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Abstract: Academics, researchers and students usually read a lot of papers for their research or to keep up-to-date with the latest
works. The high number of papers available makes the process time-consuming. A solution is to summarise the papers and allow the
reader to decide if the papers are relevant to their work and whether they require more attention. A system has been built to generate
extractive summaries of computer science research papers. We demonstrate how the intrinsic statistical characteristics of computer
science research papers such as the document length or the presence of certain keywords can help train a machine learning classifier
model that can achieve state-of-the-art performance. Human and automatic evaluation using ROUGE has been carried out to measure
performance. Results show that the proposed model performs better than TextRank and BERT on both human and automatic evaluation.
It also does better than BART on human evaluation.
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1. Introduction
The number of academic publications worldwide has

increased from 0.66 million to 2.85 million in 2015, and
further increased to 3.16 million in 2018 [1]. White et al.
(2017) found that Computer Science accounts for nearly 9%
of all research work [2]. The high number of papers, there-
fore, makes the research process highly time-consuming.
Many of these papers are often irrelevant to the reader.
A solution to these problems is to summarise the papers
and allow the reader to decide if they are relevant to their
work and whether they require more attention. A system
has been built to generate summaries of computer science
research papers. The system harnesses the power of Natural
Language Processing (NLP) and text summarisation.

There are 2 types of text summarisation namely, ex-
tractive and abstractive. Extractive text summarisation picks
the most important sentences of the document and does
not modify the sentence structure of the original text. Ab-
stractive text summarisation generates new sentences based
upon the main ideas of the original text. This work focuses
on extractive text summarisation only. Text summarisation
can also be single document or multi-document. For single
document, the summariser takes just one document as input
and generates a summary. Multi-document summarisers
take many documents of the same topic as input to generate
a single summary. This study is limited to single document
summarisation only.

Many websites exist for text summarisation but most
of them are generic and do not take into account the
specific properties of scientific papers and especially com-
puter science research papers. These types of publications
usually have a predetermined structure, containing tables,
figures, pseudocode along with domain-specific keywords
and concepts [3]. Therefore, a summariser trained on com-
puter science papers could improve the output summary
as it learns the fundamental characteristics of this type of
literature. The summariser should be able to retrieve the
most important and relevant information from the document
and express those key ideas in the final summary while
optimising topic coverage and readability.

This study is domain-specific and is concerned with
computer science research papers. With this in mind, it has
been observed that certain statistical features such as length,
absence or presence of foreign words, digits count, symbols
count, and the appearance of certain keywords in a sentence
can be used to predict whether the sentence is likely to
be part of the final summary. The problem, therefore,
boils down to a binary classification problem. As of 2021,
only a few summarisers have been developed, or models
trained, specifically for computer science papers. Thus, we
propose a machine learning approach that uses the intrinsic
statistical properties of computer science research papers
to predict whether or not a sentence belongs to the final
summary. This approach is implemented using different
classification algorithms such as Logistic Regression, K-
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Nearest Neighbors, Support Vector Classifiers (SVC Linear
and SVC RBF - SVC RBF uses the Radial Basis Function
kernel), Decision Tree, and Random Forest. The best per-
forming model is compared to existing text summarisation
techniques such as TextRank [4], BERT [5], and BART
[6]. Human evaluators and the ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) score [7] have been used
to evaluate the different models.

ROUGE is a set of metrics that can enable us to
measure the accuracy of the summary compared to a
base/reference summary. ROUGE-N determines the number
of matching ‘n-grams’ between our generated summary and
the reference summary. An n-gram refers to a group of
words/tokens. ROUGE-1 for instance measures the number
of similar unigrams(1-gram) between two texts. ROUGE-
2 uses bigrams. ROUGE-L measures the longest matching
sequence of words in the two texts. Those words need not
be in consecutive order. ROUGE allows us to calculate the
recall, precision, and f1 score. For recall, the matching
n-gram is divided by the total n-gram in the reference
summary. For precision, the matching n-gram is divided
by the total n-gram in the generated summary. The f1-score
is a combination of recall and precision.

3686 papers from the arXiv database have been used to
train and test the classification models. The arXiv database
contains 1.7 million scientific articles, along with related
features such as the title of the article, the authors, the
abstract, and the article id which can be used to download
the papers’ PDFs. The articles engage many different fields.
Since we are interested mainly in computer science research
papers, the dataset has been filtered to include only com-
puter science articles. The papers have been preprocessed,
analysed, and split into sentence datasets which are used to
train the models to predict the probability of a sentence
being a summary or non-summary sentence. The best
summary sentences are then picked for the final summary.

This paper proceeds as follows. Section 2 goes through
different works related to text summarisation. Section 3
consists of the methodology. Section 4 contains the results
obtained from the different experiments. The paper con-
cludes with Section 5.

2. RelatedWorks
There are different approaches to text summarisation. In

this section, we review the statistical methods, graph-based
methods, machine learning approaches, and deep learning
methods.

Works on automatic text summarisation began in the
1950s when Baxendale (1958) introduced the Positional
method [8]. Upon analysing 200 paragraphs from scientific
documents, he found out that 85% of topic sentences were
the first sentence of the paragraph and 7% were the last
sentence. He could obtain a summary by extracting the
first and last sentence of the document. Luhn (1958) came
up with a method to extract important sentences from a

text using word and phrase frequency [9]. The weight of a
sentence was given as a function of high-frequency words,
disregarding very high-frequency common ones. Fattah &
Ren (2009) argue that the most important sentences in a
paragraph are the first 5 sentences [10]. Ishikawa et al.
(2010) gave more weight to words that are present in the
title of the text because the title of the document generally
gives a good indication about the topic [11][12].

In graph-based methods, sentences from one or multiple
documents are represented as vertices. The edges between
the sentences show how similar the two sentences are.
LexRank [13] and TextRank [4] are graph-based methods.
The idea is to create a similarity matrix by finding the
similarity score between each sentence in the document or
collection of documents. Each sentence is represented as a
node in a graph. Nodes are connected based on the similar-
ity matrix. A sentence connected to many other sentences
has a high probability of belonging to the final summary.
It uses the bag-of-words model to represent sentences as
vectors of N-dimension (numbers instead of words). Only
then the similarity between sentences can be computed.

Kupiec et al. (1995) introduced the first trainable method
for text summarisation [14]. They used classification, a
supervised machine learning method, to identify sentences
as summary sentences and non-summary sentences. They
created a dataset to train the model, consisting of doc-
uments and their respective extractive summaries. They
used a Naive Bayes classifier to find the probability of a
sentence appearing in the final summary given a set of
features. However, Osborne (2002) found that maximum
entropy models have better performance over Naive Bayes
approaches [15]. Machine learning can also be used to
estimate the weights of features. Yeh et al. (2005) proposed
an algorithm to estimate the weights of certain features such
as sentence position, centroid, keywords, and title similarity
[16]. This makes the system dependent on the genre of
the document. Yatsko et al. (2010) trained a system on
three genres, namely scientific, news and arts [17]. The
system can detect the genre of the document before using
the proper scoring model. Radev et al. (2000) introduced
a centroid-based method for single and multi-document
summarisation [18]. Sentences that are similar belong to a
cluster. For each cluster, the sentence closest to the centroid
is selected for the final summary. Ghodratnama et al. (2020)
combined supervised and unsupervised algorithms for ex-
tractive document summarisation [19]. Their model gives
higher ROUGE scores than most state-of-the-art models.
They combined classification and clustering algorithms to
select sentences that are logical and non-redundant. Haez
Shamsfakhr (2022) represent extractive text summarisation
as a Bayesian state estimation problem [20]. They rated the
importance of sentences using a sequential Markov model
equipped with Bayesian inference

BERT was released by Google AI Language and was a
breakthrough in the field of Natural Language Processing
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[5]. BERT is trained on an extremely huge dataset of texts.
It uses a Transformer, which is an attention mechanism, to
understand the meaning and relationships between words in
a text. Generally, a Transformer is made up of two parts,
namely the encoder and decoder. BERT consists only of
the encoder part because its aim is to generate a language
model. Instead of reading a text from left to right or right to
left, BERT reads the entire sequence of words at once. This
is why it is called bidirectional. This is the key to learning
context in a text as the model has a better overview of
each word’s surroundings. Liu and Lapata (2019) proposed
a framework on top of BERT that can be applied to both
extractive and abstractive text summarisation [21]. They
called it BERTSum.

BART was introduced by Facebook AI [6]. It com-
bines BERT (encoder) and OpenAI’s Generative Pre-trained
Transformer [22], which is also known as GPT (decoder).
BART merges BERT’s ability to understand the context in
texts with GPT’s capacity to generate texts. BART achieves
state-of-the-art results in text summarisation. It can be
considered one of the best text summarisation algorithms
right now.

Many works have targeted specific domains for text
summarisation. LetSumm is a summarisation system for
juridic documents [23]. Reeve et al. (2007) created a
summariser for biomedical texts [24]. They used two tech-
niques, one to locate important sentences and the other to
discard redundant information. Gao et al. (2019) released
the readeraware summary generator (RASG) which pro-
duces abstractive summaries of social media documents
with the help of reader comments [25]. Their model
achieved state-of-the-art performance. Erera et al. (2019)
presented a system to summarise computer science papers
using the IBM Science Summarizer [26]. 270,000 computer
science papers were retrieved from arXiv.org and the ACL
anthology. The system allows users to interact with it using
natural language queries or filters (location, year, author,
datasets, etc.). The summarizer generates a summary for
each section of the paper (section-based summarisation).
Hartl & Kruschwitz (2021) approached fake news detection
by employing text summarisation as the main text trans-
formation strategy prior to document classification [27].
They did not have much time to investigate several other
experimental setups but the results suggest a positive direc-
tion for future work using their approach. Abdullah (2022)
proposed a semi-extractive text summarisation system to
extract the research objectives from academic literature
[28]. Experiments were carried out using research papers
from IEEE and Elsevier Scopus. The method shows promise
when it comes to extracting objective sentences from the
abstract section.

3. Methodology
A. Dataset Building

Figure 1 shows the steps to process the papers obtained
from the arXiv database. After downloading the dataset,

only computer science papers are kept. Using the papers’
ids provided, the PDFs of the papers are downloaded.
Using a package called Science Parse, text information
is extracted from the PDFs, they are grouped by section
and saved in JSON format. 3686 papers are picked for
further processing. For each section (except for the Abstract
and References), the texts are appended to one another to
form the source text. The source text is concatenated with
the paper record in the CS dataset. Unnecessary columns
are removed. Papers that have no defined introduction and
conclusion are also removed. This last extra step is done
because it often means the information was not properly
extracted from the PDFs.

B. Dataset Splitting and Filtering
The dataset is split into training (80%) and testing (20%)

datasets. Several filters are applied to them. It was found
that review papers and foreign language heavy papers are
poorly summarised. Review papers are difficult to sum-
marise using an extractive approach because they usually
discuss several other papers and not a single work. Often
each new paragraph discusses a different work from the
previous one. Furthermore, since the models are trained
mainly on papers written in English, the foreign language
heavy papers are not summarised well.

Therefore, it was decided to include filters to remove
those papers from the dataset (Review Paper Filter, Foreign
Paper Filter) and analyse how the results differ from the
dataset with no filter. Another filter used is the Long/Short
Abstract Filter. This filter removes papers with too short
or too long abstracts. When there is a big difference in the
length of the generated summary and the abstract (reference
summary), the evaluation score is negatively impacted.
After applying different filters, 5 new datasets are created:
no filter dataset, review paper filtered dataset, foreign paper
filtered dataset, review + foreign paper filtered dataset, and
long/short abstract filtered dataset.

A dataset of source texts is not ideal for the task at
hand. The aim is to classify each sentence in a paper
as a ‘summary‘ sentence or a ‘non-summary‘ sentence.
Hence, a sentence dataset is required. Bearing in mind
that the abstracts are used as the reference summary, the
abstract of each paper is split into individual sentences.
These sentences will be marked as ‘summary‘ sentences.
Then, for each sentence in the source text, it was decided
to compute their similarity with the title of the paper. The
sentences are then sorted in descending order of similarity
and 6 sentences (to make a balanced dataset) from the
70th percentile are chosen and marked as ‘non-summary‘
sentences. The 70th percentile was chosen as it is below the
average sentence similarity score but not extremely different
from the other sentences in general (as would be the case
for the worst 6 sentences). Finally, the abstract sentences are
concatenated with the non-summary sentences to form the
sentence dataset. The same steps are applied to the testing
datasets.
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Figure 1. Dataset Building

C. Data Preprocessing
Before proceeding to feature extraction, the source text

needs to be cleaned. It is converted to lowercase to make
it easier to compare words later (e.g ‘program‘ should be
interpreted the same as ‘Program‘). Unwanted characters
(#, *, ∼, etc.), URLs, and inline citations are removed.

Figure 2. Data Preprocessing

D. Feature Extraction
Feature extraction is done on the sentence dataset.

For each sentence, relevant features are extracted such as
length of sentence, total foreign words present, digits and
symbols count, and the presence of keywords. Keywords
are those words that appear often in summary sentences.
After analysing the summary sentences, several of them
were found (e.g ‘paper‘, ‘data‘, ‘algorithm‘, etc.). In ad-
dition to that, the presence of discourse markers is also
determined. Discourse markers are those words that are used
to connect sentences. Examples of discourse markers are
‘moreover‘, ‘furthermore‘, and ‘in addition‘ among others.
Those sentences containing discourse markers are less likely
to be part of the final summary. Symbols count is done on
the original text before text cleaning. The feature extraction
steps are shown in Figure 3.

E. Classification and Evaluation
Once the features are extracted from each sentence in the

different training datasets (with different filters), different
machine learning classification algorithms mentioned in
Section 1 are trained. Using each trained model, sum-
maries are then generated for every paper in the testing
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Figure 3. Feature Extraction

datasets (with the different filters mentioned previously).
The summaries are compared with the abstract of their
respective paper and the ROUGE scores are calculated using
the ROUGE python package. Finally, the average ROUGE
score is determined.

4. Results and Discussion
A. Automatic Evaluation

Experiments were carried out on each new dataset
created after the different filters were applied. ROUGE-
1, ROUGE-2 and ROUGE-L were used for evaluation.
Generated summaries are compared to the abstract of the
papers. Logistic Regression and SVC Linear do well on
precision and overall f-score. Random forest obtains the best
score on recall all the time but does poorly on precision,
indicating that the sentences picked by the algorithm often
contain irrelevant information.

Logistic regression and SVC Linear have the highest
precision scores. K-Nearest Neighbors receive the highest
recall scores but does worse than Logistic Regression, SVC
Linear, and Decision Tree.
Logistic Regression and SVC Linear are again the best

models on precision and f-score. SVC RBF does poorly on
recall and overall f-score.

From the results, Logistic Regression and SVC Lin-
ear are the best models based on the F-scores. The best
ROUGE-1 score was 0.335 obtained by SVC Linear, closely
followed by Logistic Regression’s 0.334 f-score. Both mod-
els do equally well on ROUGE-2 and ROUGE-L where they
both obtained an f-score of 0.113 and 0.303 respectively.
Logistic Regression does slightly better on Recall than SVC
Linear. SVC Linear does marginally better on precision than
Logistic Regression. The f-scores obtained by Logistic Re-
gression are very close to that of SVC Linear in most cases.
The high precision and recall of those classifiers mean they
generate summaries that have many matching and relevant
words when compared to the reference summaries.

Random Forest gives the best recall in all cases for
ROUGE-1 and ROUGE-L but does poorly on precision.
This means Random Forest retrieves many matching words
to the reference summary but also contains many irrelevant
and unnecessary ones. SVC RBF looks like the worst model
as it does poorly on recall, precision, and f-score. It does
poorly in retrieving sentences that have relevant matching
words to the reference summary. K Nearest Neighbours
gives the best Rouge-2 recall scores. This means it can
retrieve matching bigrams better than the other models.

The ‘long/short abstract’ filter gives the best results.
This is mainly because the generated summaries were being
compared with an abstract of roughly the same length. Too
short abstracts give a low ROUGE score as the calculated
precision will be lower. This is because many words from
the generated summary will be deemed irrelevant. Similarly,
a long abstract much larger than the generated summary
gives a low recall value. This is because it is less likely for
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ROUGE-1
TABLE I. ROUGE-1 Scores

Filter Metric Logistic
Regression

K Nearest
Neighbors

SVC
Linear

SVC
RBF

Decision
Tree

Random
Forest

No Filter
Recall 0.264 0.284 0.261 0.237 0.261 0.300

Precision 0.418 0.334 0.420 0.325 0.380 0.297
F-score 0.313 0.291 0.312 0.265 0.297 0.280

Foreign Papers
Recall 0.263 0.287 0.261 0.243 0.263 0.305

Precision 0.420 0.334 0.422 0.333 0.377 0.287
F-score 0.314 0.293 0.313 0.272 0.298 0.276

Review Papers
Recall 0.264 0.285 0.261 0.236 0.264 0.301

Precision 0.418 0.335 0.420 0.324 0.376 0.303
F-score 0.313 0.291 0.312 0.264 0.298 0.283

Foreign + Review
Recall 0.263 0.287 0.261 0.239 0.263 0.299

Precision 0.420 0.336 0.421 0.330 0.379 0.294
F-score 0.314 0.294 0.313 0.269 0.299 0.279

Long/Short Abstract
Recall 0.292 0.308 0.296 0.268 0.288 0.319

Precision 0.398 0.330 0.398 0.276 0.348 0.296
F-score 0.334 0.312 0.335 0.268 0.311 0.299

ROUGE-2
TABLE II. ROUGE-2 Scores

Filter Metric Logistic
Regression

K Nearest
Neighbors

SVC
Linear

SVC
RBF

Decision
Tree

Random
Forest

No Filter
Recall 0.084 0.085 0.083 0.055 0.083 0.084

Precision 0.145 0.102 0.146 0.080 0.128 0.083
F-score 0.102 0.087 0.102 0.063 0.097 0.077

Foreign Papers
Recall 0.083 0.086 0.083 0.058 0.086 0.083

Precision 0.146 0.101 0.146 0.085 0.129 0.079
F-score 0.102 0.087 0.101 0.066 0.098 0.074

Review Papers
Recall 0.084 0.085 0.083 0.055 0.084 0.084

Precision 0.145 0.103 0.146 0.080 0.128 0.088
F-score 0.102 0.088 0.101 0.062 0.097 0.080

Foreign + Review
Recall 0.083 0.086 0.083 0.057 0.085 0.084

Precision 0.145 0.102 0.146 0.084 0.129 0.083
F-score 0.101 0.088 0.101 0.065 0.098 0.078

Long/Short Abstract
Recall 0.097 0.100 0.098 0.065 0.096 0.094

Precision 0.139 0.108 0.140 0.068 0.117 0.087
F-score 0.113 0.101 0.113 0.065 0.103 0.088

the generated summary to retrieve most words occurring in
the reference summary.

It can be observed that the effect of the Foreign and
Review papers filters was negligible. There is very little
difference in their scores compared to those without a filter.

B. Comparison with Baseline Models
The best model obtained from the experiments in Sec-

tion 4-A, which will be called ‘custom ML model‘, is
used for comparison with the baseline models TextRank
(Gensim implementation), BERT, LSA, and BART. For
comparison, we also use a fine-tuned deep learning model
that uses the existing Doc2Vec sentence embedding model
but is further trained on the computer science dataset. To
generate summaries using the fine-tuned Doc2Vec model,
the sentences in the text are grouped into clusters. For each
cluster, the sentence closest to the centroid is picked.

One hundred computer science research papers were
used for evaluation. Those papers were not part of the
training and testing datasets mentioned previously.

TABLE IV. Average Summary Length
Model Average Length (words)

TextRank 154
BERT 276
BART 194

Fine-Tuned Doc2Vec 358
Custom ML Model 252

TextRank produces the shortest summaries while the
fine-tuned Doc2Vec model generates the longest one. Since
on average only about 10 sentences are picked for the
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ROUGE-L
TABLE III. ROUGE-L Scores

Filter Metric Logistic
Regression

K Nearest
Neighbors

SVC
Linear

SVC
RBF

Decision
Tree

Random
Forest

No Filter
Recall 0.240 0.259 0.237 0.214 0.237 0.274

Precision 0.379 0.303 0.381 0.292 0.344 0.270
F-score 0.285 0.265 0.283 0.238 0.270 0.255

Foreign Papers
Recall 0.239 0.262 0.237 0.218 0.240 0.278

Precision 0.381 0.303 0.382 0.299 0.344 0.261
F-score 0.285 0.266 0.284 0.244 0.272 0.251

Review Papers
Recall 0.240 0.260 0.237 0.213 0.240 0.274

Precision 0.379 0.304 0.381 0.291 0.341 0.275
F-score 0.285 0.265 0.283 0.238 0.271 0.258

Foreign + Review
Recall 0.239 0.262 0.237 0.215 0.240 0.272

Precision 0.381 0.305 0.381 0.297 0.345 0.267
F-score 0.285 0.267 0.284 0.242 0.273 0.254

Long/Short Abstract
Recall 0.266 0.281 0.268 0.243 0.261 0.290

Precision 0.361 0.301 0.359 0.250 0.315 0.268
F-score 0.303 0.284 0.303 0.243 0.282 0.272

summaries, we can conclude that BERT, the custom ML
model, and the fine-tuned Doc2Vec model are more inclined
toward picking longer sentences. The length of the gener-
ated summaries varies a lot. BART generates summaries of
length greater than 250 words in some cases and less than
100 words in others. The length of the reference summary
(abstract) also varies a lot, despite the average length being
183 words.
human evaluation that BART gives the best recall and f-

score. BART can retrieve about 40% of the words present
in the reference summary (ROUGE-1). BART is currently
one of the best extractive text summariser. Nevertheless, our
custom ML model does better on precision for ROUGE-
1 and ROUGE-L. The higher precision obtained for the
custom ML model is probably due to the fact that it was
trained specifically on a computer science dataset.

Our model does better on recall than BERT. While
BERT retrieves 22% of the words on average, the custom
ML model retrieves about 27%. There is little difference in
the recall scores obtained from TextRank and the custom
ML model. But, the custom ML model does much better
on precision. This indicates that our model can retrieve
more relevant sentences from the source text. The fine-tuned
Doc2Vec model performs worse than the other baseline
models on recall but does well on precision.

The results obtained from the custom ML model are
very encouraging given that it obtains higher scores than
most of the existing text summarisation models, including
TextRank and BERT. It can be argued that the custom
model is a better fit for an online summariser because the
summaries generated are much faster with the custom model
than with BART or BERT which require high computational
resources such as a GPU to summarise papers in a few
seconds. With a GPU, BART can summarise papers in 3.71
seconds on average. The custom ML model takes on average

2.46 seconds. Without a GPU, the time taken becomes
consequent for BART.

C. Human Evaluation
A human evaluation has been carried out. Summaries

are generated using the custom ML model and the other
baseline models mentioned. Three computer science
undergraduate students were asked to rate summaries
generated from 5 different papers. Each paper has 6
summaries (one for each model). The evaluators were
asked to read the papers before reading the summaries.
To avoid any bias, they were not told which of the
summaries were from our own models. They were given
2 weeks to rate all the summaries. The 5 papers chosen
for evaluation were all computer science research papers
written in English. The papers covered different topics -
machine learning(2), deep learning(1), cybersecurity(1),
and networking(1). The documents contained on average
10 pages, with the shortest document containing 5 pages
and the longest one containing 18 pages. The average
length of summaries generated for each of the 6 models
are shown in Table VI.

TABLE VI. Length of Summaries
Model Average Length
BERT 276
BART 175
LSA 422

TextRank (Gensim) 154
Fine-Tuned Doc2Vec 298
Custom ML Model 237

The summaries are rated on a scale of 1 - 5 according
to the scale that we developed as shown in Table VII.
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TABLE V. Baseline and Custom Model Comparison
Model Metric Rouge-1 Rouge-2 Rouge-L

TextRank (Gensim)
Recall 0.30 0.10 0.27

Precision 0.29 0.09 0.25
F-score 0.29 0.09 0.255

BERT
Recall 0.22 0.07 0.20

Precision 0.34 0.11 0.31
F-score 0.26 0.08 0.24

BART
Recall 0.40 0.18 0.38

Precision 0.32 0.15 0.30
F-score 0.33 0.15 0.31

Fine-Tuned Doc2Vec
Recall 0.20 0.05 0.18

Precision 0.34 0.09 0.31
F-score 0.24 0.06 0.22

Custom ML Model
Recall 0.27 0.10 0.25

Precision 0.35 0.13 0.33
F-score 0.30 0.11 0.28

TABLE VII. Scale for Rating Summaries
1 Very poor summary. No important

ideas were covered. No sentence
cohesion. Off-topic. No idea what
the paper is about.

2 Poor summary. Many important
ideas are missing. Sentences are
not very coherent (not a good flow
of ideas). Unnecessary sentences.
Difficult to understand what the
paper is about.

3 Decent summary. Some ideas in the
paper are covered. Some sentences
are coherent. Can get a broad idea
of what the paper is about.

4 Clear summary. Most ideas in the
paper are covered. Good sentence
cohesion. Small number of unnec-
essary sentences. Can get a grasp
of what the paper is about.

5 Very clear summary. Contains the
main ideas in the paper. Very
good sentence cohesion. Very small
or no unnecessary sentences. Very
easy to understand what the paper
is about.

Table VIII shows the average rating obtained for each
model.

TABLE VIII. Human Evaluation Results
Model Average Score
BERT 2.7
BART 3.7
LSA 3.3

TextRank (Gensim) 2.6
Fine-Tuned Doc2Vec 2.4
Custom ML model 3.8

The results show that the custom ML model receives
the best scores on average. It is closely followed by BART.
LSA also performs quite well. We conclude that the custom
model generates clear summaries, covers most of the ideas
in the papers, and has good sentence cohesion. There may
be some unnecessary sentences but the reader can get a
grasp of what the papers are about.

5. Conclusions
The high volume of papers available makes the re-

search process time-consuming. Summarising papers can
help researchers get an overview of their main ideas. In
this paper, we have developed a system that summarises
computer science research papers. We have shown that
using statistical features such as document length, the
number of foreign words, digits and symbols count and the
presence of certain high frequency words to train a machine
learning classifier algorithm for a domain-specific literature
(Computer Science) can help achieve state-of-the-art results.
The proposed solution performs better than TextRank and
BERT. It can be argued that the proposed model is also
better than BART for an online application as the time our
model takes to summarise papers is shorter and requires
less computation power than with BART. Our model also
receives the best rating on average for the human evaluation.
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Currently, we are using the abstract as the gold summary
but creating a manual summary may increase the accuracy
of the module. Moreover, the performance of the model
may increase if training on a larger dataset. We also plan
to use other machine learning classifiers and deep learning
algorithms in future works.
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