and bal-
anced resource uti-
lization

Better makespan optimiza-
tion, minimal degree of im-
balance compared to algo-
rithmsGa, ACO, PSO and
Hybrid fuzzy K-Means++
with colonal selection

No means to identify
trusted nodes for mi-
gration

[89] 2015 Cuckoo
Optimization
algorithm

Maximizing resource
utilization,Reducing
energy consumption

Uses Minimum migration
time (MMT) policy for
identifying over/under-
utilized hosts for VM
migration

Security during VM
migration is not en-
sured, Increased re-
sponse time, SLA vi-
olation

Dai et
al.[17]
2015

Ant Colony
optimization
(ACO) integrated
with Genetic
algorithm (GA)

QoS-GAAC task
scheduling algorithm
with QoS ensured

User QoS is improved, Re-
source load balancing is
achieved which improves
overall performance of the
system

Dynamic variation of
QoS paramters need
to be considered

[85] 2014 Job spanning
time and load
balancing genetic
algorithm

JLGA proposed a
new task schedul-
ing method that is
intended to achieve
load balancing with
least makespan

Adoption of greedy algo-
rithm to identify load in-
tensitivity among nodes and
hence JLGA has better
performance in terms of
makespan

Job priority not con-
sidered

[51] 2015 Osmosis LB al-
gorithm

Load balancing in
both heterongenous
and homogenous
environments using
Distributed hash
table (DHT) with
chord overlay
mechanism

VMs in both homogenous
and heterogenous
environments are
considered, Supportive
in reallocating the tasks
between adjoining VMs

Very few data
centers can support
heterogenous lattice.
Homogenous lattice
expects only non
preemptive and
indivisible tasks

[18] 2013 Genetic
algorithm

Minimizing comple-
tion time of given
tasks thereby trying
to balance load on
ndoes

Improved resource utiliza-
tion, Reduced job time span

Low throughput,
Jobs are not
prioritized

http:// journals.uob.edu.bh

9

http://journals.uob.edu.bh


198 Kavitha, et al.: Load balancing in Fog Computing

TABLE V. Load Balancing Techniques Employing Agent Nodes

Author Technique Objectives Advantages Disadvantages
[83] Energy-aware Load

Balancing and
Scheduling method

An agent-based system
to schedule manufactur-
ing clusters in a dis-
tributed manner

The problem of schedul-
ing in large-scale job clus-
ters is solved by multi-level
and multi-diversified agents
based on autonomous deci-
sions

Due to dynamic
randomness in
scheduling,
broadcasting of
information is
inefficient

[81] 2016 Autonomous Agent
Based Shortest path
using Dijikstra’s al-
gorithm

Minimizing request time
and simulation time by
finding a shortest path to
specific VM

Reduced request time and
simulation time

Throughput not
guaranteed due to
increased search
time

[23] 2019 Self-Governing
Agent Based Load
Balancing Algorithm
(SGA-LB)

To increase performance
and efficiency

Service time can be reduced
by tracking virtual informa-
tion using internal and ex-
ternal agents

Maintainence of
in-house agent and
communication to
external agent are
an overhead

[32] 2015 MapLoad enhanced
with live

Load balancing in a
distributed and scalable
fashion

Agents are able to au-
tonomously and dynami-
cally balance load with par-
tial information about the
data center, Considers het-
erogenous environment

Decision making
process of agents
is incomplete
as they are
unable to predict
resource usage,
VM migration
overhead is not
taken into account

[29] An Agent Based Dy-
namic Load Balanc-
ing (ABDLB) ap-
proach in which mo-
bile agents play a
key role

Aims to reduce server
communication costs
and to increase load
balancing rate

Communication cost from
server to server is 10 times
better than Centralized
server based LB technique,
Improved throughput and
response time of the cloud

Increase in num-
ber of servers in-
duces communica-
tion overhead

[84] OLB + LBMM
Scheduling
algorithm

Node information is col-
lected by an agent and
threshold values of each
node are evaluated so
that a service node may
be assigned

Makes better utilization
of resources, Ensures
minimum execution
time for each task and
on a whole, minimum
completion time

It is difficult to
select the right
service node for
each incoming task
based on some
threshold

A. Existing Surveys on Load Balancing in Fog Environ-
ment
A recent survey by Kaur et al. [42] provides a taxonomy

of LB techniques and performance metrics that may impact
load balancing in FC environment. The work also highlights
that all the existing works have been carried out and tested
only in a simulation environment using simulations tools
like ifogsim, fognetsim++ etc.; hence, implementing it in
a real test bed environment is essential. In [41] Kashani
et al. systematically analyze load balancing mechanisms
within fog computing in four classifications, which include
approximate, exact, fundamental, and hybrid methods. A 3-
layer fog architecture, various load balancing metrics, their
merits/demerits, evaluation tools/techniques, and finally, the
open challenges and future trends of those mechanisms are
described. Chandak et al. [14] in their work on the review
of load balancing in fog environment have tried to cover

some aspects like fog architecture, various load balancing
techniques and simulation tools used. The heterogeneity of
nodes, their allocation have also been discussed. Ghobaei
et al., in their study on resource management approach
in fog computing [25] briefly describe the load balancing
issue of fog computing. The work provided a taxonomy
of the state-of-art resource management mechanisms and
classified it into six main fields: application placement,
resource scheduling, task offloading, resource allocation,
resource provisioning, and load balancing. Traditional ap-
proaches to load balancing suffer from high computational
overhead, energy consumption, and deadline constraints.
The comparison of surveys conducted by different authors
has been detailed in Table VI.

http:// journals.uob.edu.bh

10

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 199

TABLE VI. Comparison of Surveys Conducted by Various
Researchers

Ref
Pa-
pers

LB
Arch

LB
Met-
rics

Class
of
LB
algo

IssuesTools
used

Class
of LB
on
Met-
rics

[25] No Yes No Yes No No
[14] Yes No Yes Yes No No
[42] Yes No Yes Yes Yes No
[41] Yes Yes Yes Yes Yes No
Our
Work

Yes Yes Yes Yes Yes Yes

B. Classification of works based on Performance metrics
for Load Balancing in Fog Environment
This section explores the load balancing issue in fog

computing carried out by various researchers. Classification
is made based on the different performance metrics. The
parameters considered for balancing the load, their experi-
mental results, and appropriate tools and technologies have
been summarized.

1) Load Balancing works considering Bandwidth factor
Recent research by Baccarelli et al. [6] proposed

the convergence of Deep Learning and Fog Computing
paradigms that allow IoT devices to generate large vol-
umes of data in real-time in an energy-efficient manner,
despite their real-time and resource-limited nature. An
Artificial Intelligence (AI) platform named Learning-in-
the-Fog (LIFO) has been developed, which can detect
changes in the environment and automatically adjust the
available computing resources and networks in response.
The work in [54] has proposed a novel Mixed Integer Linear
Programming (MILP) optimization model encompassing an
objective function to limitate bandwidth cost and provide
LB. Investigation of different scenarios to evaluate the ex-
periment is ensured by leveraging SDN. The study considers
both parameters: servers’ CPU processing capacity level
and links’ bandwidth. Each parameter is prioritized by
assigning a weight factor and hence manages the load by
minimizing the queuing delay of links. The work considers
both homogeneous and heterogenous resource demands
generated by the cluster points. Bandwidth, no of servers
and links constitute the different resources. Variation in
the bandwidth range and connections happen dynamically
for heterogeneous resource demands, thereby adjusting the
weight factor for the corresponding component.

2) Load Balancing works considering Energy Con-
sumption factor
The Fog Computing Architecture of Load Balancing

(FOCALB) has been proposed by Kaur et al. [44] in the
context of scientific workflow applications. In addition,
they offered a hybrid load balancing algorithm combining
Ant Colony Optimization (ACO), Grey Wolf Optimization
(GWO) and Tabu search. Using the proposed model, load

balancing is implemented at the fog layer. Load scheduling
is performed at the fog nodes when tasks are created, and
load balancing is performed at the local controller in fog
clusters. In addition to reducing the execution time and
implementation cost, FOCALB minimizes the energy con-
sumption at fog nodes. Talaat et al. [50] proposed an energy
efficient fog computing for healthcare industry. The pro-
posed strategy is designed to improve the energy efficiency
of fog devices by employing Improved Round Robin (IRR)
and dynamic voltage and frequency scaling algorithms. A
novel energy-aware load balancing algorithm was proposed
by Kaur et al.’s. [43] work to enhance service quality
and reduce latency. Based on a comparison with the Tabu
search method, the proposed algorithm aims to improve
execution time and reduce energy and cost consumption
in fog environments. By distributing processes and data
among fog nodes and servers, Oma et al. [58] propose
a tree-based fog computing model to reduce the energy
consumption by IoT nodes. Anees et al. [65] proposed a
dynamic energy-efficient resource allocation strategy which
is composed of various modules to collect the end user
requests and statistics of resource availability, a resource
scheduler for scheduling the processes and accountability
of power consumption for each of the processes through
resource on/off mechanism. Compared to existing DRAM
schemes, the proposed scheme reduces the energy consump-
tion and computation cost by 8.67 percent and 16.77 per-
cent, respectively. The work in [47] discusses that context-
awareness is improved with human-driven data analytics
and resource-sharing network adaptability. A cluster of fog
nodes could enable task offloading, thereby reducing the
energy consumption and latency for end-user devices [66].
In the work, [74] a fuzzy load balancer has been devised
by Simar et al. by using a variety of designs and tunings
of fuzzy logic control algorithms. Network link analysis
has been carried out to plan traffic flow with a fuzzy
logic algorithm. The research shows that by reducing the
number of intervals, reducing overhead in provisioning, and
enhancing responsiveness, a 3-level fuzzy design for load
balancing in fog zones is energy efficient.

3) Load Balancing works considering Availability and
Latency factors
In [76], the Efficient Load Balancing Strategy (ELBS)

scheme has been proposed with various real-time schedul-
ing algorithms like Fuzzy and probabilistic neural networks
(PNN). The entire work is carried out by splitting the
task into multiple modules, and appropriate algorithms are
employed in each module to achieve the result. This method
achieves low latency while requiring a relatively low num-
ber of migrations. Using reinforcement learning and genetic
algorithms, a Load Balancing and Optimization Strategy
(LBOS) using a dynamic resource allocation method has
been proposed by Talaat et al. in [75]. The work mainly fo-
cuses on healthcare systems that require a constant response
with no delay in their service due to the exigency of the
requests, privacy of an individual’s data, and accuracy. A 3-
layer fog architecture has been proposed where a fog layer

http:// journals.uob.edu.bh

11

http://journals.uob.edu.bh


200 Kavitha, et al.: Load balancing in Fog Computing

is comprised of a Load balancer agent (LBA) and Resource
Allocator (RA). A fog server’s (FS) availability is checked
based on the Adaptive weight (AW), which is calculated
by considering cache size, RAM size and CPU usage.
A distributed peer-to-peer (P2P) load balancing algorithm,
LL(F, T), was proposed by Bellaldi et al. [8]. If a fog node’s
current load exceeds T, a random selection is made overall
F fog nodes. In preliminary simulations and mathematics, it
has been demonstrated that tuning T very close to the node
saturation condition maximizes performance on par with its
classical implementation using a single global scheduler.
This eliminates the need for a time-consuming probing
phase before each job execution, a critical component of
fog applications that require low delays. Singh et al. [72]
has put forth three algorithms: minimum distance (MD),
minimum load (ML), and minimum hop distance and load
(MHDL) to achieve low communication latency between
the fog-based micro data centers (mdcs) in the fog environ-
ment. Additionally, they presented a load balancing aware
scheduling algorithm based on ILP (LASILP). Together,
these schemes have achieved optimum response time and
network consumption performance.

4) Load Balancing works considering Mobility and
Interoperability factors
Static resource allocation and dynamic service migra-

tion are required to achieve load balancing in a dynamic
network. Static resource allocation is supported with the
help of virtualization technology which improves resource
utilization in a fog environment. Many practical applications
are made possible by virtual machines(VMs) built on exist-
ing virtualization technologies. Even if VMs require only a
few seconds to start up, any delay is unacceptable for tasks
that need to be completed immediately. A suitable option to
replace VM’s in fog nodes is containers. As containers can
modify resources while running, this approach allows for
dynamic resource adjustment based on the concurrent tasks,
particularly useful in fog environments [91, 38]. Xu et al.
follow a four-step process to balance the load in a dynamic
network [88]. According to the resource requirements of the
node type, fog services are classified into several sets, each
subdivided into numerous subsets based on the request’s
start time. The next step is to detect the spare space of
all computing nodes to determine whether the computing
node is portable to host the fog service, then employed
resource units are analyzed through occupation records and
then the spare space of all computing nodes. Computing
nodes are identified for fog services in the same service
subset. Generally, computing nodes with least and most
adequate spare space are selected to allocate fog resource
units. In addition, workloads from computing nodes with
higher resource demands are migrated to computing nodes
with lower resource demands.
It represents a significant challenge to allocate and man-
age resources for IoT devices in an IoV scenario due to
the high degree of mobility of the devices [28]. Based
on a prediction of mobility patterns in Smart Cities, the
work proposed a VM migration procedure based on their

highly predictable mobility. The algorithm defines a set
of candidate cloudlets based on the user’s future position
to determine the nearest node for forwarding the request.
Further, an Integer Linear Programming (ILP) model is
proposed to enhance the placement of VMs within the
candidate cloudlet set. Sharma et al. [71] proposed a novel
4-tier architecture with IoT devices at the bottom tier (Tier-
1). Workloads are prioritized in the second tier using a
Dual Fuzzy Logic algorithm. The third tier (fog tier), a
fog node is assigned to a high-priority task. Clustering
fog nodes using K-means++ routes requests to the most
appropriate clusters. Unhandled requests will be forwarded
to the cloud tier. In [88] a system framework for fog
computing has been proposed by Xu et al. to implement the
dynamic resource allocation method (DRAM). Initially, an
analysis of load-balancing is presented for different types of
computing nodes. Following that, a load-balancing method
is developed that leverages static resource allocation in FC
and dynamic service migration. Self similarity-based load
balancing (SSLB) method has been proposed by Li et al. in
[48] where each fog node is composed of three components:
LBMonitor, LBScheduler, and LBMessenger. To balance
the workload periodically, they must detect local loads,
communicate with other nodes for global information and
then make decisions based on this information. Ningning et
al. follow a graph repartitioning model to balance the load
in a dynamic network [57]. A cluster of VMs and physical
nodes are formed. According to the resource distance, task
load balancing, and other conditions, the VM nodes provide
services to the users by Graph partitioning and clustering.
When the system changes graph is repartitioned based on
the historical segmentation information. The changes in the
system state include the node join and exit, the increase or
decrease of resources, and link bandwidth.

5) Load Balancing works on Resource Management
factor
Beraldi et al. [9] have devised an algorithm for a real-

istic smart city scenario with dynamic infrastructure. Two
distributed load balancing algorithms have been proposed
to address this dynamic requirement, which varies over
time and space, namely, sequential forwarding and adaptive
forwarding. The proposed algorithm is compared with a
baseline algorithm without load balancing, in which no load
balancing occurs among the fog nodes. A study by Javaid et
al. [37] was focused on minimizing latency and enhancing
reliability by managing resources in the fog. Resource
optimization was explored by considering a fog and cloud
environment together. RR algorithm, Equally Distributed
Execution algorithm, and the Shortest Job First proposed
algorithm are used to estimate request frequency, process-
ing time, and response time. A Fog-2-Cloud framework
has been implemented for managing customers’ demands
with six fog nodes and twelve MicroGrids in residential
buildings. Neto et al. [56] has proposed a multi-tenancy load
distribution algorithm (MtLDF) that supports load balancing
in fog environments by addressing the delay and priority
requirements for multi-tenancy. The algorithm considers the

http:// journals.uob.edu.bh

12

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 201

tenants - IoT end-users’ maximum acceptable delay and
priority requirements. Tenants are sorted based on the plan
they have subscribed for and serviced according to their
subscription.

6) Load Balancing works which focus on specific Use
cases
Several other researchers have proposed various

schemes and algorithms for managing load in dynamic envi-
ronments and employed them for certain real time use case
scenarios. Ahmed et al. [39] considers the application of
fog environment for Internet of vehicles (IoV). The merged
system takes advantage of SDN, IoV and fog computing,
treating parked vehicles as assistant fog computing nodes.
By utilizing SDN controllers and fog managers, the LB
in their work proactively balances the load locally and
globally. In the work of Xu et al. [87] a heuristic method
of scheduling virtual machines has been devised through
VM placement by leveraging VM migration in two ways -
a resource model and a load balancing model. Baburao et
al. [5] studied various service migration strategies, load op-
timization techniques and load balancing techniques used in
fog computing environments. Due to the dynamicity of IoT
devices locations, fog nodes are expected to enable service
mobility across the servers when IoT devices move between
the locations. So, several service migration techniques have
been there in existing research like statefull migration for a
continous service, workload driven migration which expects
a daemon fog node to retain the statistics of resource usage.
Zakria et al. [93] in their work, have discussed about the
integration of Micro Grid with cloud computing to form
a Smart Grid. Fog nodes are selected using a nearest data
center service broker policy and the Shortest remaining time
first algorithm. SRTF achieves a better cost reduction over
RR and Throttled but increased response time and process-
ing time as the number of VMs increase. In literature, many
researchers describe the concept of a smart gateway, which
can pre-process and trim data before transferring it to the
cloud. However, Sarma et al. [68] have concluded that a
smart gateway need not do data trimming and preprocessing
every time, but instead it can function as a smart load
balancer. In addition, it is stated that the performance of
Fog and Cloud can be improved by a sophisticated and
standard load balancing algorithm. The work of Divya
et al. [20] presented a reinforcement learning based load
balancer algorithm using a basic tuple ⟨S , A, P,R⟩ which
learns the load status of the network and distributes it
accordingly. A novel dynamic load balancing mechanism
for fog computing based on graph partitioning was proposed
by Ning et al. [57]. The system state is revisited every time
when a new node joins or exits. If the new node’s resource is
greater than the standard value of virtual machine resources,
the node will be atomized into two-virtual machine nodes
and a virtual physical node. If the new node’s resource is
less than the standard value of virtual machine resources,
the new node will be cloudization to the smallest connected
virtual machine node. The dynamic repartition ends if the
request is able to find a suitable VM else it continues.

Generally, fog nodes have limited processing capabilities.
Therefore, it is likely that they will be overloaded quickly.
This situation requires the transfer of certain jobs to other
fog nodes of relevance, so the network will be balanced and
performs more efficiently. The comparitive study of works
discussed above have been detailed in Table VII.

Comparative study of works based on QoS-parameters
has been detailed in Table VIII. Certain trade offs exists
in some of the works while they achieve their predefined
objectives to meet performance metrices. A brief view of
the trade offs has been outlined in Table IX.

5. Load BalancingMetrics
A new load balancing strategy or technique developed

could be evaluated with various performance parameters.
Some of those parameters used to measure an algorithm’s
efficiency are:

1) Performance: A system’s effectiveness depends on
some of the key load balancer performance metrics
like request counts, active connection or flow counts,
error rates, latency, number of healthy/unhealthy
hosts and rejected or failed connection counts.

2) Response Time: Basically, it refers to the time that
passes between the time the request is submitted and
the time when the first response is delivered. Time
it takes to start responding for a user request is an
important factor for real time interactive applications
[72].

3) Throughput: Describes how many tasks or pro-
cesses are completed on a system within a given
period of time. The greater the throughput, the better
the response time and efficiency.

4) Service Uptime: Placing a critical subservice in the
Fog rather than in the Cloud can improve service
availability in the presence of hostile environments
(e.g., those with intermittent network connectivity).
Therefore, service uptime may be another perfor-
mance metric.

5) Scalability: It is the ability to achieve uniform
load balancing between increased workloads and
decreased workloads by scaling up and down.

6) Fault Tolerance: Resource failures (proces-
sors/links) are likely to occur frequently in fog
environments due to resource limitations, which
will adversely affect time-critical applications.
Therefore, it is increasingly important to develop
techniques to cope with faults. Scheduling replicas
of the same job on different nodes can ensure
fail-safe behaviour.

7) Migration Time: This is a measure of how long
it takes a request to travel from an overloaded to
an underloaded machine. The shorter the migration
time, the better the system’s performance [76].

8) Resource Utilization: The purpose of this evaluation
is to make sure that the cloud system is properly uti-
lizing all its resources. A higher resource utilization

http:// journals.uob.edu.bh

13

http://journals.uob.edu.bh


202 Kavitha, et al.: Load balancing in Fog Computing

TABLE VII. Comparative study of works on Load Balancing in Fog Environment

Author Technique Main Objective Description Tools
used

Pros Cons

[65] DEER
Strategy

To Minimize
energy
consumption
and computational
cost

Application modelling
to evaluate DEER
algorithm for
performance
evaluation parameters

Cloudsim Reduced energy
consumption and
computational
cost

Not Fault tolerant
and varying # of
tasks not consid-
ered

[22] LAB
Scheme

To reduce computa-
tional and commu-
nication latency

Base station & IoT
device side algorithms
for LB on device side
& base station side.

Matlab Overall latency is
minimized

Communication
latency slightly
degrades while
balancing the
other

[7] MILP
model

The goal is to
design a queuing
system that models
the performance of
IoT edge networks
based on multiple
vacations

Load-Balancing
Algorithm for
Multiple Gateways in
Fog-based IoT

Maple
16 and
Matlab

Caching
resulted in
fast response and
reduced energy
consumption

There is no con-
sideration of dif-
ferent types of
task requests

[83] Multi-agent
model

To reduce
complex energy
consumption and
scheduling problem
in large scale job
clusters like smart
factory

Minimized energy
consumption and
equipment workload
by prioritizing based
on their energy
intensity

Prototype
model

Optimized
scheduling and
reduced energy
consumption for
large clusters

Reduced
efficiency due
to high volume
broadcasting data

[54] MILP
based op-
timization
model

To minimize
bandwidth cost of
routing, maximum
link utilization of
network links and
server utilization

Weights are associ-
ated with the com-
ponents of objective
function to prioritize
them based on the net-
work situation

AMPL /
CPLEX
tool

The proposed
model can serve
as a benchmark
to compare the
efficiency of
fast solution
heuristics

Requests are not
prioritized.

[76] ELBS strat-
egy

To reduce average
turnaround time
and failure Rate

Fuzzy inference
system prioritizes the
incoming requests
and PNN algorithm
assigns server for
processing the request

iFogsim Low network La-
tency and mod-
erate number of
migrations

Not fault-tolerant
and health care
specific

[75] LBOS
using
DRAM
based on
RL & GA

To improve QoS in
terms of allocation
cost, to reduce re-
sponse time and to
achieve low latency

Load Balancer Agent
and Resource Alloca-
tor modules allocate
suitable fog nodes

Matlab Efficient resource
utilization,
continuous
availability,
reduced power
consumption and
migrations

Specifically
implemented
only for health
care applications

[4] Fog nodes
with
LBSSA
scheduler

Prioritizing the re-
quests as real-time,
important and time-
tolerant to provide
reliable services

Adaptive weighted
round robin algorithm
assign resources to
prioritized nodes

Cloudsim Highly reliable
service for time-
tolerant requests
& efficient
resource usage

Important
unscheduled real-
time requests
preempt other
tasks

[48] K-means &
task distri-
bution algo-
rithms

To achieve scalabil-
ity, flexibility, and
low latency in large
environments

Periodic workload
balancing by fog node
components

iFogsim Calculation of
load thresholds
on nodes and
resulting in low
latency

Fog topologies
with dense
computing
infrastructures
are unsuitable

http:// journals.uob.edu.bh

14

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 203

TABLE VIII. Load Balancing with various QoS Parameters by
Researchers

Ref.
Pa-
pers

Energy
Con-
sump-
tion

LatencyMake-
span

Exec
Time

Resp-
onse
Time

Cost

[47] Yes Yes No No No No
[58] Yes No No Yes No No
[44] Yes No No Yes No Yes
[75] No No No No Yes Yes
[6] Yes Yes No No No No
[86] No No Yes Yes Yes Yes
[52] No No No No Yes No
[8] No Yes No No No No
[68] No Yes No No No No
[57] No No No Yes No No
[33] No Yes No No No No

TABLE IX. Works Exhibiting Trade offs in Performance Metrics

Ref. Pa-
pers

Trade off 1 Trade off 2

[22] Increase in capac-
ity of fog nodes
decreases the com-
puting density and
hence impacts aver-
age latency

Increase of traffic ar-
rival rate increases
both traffic load and
computing load in
network

[54] Increase in level
of heterogeneity
decreases maximum
link utilization
and hence affects
bandwidth cost

Increase in level
of heterogeneity
decreases maximum
server utilization but
increases average
server utilization

[71] Increase in no of
tasks and task size
induces delay

As length of task in-
creases energy con-
sumption increases

[7] Increase in no of
gateways reduces
energy consumption
per node but
increases vacation
phase

Increase in vacation
phase induces delay
and hence increased
response time for re-
quests

[48] Increase in fog nodes
causes overhead
while clustering

Increase in Cell scale
(K) and Probe ra-
tio (P) hurts perfor-
mance due to in-
creased network load

will result in lower overall costs as well as reduced
energy expenditure and carbon emission.

9) Degree of Balance: Load uniformity is a measure
of the distribution of workload among the VMs after
load balancing. Conversely, degree of imbalance
can be regarded as a metric which measures the
imbalance among VMs.

10) Makespan: It corresponds to the interval of time
between the start and finish of a series of tasks or
jobs [44].

11) Cost: The total cost of providing the service to the
user is accounted for by the Cloud service con-
sumer(CSC). A good algorithm for load balancing
reduces the service cost for the CSC and increases
the CSP’s profitability [44].

12) Energy Consumption: Massive workflow applica-
tions require more data transmission and hence more
hardware requirement which increases the demand
for energy in terms of execution time and cost. So
fog nodes should be efficiently utilized to minimize
the energy consumption [43].

13) Flexibility: Load balancers should be flexible
enough with respect to storage and computation
costs making it easier for the users to right-size
their resources to their workloads. Admin should be
able to configure VMs with any custom number of
cores and custom amount of memory. Block volume
performance can be reconfigured while they remain
online.

14) Deadline: The latest time when a service request in
the fog system can be completed.

15) Processing Time: Describes the length of time it
takes for a fog node to complete a service request.

16) Reliability: The metric of reliability may include
uptime or consistent performance, but it’s not just
about uptime. The system will automatically transfer
the request or job to any other resources (VMs) in
case of any system failure or request.

6. Challenges in Fog based Load Balancing
Load balancing has several advantages especially if

employed in real-world distributed systems. But, in order
to develop load balancers for such systems, several design
issues are needed to be addressed. Moreover, the nature of
distributed systems and the user requirements pose several
additional challenges to any load balancing scheme. The
major design issues and challenges encountered while
building load balancers are as follows:
1. Estimating the Load: The first thing to consider while
building any load balancer is what should be the definition
of load at a node in distributed system and what measure
should be used for computing it. In order to define a load,
there is a need to figure out what is a good indicator
of load for the targeted application. The most common
definition of load used by many systems is the CPU queue
length (length of queue at a node) as it is correlated with
completion time of tasks and is easy to compute. Some
of the other definitions of node popularly used are CPU

http:// journals.uob.edu.bh

15

http://journals.uob.edu.bh


204 Kavitha, et al.: Load balancing in Fog Computing

utilization of the node (measured by periodically recording
the state of CPU), total number of processes running at
the node, resources required by the running processes, etc.
However, the stronger the definition of load is (eg. CPU
utilization), the larger is the complexity of its computation.
Simpler definitions such as number of processes are easier
to compute and thus, reduce the overhead.
2. Policies Employed: A load balancing algorithm
comprises of 4 major decision making steps —Transfer,
Selection, Location and Information Policy. Transfer Policy
is responsible for deciding whether a task should be
transferred to/from a node (usually based on a threshold).
Selection Policy deduces the task which should be
transferred among the eligible tasks (usually based on
remaining execution time, waiting time, etc.). Location
Policy figures out the target node to which the task should
be transferred to (usually based on polling, randomly,
etc.). Finally, Information Policy decides when and how
frequently should the system state collection procedure be
triggered, where should the state be collected from and
what information needs to be collected. A load balancing
algorithm needs to wisely define these policies depending
upon its application. Moreover, it also needs to overcome
the overhead which some of these policies might offer, a
need to collect the information from other nodes as per
our location policy which will incur delay.
3. Network Design: While designing a load balancer,
there is a need to take care of the kind of network formed
by the distributed system. While a network with closely
located nodes say, intranet is likely to incur negligible
communication delays, a network with spatially distributed
nodes might have significant communication delays. Load
balancing algorithms must consider potential effects of
changes in the network structure. Based on the application,
some load balancing algorithms might be tolerant to high
delays, but some might have them as the bottleneck.
4. Complexity of the Load Balancing Algorithm: Ideally,
load balancing algorithms should be less complex both
in terms of their implementation and the computational
overhead incurred by their operations. High complexity
would also require it to collect more information and
would thus, experience higher communication delays.
Hence, a highly complex algorithm might effect the overall
performance of the system.
5. Meeting Desired Performance Criterion: Different
applications may focus on different class of performance
measures. Thus, while designing a load balancing
algorithm, it might be required to tune it to maximize the
targeted performance criterion even if it compromises on
some other important measures. Some applications might
focus on minimizing the overall completion time of the
tasks while some might just be concerned about the overall
throughput. Some applications might target to get the same
amount of load at each node while some might want to
reduce the waiting time of the processes. The desired
performance forms a critical aspect of any load balancer.
6. Prioritizing Tasks: Fog computing uses tight delay
times to serve a large number of users with a limited

number of resources. Thus, tasks should be dealt with
according to their priority levels. Priority of a task may
depend on various factors like its deadline, the emergency
of the request which can be decided based on its source of
arrival etc.
7. Task Deadlines: Each task might have a deadline before
which it needs to be completed. The load balancer needs
to acknowledge this deadline before making any decisions.
Transferring the task to another node might reduce the
overall completion time of the system but it might imply
crossing the deadline of certain tasks. This might not be
acceptable in certain scenarios.
8. Heterogeneity: A system might have heterogeneity both
with respect to the incoming tasks and the nature of nodes
in the system. In a typical distributed system, the incoming
tasks have varying resource requirements. Different tasks
will thus require different handling by the load balancer.
Moreover, each node might have different computation
power, storage, memory, etc. The heterogeneous nature of
the tasks and the nodes acts as an added challenge to the
load balancer as it needs to account for the nature of load.
9. Scalability: The load balancing algorithm should allow
the system to scale to user and traffic growth. Normally, in
order to scale, a scale-out model (like Google’s Maglev)
is adopted where more number of nodes are added to the
system. The load balancing algorithm needs to quickly
adapt to the addition of new nodes or removal of nodes
in a large distributed system. It should be effective in
balancing load in the scaled system while at the same time
being able to make quick decisions with low overhead.
10. Availability & Reliability: A load balancer should
be highly available, be quick to response and should be
adaptable to faults of nodes involved in load collection
and redistribution. In most load balancers, the whole
system is controlled by one controller. So, if the controller
malfunctions, the entire system would fail. To counter
this, some load balancers are often deployed in pairs to
avoid single point of failure. However, this would still just
entail a 1+1 redundancy. The distributed load balancers do
a much better job at handling faults, but they are more
complex to design.
11. Migration time: Migration time is the amount of time
needed for transferring a task from one system node to
another node during load redistribution. This time has to
be minimized for better performance.
12. Flexibility & Programmability: A load balancer
should be flexible and it should be easy to modify its
different components.
13. Upgrading Overhead: A load balancer should be
easy to upgrade if needed, say, for incorporating a newly
arrived technology.
14. Determinism & Preemption: A load balancing
algorithm needs to ensure Determinism, i.e., a task
transferred to some other node should output the same
result as it would had originally. Moreover, the load
balancing algorithm needs to make sure that transferring
a task to a node should not significantly deteriorate the
performance of the target node as viewed by the original

http:// journals.uob.edu.bh

16

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 205

user of the node. In case of a degraded performance, there
should be a mechanism for preempting the transferred task
and releasing the resources for running tasks of the node’s
owner.

7. Case Study: Fog computing in Real time Applications
The term ”real-time” refers to applications with low

latency that work within a pre-determined timeframe under
which users perceive immediate or current events. Most
Fog oriented vital time critical applications from various
research articles are circumstantiated below.

1) Smart Factory: Modern communication methodolo-
gies are being transformed by the Industrial Internet
of Things (IIoT). In addition to industrial applica-
tions like robotics, medical devices and software-
defined production processes, IIoT embraces busi-
ness applications as well. Decentralized, intelligent
and efficient solutions are required to guarantee real-
time communications, reliability and environmental
protection. Many significant works have been pub-
lished on these applications in [83, 11].

2) Healthcare: Health care services have been stream-
lined through the use of IoT applications assisted
by fog computing. Several such works have been
carried out by researchers in the field of health care
for providing time critical data to the end users that
have been discussed in [27, 13, 1].

3) Smart Grids: A smart grid is necessary because
today’s energy demand has outpaced the rate at
which energy can be generated traditionally, as well
as to curtail or control global warming via reducing
gas emissions. Few works that have been carried for
smart grid management are [93, 55, 40].

4) Smart Vehicles: Introducing mobile cloud comput-
ing requires an examination of its agents, which will
include cars, robots and humans. These agents have
been designed to sense the surroundings, process
data and send the results to users’ devices. The
response in smart vehicles is a crucial aspect which
should be addressed immediately as conveyed in [49,
34].

5) Augmented reality and Real-time Video Analytics
based on Fog: A smartphone, smart glasses or other
device with augmented reality applications enables
a user to see much more information about an
object. Recent projects include Google Glass and
Sony SmartEyeglass. These applications require a lot
of computing power as well as high bandwidth to
process video streaming [67, 3].

6) Smart Cities: The concept of smart cities is a key
application of IoT that includes everything from
smart traffic management to smart energy manage-
ment. In recent years, smart cities has attracted the
attention of the science, engineering, and research
communities as a solution to urban expansion chal-
lenges [46, 12, 90].

8. Conclusion and Future directions
The emerging idea of FC for IoT based applications is

rapidly investigated and adopted by researchers, industry
and organizations. In a fog system, LB facilitates the
distribution of workload on resources equally, to provide
services continually and is done by provisioning and
de-provisioning application instances along with proper
resource utilization. This paper presented an overview of
several FC architectures along with their comparison in
terms of number of tiers used, technique employed and
number of servers/nodes used. A broad classification of
existing LB based on policy, load balancer type, system
state and migration type are provided. The advantages
and limitations of the existing LB strategies based on
natural phenomena, agent nodes, application-oriented and
network-aware along with general techniques in different
computing environments are tabulated. A comparison of
recent existing FC based LB mechanisms in terms of pros
and cons, tools used and certain tradeoffs with respect to
their performance metrics have been tabulated. Further, all
possible LB factors and metrics are investigated. Finally,
a number of research challenges, case studies in FC
environments are presented. This paper focuses on several
LB strategies in computing environments that can be
mapped or customized to LB in FC environments.

A. Future directions
For future implementations, we would consider de-

signing techniques for data replication to manage data in
fog computing networks to minimize delay and overall
dependencies. Therefore a strategy to improve resource
provisioning to address dynamic traffic management is a
prevalent issue that needs to be addressed.

Due to the geographic distribution of fog data cen-
ters, there are varying levels of CO2 emissions, which
makes optimizing the placement of resources and applica-
tions in distributed fog more challenging. Servers that are
not needed should not have jobs routed to them as they
consume the same amount of power as other nodes and
thus should be allowed to enter a power-saving mode. It
has related challenges like servers should maintain their
state during transition from/to power-saving mode and how
many servers to be toggled between these modes as we lack
the knowledge of future requests.

Uncertainties in the traffic flow lead to many issues,
out of which two prominent issues are: Firstly, performance
degradation, where there is a tendency to migrate the same
job frequently, and hence it requires a way to tackle the
issue of a job being a victim of migration. Secondly,
transmission costs are associated with migration. So there is
a need to analyze the negative impact of service migration
also.

Links or nodes’ failures should be tracked and acted
upon immediately in fog data centers. When a failure
is observed between the nodes connected directly or via
multiple hops, an alternate path should be available in the
routing table of the controller node.

http:// journals.uob.edu.bh

17

http://journals.uob.edu.bh


206 Kavitha, et al.: Load balancing in Fog Computing

References
[1] Mohammad Aazam and Eui-Nam Huh. “E-HAMC:

Leveraging Fog computing for emergency alert ser-
vice”. In: 2015 ieee international conference on
pervasive computing and communication workshops
(percom workshops). IEEE. 2015, pp. 518–523.

[2] Mohammad Aazam and Eui-Nam Huh. “Fog comput-
ing micro datacenter based dynamic resource estima-
tion and pricing model for IoT”. In: 2015 IEEE 29th
International Conference on Advanced Information
Networking and Applications. IEEE. 2015, pp. 687–
694.

[3] Arif Ahmed et al. “Fog computing applications:
Taxonomy and requirements”. In: arXiv preprint
arXiv:1907.11621 (2019).

[4] Fayez Alqahtani, Mohammed Amoon, and Aida A
Nasr. “Reliable scheduling and load balancing for
requests in cloud-fog computing”. In: Peer-to-Peer
Networking and Applications (2021), pp. 1–12.

[5] D Baburao, T Pavankumar, and CSR Prabhu. “Survey
on Service Migration, load optimization and Load
Balancing in Fog Computing Environment”. In: 2019
IEEE 5th International Conference for Convergence
in Technology (I2CT). IEEE. 2019, pp. 1–5.

[6] Enzo Baccarelli et al. “Learning-in-the-Fog (LiFo):
Deep Learning Meets Fog Computing for the
Minimum-Energy Distributed Early-Exit of Inference
in Delay-Critical IoT Realms”. In: IEEE Access 9
(2021), pp. 25716–25757.

[7] Fatemeh Banaie et al. “Load-Balancing Algorithm
for Multiple Gateways in Fog-Based Internet of
Things”. In: IEEE Internet of Things Journal 7.8
(2020), pp. 7043–7053.

[8] Roberto Beraldi and Hussein Alnuweiri. “Exploiting
power-of-choices for load balancing in fog comput-
ing”. In: 2019 IEEE International Conference on Fog
Computing (ICFC). IEEE. 2019, pp. 80–86.

[9] Roberto Beraldi et al. “Distributed load balancing for
heterogeneous fog computing infrastructures in smart
cities”. In: Pervasive and Mobile Computing (2020),
p. 101221.

[10] Flavio Bonomi et al. “Fog computing and its role
in the internet of things”. In: Proceedings of the
first edition of the MCC workshop on Mobile cloud
computing. 2012, pp. 13–16.

[11] Mathias Santos de Brito et al. “Application of the fog
computing paradigm to smart factories and cyber-
physical systems”. In: transactions on emerging
telecommunications technologies 29.4 (2018), e3184.

[12] Charles C Byers and Patrick Wetterwald. “Fog com-
puting distributing data and intelligence for resiliency
and scale necessary for iot: The internet of things
(ubiquity symposium)”. In: Ubiquity 2015.November
(2015), pp. 1–12.

[13] Yu Cao et al. “Distributed analytics and edge intelli-
gence: Pervasive health monitoring at the era of fog
computing”. In: Proceedings of the 2015 Workshop
on Mobile Big Data. 2015, pp. 43–48.

[14] Ashish Chandak and Niranjan Kumar Ray. “A re-
view of load balancing in fog computing”. In: 2019
International Conference on Information Technology
(ICIT). IEEE. 2019, pp. 460–465.

[15] Sejin Chun et al. “A pub/sub-based fog computing
architecture for internet-of-vehicles”. In: 2016 IEEE
international conference on cloud computing technol-
ogy and science (CloudCom). IEEE. 2016, pp. 90–93.

[16] OpenFog Consortium et al. “IEEE Standard for
Adoption of OpenFog Reference Architecture for Fog
Computing”. In: IEEE Std 2018 (1934), pp. 1–176.

[17] Yangyang Dai, Yuansheng Lou, and Xin Lu. “A
task scheduling algorithm based on genetic algo-
rithm and ant colony optimization algorithm with
multi-QoS constraints in cloud computing”. In: 2015
7th international conference on intelligent human-
machine systems and cybernetics. Vol. 2. IEEE. 2015,
pp. 428–431.

[18] Kousik Dasgupta et al. “A genetic algorithm (ga)
based load balancing strategy for cloud computing”.
In: Procedia Technology 10 (2013), pp. 340–347.

[19] D Chitra Devi and V Rhymend Uthariaraj. “Load
balancing in cloud computing environment using
improved weighted round robin algorithm for non-
preemptive dependent tasks”. In: The scientific world
journal 2016 (2016).

[20] V Divya and R Leena Sri. “ReTra: Reinforcement
based Traffic Load Balancer in Fog based Network”.
In: 2019 10th International Conference on Comput-
ing, Communication and Networking Technologies
(ICCCNT). IEEE. 2019, pp. 1–6.

[21] Shridhar G Domanal and G Ram Mohana Reddy.
“Load balancing in cloud environment using a novel
hybrid scheduling algorithm”. In: 2015 IEEE Interna-
tional Conference on Cloud Computing in Emerging
Markets (CCEM). IEEE. 2015, pp. 37–42.

[22] Qiang Fan and Nirwan Ansari. “Towards workload
balancing in fog computing empowered IoT”. In:
IEEE Transactions on Network Science and Engi-
neering 7.1 (2018), pp. 253–262.

[23] J Mercy Faustina et al. “Load Balancing in Cloud
Environment using Self-Governing Agent”. In: 2019
3rd International conference on Electronics, Commu-
nication and Aerospace Technology (ICECA). IEEE.
2019, pp. 480–483.

[24] Vangelis Gazis et al. “Components of fog com-
puting in an industrial internet of things context”.
In: 2015 12th Annual IEEE International Confer-
ence on Sensing, Communication, and Networking-
Workshops (SECON Workshops). IEEE. 2015, pp. 1–
6.

[25] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A
Rahmanian. “Resource management approaches in
fog computing: a comprehensive review”. In: Journal
of Grid Computing 18.1 (2020), pp. 1–42.

[26] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani,
and Nooruldeen Nasih Qader. “Load-balancing algo-
rithms in cloud computing: A survey”. In: Journal

http:// journals.uob.edu.bh

18

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 207

of Network and Computer Applications 88 (2017),
pp. 50–71.

[27] Tuan Nguyen Gia et al. “Fog computing in healthcare
internet of things: A case study on ecg feature
extraction”. In: 2015 IEEE international conference
on computer and information technology; ubiquitous
computing and communications; dependable, auto-
nomic and secure computing; pervasive intelligence
and computing. IEEE. 2015, pp. 356–363.

[28] Diogo Gonçalves et al. “Proactive virtual machine
migration in fog environments”. In: 2018 IEEE Sym-
posium on Computers and Communications (ISCC).
IEEE. 2018, pp. 00742–00745.

[29] Jitender Grover and Shivangi Katiyar. “Agent based
dynamic load balancing in Cloud Computing”. In:
2013 International Conference on Human Computer
Interactions (ICHCI). IEEE. 2013, pp. 1–6.

[30] Daphné Guibert et al. “CC-fog: Toward content-
centric fog networks for E-health”. In: 2017 IEEE
19th International Conference on e-Health Network-
ing, Applications and Services (Healthcom). IEEE.
2017, pp. 1–5.

[31] Saurabh Gupta et al. “Features exploration of dis-
tinct load balancing algorithms in cloud computing
environment”. In: International Journal of Advanced
Networking and Applications 11.1 (2019), pp. 4177–
4183.

[32] J Octavio Gutierrez-Garcia and Adrian Ramirez-
Nafarrate. “Agent-based load balancing in cloud
data centers”. In: Cluster Computing 18.3 (2015),
pp. 1041–1062.

[33] Md Sajjad Hossain et al. “Fog Radio Access Net-
works in Internet of Battlefield Things (IoBT) and
Load Balancing Technology”. In: 2019 Interna-
tional Conference on Information and Communica-
tion Technology Convergence (ICTC). IEEE. 2019,
pp. 750–754.

[34] Xueshi Hou et al. “Vehicular fog computing: A view-
point of vehicles as the infrastructures”. In: IEEE
Transactions on Vehicular Technology 65.6 (2016),
pp. 3860–3873.

[35] Jasmin James and Bhupendra Verma. “Efficient VM
load balancing algorithm for a cloud computing en-
vironment”. In: International Journal on Computer
Science and Engineering 4.9 (2012), p. 1658.

[36] Nadeem Javaid et al. “Cloud and fog based integrated
environment for load balancing using Cuckoo Levy
distribution and flower pollination for smart homes”.
In: 2019 International Conference on Computer and
Information Sciences (ICCIS). IEEE. 2019, pp. 1–6.

[37] Sakeena Javaid et al. “Intelligent resource allocation
in residential buildings using consumer to fog to
cloud based framework”. In: Energies 12.5 (2019),
p. 815.

[38] Anand Jumnal and Dilip Kumar SM. “Energy aware
cluster based optimal virtual machine placement
in cloud environment”. In: 2020 Fourth Interna-

tional Conference on Inventive Systems and Control
(ICISC). IEEE. 2020, pp. 266–271.

[39] Ahmed Jawad Kadhim and Jaber Ibrahim Naser.
“Proactive load balancing mechanism for fog com-
puting supported by parked vehicles in IoV-SDN”.
In: China Communications 18.2 (2021), pp. 271–289.

[40] Muhammad Babar Kamal et al. “Heuristic min-
conflicts optimizing technique for load balancing
on fog computing”. In: International Conference on
Intelligent Networking and Collaborative Systems.
Springer. 2018, pp. 207–219.

[41] Mostafa Haghi Kashani, Ahmad Ahmadzadeh, and
Ebrahim Mahdipour. “Load balancing mechanisms
in fog computing: A systematic review”. In: arXiv
preprint arXiv:2011.14706 (2020).

[42] Mandeep Kaur and Rajni Aron. “A systematic study
of load balancing approaches in the fog computing
environment”. In: The Journal of Supercomputing
(2021), pp. 1–46.

[43] Mandeep Kaur and Rajni Aron. “Energy-aware load
balancing in fog cloud computing”. In: Materials
Today: Proceedings (2020).

[44] Mandeep Kaur and Rajni Aron. “FOCALB: Fog
Computing Architecture of Load Balancing for Sci-
entific Workflow Applications”. In: Journal of Grid
Computing 19.4 (2021), pp. 1–22.

[45] Dragi Kimovski et al. “Adaptive nature-inspired fog
architecture”. In: 2018 IEEE 2nd International Con-
ference on Fog and Edge Computing (ICFEC). IEEE.
2018, pp. 1–8.

[46] Rob Kitchin. “The real-time city? Big data and smart
urbanism”. In: GeoJournal 79.1 (2014), pp. 1–14.

[47] Quang Duy La et al. “Enabling intelligence in fog
computing to achieve energy and latency reduc-
tion”. In: Digital Communications and Networks 5.1
(2019), pp. 3–9.

[48] Changlong Li et al. “SSLB: self-similarity-based load
balancing for large-scale fog computing”. In: Arabian
Journal for Science and Engineering 43.12 (2018),
pp. 7487–7498.

[49] Ning Lu et al. “Connected vehicles: Solutions and
challenges”. In: IEEE internet of things journal 1.4
(2014), pp. 289–299.

[50] Mukhtar ME Mahmoud et al. “Towards energy-
aware fog-enabled cloud of things for healthcare”.
In: Computers & Electrical Engineering 67 (2018),
pp. 58–69.

[51] B Mallikarjuna and P Venkata Krishna. “OLB: a
nature inspired approach for load balancing in cloud
computing”. In: Cybernetics and Information Tech-
nologies 15.4 (2015), pp. 138–148.

[52] AB Manju and S Sumathy. “Efficient load balancing
algorithm for task preprocessing in fog computing
environment”. In: Smart Intelligent Computing and
Applications. Springer, 2019, pp. 291–298.

[53] Vladimir Marbukh. “Towards Fog Network Utility
Maximization (FoNUM) for Managing Fog Comput-
ing Resources”. In: 2019 IEEE International Con-

http:// journals.uob.edu.bh

19

http://journals.uob.edu.bh


208 Kavitha, et al.: Load balancing in Fog Computing

ference on Fog Computing (ICFC). IEEE. 2019,
pp. 195–200.

[54] Mirza Mohd Shahriar Maswood et al. “A novel
strategy to achieve bandwidth cost reduction and
load balancing in a cooperative three-layer fog-cloud
computing environment”. In: IEEE Access 8 (2020),
pp. 113737–113750.

[55] Saqib Nazir et al. “Cuckoo optimization algorithm
based job scheduling using cloud and fog comput-
ing in smart grid”. In: International Conference on
Intelligent Networking and Collaborative Systems.
Springer. 2018, pp. 34–46.

[56] Euclides C Pinto Neto, Gustavo Callou, and Fer-
nando Aires. “An algorithm to optimise the load
distribution of fog environments”. In: 2017 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC). IEEE. 2017, pp. 1292–1297.

[57] Song Ningning et al. “Fog computing dynamic load
balancing mechanism based on graph repartitioning”.
In: China Communications 13.3 (2016), pp. 156–164.

[58] Ryuji Oma et al. “An energy-efficient model for
fog computing in the internet of things (IoT)”. In:
Internet of Things 1 (2018), pp. 14–26.

[59] Opeyemi Osanaiye et al. “From cloud to fog comput-
ing: A review and a conceptual live VM migration
framework”. In: IEEE Access 5 (2017), pp. 8284–
8300.

[60] Gaurang Patel, Rutvik Mehta, and Upendra Bhoi.
“Enhanced load balanced min-min algorithm for
static meta task scheduling in cloud computing”. In:
Procedia Computer Science 57 (2015), pp. 545–553.

[61] Karan D Patel and Tosal M Bhalodia. “An efficient
dynamic load balancing algorithm for virtual ma-
chine in cloud computing”. In: 2019 International
Conference on Intelligent Computing and Control
Systems (ICCS). IEEE. 2019, pp. 145–150.

[62] Manoj Kumar Patra et al. “A Randomized Algorithm
for Load Balancing in Containerized Cloud”. In:
2020 10th International Conference on Cloud Com-
puting, Data Science & Engineering (Confluence).
IEEE. 2020, pp. 410–414.

[63] Branko Radojević and Mario Žagar. “Analysis of
issues with load balancing algorithms in hosted
(cloud) environments”. In: 2011 proceedings of the
34th international convention MIPRO. IEEE. 2011,
pp. 416–420.

[64] Neeraj Rathore and Inderveer Chana. “Load balanc-
ing and job migration techniques in grid: a survey of
recent trends”. In: Wireless personal communications
79.3 (2014), pp. 2089–2125.

[65] Anees Ur Rehman et al. “Dynamic Energy Efficient
Resource Allocation Strategy for Load Balancing
in Fog Environment”. In: IEEE Access 8 (2020),
pp. 199829–199839.

[66] Naidila Sadashiv and SM Dilip Kumar. “Cluster,
Grid and Cloud Computing”. In: IEEE 6th Interna-

tional Conference on Computer Science & Education
(ICCSE 2011). 2011, pp. 978–1.

[67] Shaik Mohammed Salman et al. “Fog computing for
augmented reality: Trends, challenges and opportu-
nities”. In: 2020 IEEE International Conference on
Fog Computing (ICFC). IEEE. 2020, pp. 56–63.

[68] Bikash Sarma et al. “Fog computing: An enhanced
performance analysis emulation framework for IoT
with load balancing smart gateway architecture”. In:
2019 International Conference on Communication
and Electronics Systems (ICCES). IEEE. 2019, pp. 1–
5.

[69] Kripa Sekaran and KR Kosala Devi. “SIQ algorithm
for efficient load balancing in cloud”. In: 2017 In-
ternational Conference on Algorithms, Methodology,
Models and Applications in Emerging Technologies
(ICAMMAET). IEEE. 2017, pp. 1–5.

[70] Muhammad Sohaib Shakir and Abdul Razzaque.
“Performance comparison of load balancing algo-
rithms using cloud analyst in cloud computing”.
In: 2017 IEEE 8th Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference
(UEMCON). IEEE. 2017, pp. 509–513.

[71] Shivi Sharma and Hemraj Saini. “A novel four-tier
architecture for delay aware scheduling and load bal-
ancing in fog environment”. In: Sustainable Comput-
ing: Informatics and Systems 24 (2019), p. 100355.

[72] Anil Singh and Nitin Auluck. “Load balancing
aware scheduling algorithms for fog networks”. In:
Software: Practice and Experience 50.11 (2020),
pp. 2012–2030.

[73] Gurasis Singh and Kamalpreet Kaur. “An improved
weighted least connection scheduling algorithm for
load balancing in web cluster systems”. In: Interna-
tional Research Journal of Engineering and Technol-
ogy (IRJET) 5.3 (2018), p. 6.

[74] Simar Preet Singh, Anju Sharma, and Rajesh Kumar.
“Design and exploration of load balancers for fog
computing using fuzzy logic”. In: Simulation Mod-
elling Practice and Theory 101 (2020), p. 102017.

[75] Fatma M Talaat et al. “A load balancing and opti-
mization strategy (LBOS) using reinforcement learn-
ing in fog computing environment”. In: Journal
of Ambient Intelligence and Humanized Computing
(2020), pp. 1–16.

[76] Fatma M Talaat et al. “Effective load balancing strat-
egy (ELBS) for real-time fog computing environment
using fuzzy and probabilistic neural networks”. In:
Journal of Network and Systems Management 27.4
(2019), pp. 883–929.

[77] Nadim Téllez et al. “A tabu search method for load
balancing in fog computing”. In: Int. J. Artif. Intell
16.2 (2018).

[78] Nguyen B Truong, Gyu Myoung Lee, and Yacine
Ghamri-Doudane. “Software defined networking-
based vehicular adhoc network with fog comput-
ing”. In: 2015 IFIP/IEEE International Symposium

http:// journals.uob.edu.bh

20

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. X, No.X (Mon-2022)) 209

on Integrated Network Management (IM). Ieee. 2015,
pp. 1202–1207.

[79] Manisha Verma, Neelam Bhardwaj, and Arun Kumar
Yadav. “Real time efficient scheduling algorithm for
load balancing in fog computing environment”. In:
Int. J. Inf. Technol. Comput. Sci 8.4 (2016), pp. 1–10.

[80] Manisha Verma and Neelam Bhardwaj Arun Kumar
Yadav. “An architecture for load balancing tech-
niques for Fog computing environment”. In: Inter-
national Journal of Computer Science and Commu-
nication 8.2 (2015), pp. 43–49.

[81] Aarti Vig et al. “Autonomous agent based shortest
path load balancing in cloud”. In: 2016 8th Inter-
national Conference on Computational Intelligence
and Communication Networks (CICN). IEEE. 2016,
pp. 33–37.

[82] Violetta N Volkova et al. “Load balancing in cloud
computing”. In: 2018 IEEE Conference of Russian
Young Researchers in Electrical and Electronic En-
gineering (EIConRus). IEEE. 2018, pp. 387–390.

[83] Jiafu Wan et al. “Fog computing for energy-aware
load balancing and scheduling in smart factory”. In:
IEEE Transactions on Industrial Informatics 14.10
(2018), pp. 4548–4556.

[84] Shu-Ching Wang et al. “Towards a load balancing
in a three-level cloud computing network”. In: 2010
3rd international conference on computer science
and information technology. Vol. 1. IEEE. 2010,
pp. 108–113.

[85] Tingting Wang et al. “Load balancing task scheduling
based on genetic algorithm in cloud computing”. In:
2014 IEEE 12th international conference on depend-
able, autonomic and secure computing. IEEE. 2014,
pp. 146–152.

[86] VM Arul Xavier and S Annadurai. “Chaotic social
spider algorithm for load balance aware task schedul-
ing in cloud computing”. In: Cluster Computing 22.1
(2019), pp. 287–297.

[87] Xiaolong Xu et al. “A heuristic virtual machine
scheduling method for load balancing in fog-cloud
computing”. In: 2018 IEEE 4th International Con-
ference on Big Data Security on Cloud (BigDataSe-
curity), IEEE International Conference on High Per-
formance and Smart Computing,(HPSC) and IEEE
International Conference on Intelligent Data and
Security (IDS). IEEE. 2018, pp. 83–88.

[88] Xiaolong Xu et al. “Dynamic resource allocation
for load balancing in fog environment”. In: Wire-
less Communications and Mobile Computing 2018
(2018).

[89] Moona Yakhchi et al. “Proposing a load balancing
method based on Cuckoo Optimization Algorithm
for energy management in cloud computing infras-
tructures”. In: 2015 6th International Conference
on Modeling, Simulation, and Applied Optimization
(ICMSAO). IEEE. 2015, pp. 1–5.

[90] Shanhe Yi et al. “Fog computing: Platform and
applications”. In: 2015 Third IEEE workshop on hot

topics in web systems and technologies (HotWeb).
IEEE. 2015, pp. 73–78.

[91] Luxiu Yin, Juan Luo, and Haibo Luo. “Tasks schedul-
ing and resource allocation in fog computing based
on containers for smart manufacturing”. In: IEEE
Transactions on Industrial Informatics 14.10 (2018),
pp. 4712–4721.

[92] Maheen Zahid et al. “Hill climbing load balancing
algorithm on fog computing”. In: International Con-
ference on P2P, Parallel, Grid, Cloud and Internet
Computing. Springer. 2018, pp. 238–251.

[93] Muhammad Zakria et al. “Cloud-fog based load bal-
ancing using shortest remaining time first optimiza-
tion”. In: International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing. Springer. 2018,
pp. 199–211.

[94] Xiaoqing Zhu et al. “IMPROVING VIDEO PER-
FORMANCE WITH EDGE SERVERS IN THE
FOG COMPUTING ARCHITECTURE.” In: Intel
Technology Journal 19.1 (2015).

Ms. Kavitha M S is currently working
as Senior R&D Engineer in Silicon Real-
ization Group at Synopsys, Bangalore. She
completed her M.Tech in Computer Science
and Engineering from Siddaganga Institute
of Technology, Tumkur and B. E from Sid-
dartha Institute of Technology, Tumkur, In-
dia. She has four years of Industry experi-
ence and nine years of teaching experience
for U.G. and P.G. students, research, guiding

projects, handling University examinations, organizing seminars,
conferences and workshops.

Dr. Naidila Sadashiv is an Associate Pro-
fessor in the Department of Computer Sci-
ence and Engineering at JSS Academy
of Technical Education, Bangalore, India.
She completed her Ph. D in Computer
Science and Engineering from University
Visvesvaraya College of Engineering, Ban-
galore, M.Tech from Dr. Ambedkar Institute
of Technology, Bangalore, and B. E from
B.V.B.C.E.T, Hubli, India. She is currently

teaching Cloud Computing, Unix Operating Systems and her area
of research interest includes Cloud Computing and Blockchain.
She has published papers in IEEE Conferences and Journals with
more than 250 citations. She has won Two Best Paper Awards from
IEEE Conferences. She is the recipient of Seed Money to Young
Scientists for Research award from Vision Group on Science
and Technology, Bangalore. She is a former Assistant Professor
at M. S. Ramaiah Institute of Technology, Bangalore. She has
total Eighteen years of experience which includes teaching U.G.
and P.G. students, research, guiding projects, handling University
examinations, organizing seminars, conferences and workshops.

http:// journals.uob.edu.bh

21

http://journals.uob.edu.bh


210 Kavitha, et al.: Load balancing in Fog Computing

Dr. S M Dilip Kumar received his B. E,
M. Tech and Ph. D degrees in 1996, 2001
and 2010 respectively in Computer Science
and Engineering discipline. He is currently
working as Professor in the Department of
Computer Science and Engineering, Univer-
sity Visvesvaraya College of Engineering
(UVCE), Bangalore University, Bangalore.
Dr. S. M Dilip Kumar is involved in research
and teaching B. Tech and M. Tech students

of Computer Science and Engineering and has 23 years of teaching
experience. He has guided eight Ph. D candidates and six are
pursuing Ph. D in Computer Science and Engineering under his
guidance in Bangalore University. He has published more than 100

papers in International Journals including Elsevier, Springer, Inder-
science and Conferences and has received six best paper awards in
International Conferences. He has delivered 40 technical talks in
National level seminars, workshops, short-term courses and faculty
development programmes. He was the Principal Investigator for
a research project in the area of grid computing sponsored by
Science and Engineering Research Board, Department of Science
and Technology (SERB-DST), Government of India. Another
research project sponsored by SERB-DST in the area of Internet
of Things is ongoing. He has completed two consultancy projects
in the areas of mobile governance and e-FMS sponsored by
Government of Karnataka. His current research lies in the area
of sensor networks, cloud computing and Internet of Things.

http:// journals.uob.edu.bh

22

http://journals.uob.edu.bh

	INTRODUCTION
	Search Criteria
	Publications in Load Balancing in Fog Computing
	Contributions of the Paper

	Fog Computing Architecture
	Classification of Load Balancing Strategies in Computing Environments
	Load Balancing Algorithms

	Load Balancing in Fog Environment
	Existing Surveys on Load Balancing in Fog Environment
	Classification of works based on Performance metrics for Load Balancing in Fog Environment
	Load Balancing works considering Bandwidth factor
	Load Balancing works considering Energy Consumption factor
	Load Balancing works considering Availability and Latency factors
	Load Balancing works considering Mobility and Interoperability factors
	Load Balancing works on Resource Management factor
	Load Balancing works which focus on specific Use cases


	Load Balancing Metrics
	Challenges in Fog based Load Balancing
	Case Study: Fog computing in Real time Applications
	Conclusion and Future directions
	Future directions

	Biographies
	Ms. Kavitha M S 
	Dr. Naidila Sadashiv
	Dr. S M Dilip Kumar


