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Abstract: We present a new parallel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm for Spark on
the Google Cloud Platform (GCP). Statistical analysis is applied to determine DBSCAN’s optimal parameters to enhance clustering
performance. for scalability Cost-based, R-tree partitioning is selected based on the distribution of the dataset into balanced workloads.
Parallel DBSCAN consists of three parts: local DBSCAN, partitioning, and merging. Optimizing the partitioning of parallel DBSCAN
is important to save time and space compared to serial DBSCAN. This approach can improve the performance and time cost of large
datasets. the modified Statistical Cost-based (SCbs-DBSCAN) is applied to the UCI (University of California Irvine) standard datasets,
Basic benchmark clustering and large different scales of data. For clustering performance and time cost, the experimental results show
that the proposed algorithm achieve 10 ∼ 15 more efficiently, and can run about 1.5x ∼ 3x faster than alternative Parallel DBSCAN
method on Spark without sacrificing clustering quality.

Keywords: Spark, Data Mining, Parallel Algorithms ,DBSCAN Algorithm ,Data Partition

1. INTRODUCTION
One of the most fascinating technologies of our era

is the Internet of Things (IoT). The use of intelligent
and self-configuring devices distinguishes the IoT. Objects
that can communicate with one another over a network’s
global architecture. As a result of these interactions between
different sets of objects, the IoT is portrayed as a disruptive
technology that enables computing applications that are
ubiquitous and pervasive [1]. As a result, a different set
of industrial IoT applications [2] have been developed and
deployed in a variety of industries, including transporta-
tion, agriculture, and food processing, as well as health
monitoring systems, environmental monitoring, and security
monitoring.

Big data necessitates various approaches for dealing
with it to extract value via four elements: -Dimensions: size
is determined by the amount of data collected and produced.
-Diversity: a wide range of data sets, including large struc-
tured, semi-structured, and unstructured datasets, Speed is
determined by the schedule between information technology
and processing. -Validity: validity means whether or not the
records are valid [3], [4], [5].

Clustering is a data mining technique for categorizing
information as intelligible, useful, or both [6]. Bioinformat-
ics, machine learning, information retrieval, and statistics
are just a few of the disciplines where cluster analysis

has proved successful [6][6]. K-means [7], BIRCH [8],
Wave Cluster [9], and DBSCAN [10] are all well-known
algorithms. Partitioning-based, hierarchy-based, grid-based,
and density-based clustering algorithms are the four types of
modern clustering algorithms [10]. The DBSCAN algorithm
is a density-based clustering technique that can detect and
remove noisy data from clusters of any shape.

Because clustering is a fundamental operation for Big
Data processing and analytics, this paper focuses on a
specific and critical component of Big Data, clustering
algorithms in Big Data. In this study, we discussed clus-
tering algorithms in big data and explained how clustering
techniques in big data can be applied to IoT.

Parallelization is difficult in DBSCAN due to the se-
quential data access order, and depending on MPI or
OpenMP settings, there are problems regarding fault toler-
ance and no guarantee that workloads are balanced. Further-
more, data scientists must manage the connectivity between
nodes while programming with MPI, which is a significant
barrier. MPI and OpenMP have been used to implement par-
allel DBSCAN [11], [12]. In general, an MPI implementa-
tion can improve performance, but it requires programmers
to pay close attention to implementation details such as data
partitioning, communication, synchronisation, file location,
and workload balancing. Aside from MPI parallelization,
a MapReduce-based technique is also presented [13], [14],
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[15].

However, parallel DBSCAN methods have previously
been suggested by numerous academics [16]. The four
issues are listed below: First, when the amount and dis-
tribution of data points in each sub-region are taken into
account, a region-splitting technique can quickly become
troublesome. The cost of such a split increases as the num-
ber of dimensions in a data set increases. Second, despite
the sophisticated area split mechanism, DBSCAN execution
time varies significantly between sub-regions due to highly
skewed data distributions. Third, due to sub-regional over-
laps, the overall number of data points processed is always
greater than the total number of data points handled in all
sub-regions. The execution time rises in lockstep with the
amount of data. Furthermore, the cost of merging clusters is
relatively high due to the massive amount of duplicated data
points. Fourth, there is a fundamental issue with picking the
appropriate two input parameters: the Eps() radius and the
minPT s density threshold. When cluster density variation
is high, selecting these criteria becomes incredibly difficult.

This study aims to improve density-based clustering
techniques using DBSCAN [10]. However, due to the giant
volume of records to be processed, the operational effectiv-
ity and data storage of prevalent sequential DBSCAN can
be a problem. Our thinking is to beef up a parallel model
of DBSCAN based totally on SPARK. After developing
DBSCAN in parallel, we used a variety of information
constructions to increase the clustering algorithm’s perfor-
mance. To increase the efficiency of the parallel algorithm,
we tried two approaches specifically based on the idea of the
R-Tree to attain a more balanced partition. Boundary-based
and cost-based partitions Finally, we assessed the effective-
ness of the cost-based partition implementation strategies
and carried out statistical analysis [11] to obtain the optimal
DBSCAN parameters (minPTs and epsilon), which affect
clustering performance, where in [11] a baseline Monte
Carlo method is applied to estimate the significance of
clusters and a Dual-Convergence algorithm to accelerate the
computation.

Some of the primary contributions to this work are:

• Decoding and executing the Parallel DBSCAN algo-
rithm for Spark Cluster on Google Cloud Platform
(GCP) called SCbs-DBSCAN.

• SCbs-DBSCAN uses statistical analysis to obtain the
optimum DBSCAN parameters to enhance DBSCAN
clustering performance and cost-based R-trees to op-
timize partitioning and merging for efficient cost time.

• Study the effectiveness and scalability of the pro-
posed clustering algorithm SCbs-DBSCAN using Ba-
sic benchmark clustering UCI standard datasets, and
different scales of the data sample.

• Time costs for partitioning, parallel DBSCAN, and

merging are computed. Silhouette Coefficient (SC),
Completeness (Comp.), and Adjusted Rand Index
(ARI) are used to measure performance.

The content of this paper is represented by the following
sections: The applicable Section 2 includes related work
on existing parallel DBSCAN models. Section 3 describes
the DBSCAN Algorithm and the Spark Cluster. Section
4 describes Parallel DBSCAN and the enhancement parti-
tioning method. Section 5 compares our optimised parallel
DBSCAN to other serial and parallel DBSCANs for time
cost and performance. Section 6 concludes the whole work.

2. RelatedWork
In a statistical set, clustering is the process of grouping

like objects together. Clustering is divided into a plethora
of types, each of which necessitates an iterative procedure,
making it unsuitable for large-scale data processing. As a
result, the single-traffic-scale Evolving Clustering Method
(ECM) had to be transformed into a parallel clustering
methodology (PECM) capable of handling large amounts
of data [17]. PECM (Parallel Evolving Clustering Method)
is a statistics evaluation technique that runs in the Apache
Spark framework and leverages HDFS (Hadoop Distributed
File System) for statistics storage [18].

In addition, DBSCAN is presented in parallel with
the Spark platform in [19]. Spark is a new generation
of large-scale data processing speeds, achieving real-time
RDD (resilient distributed dataset), being highly scalable,
and having high fault tolerance. DBSCAN was paralleled
with the single-node and cluster Spark platforms, and it
was found that when dealing with applications with many
iterations, Spark-yarn is more suitable than Spark-Mesos.

It is proposed in [20] to apply parallelism between DB-
SCAN and Apache Spark by applying it to data processed
by KD-tree (K-Dimensional Tree) to reduce search time,
which aims to organise spaces between data, and HashMap,
which is one of the Java tools for indexing data by storing
it in the form of values and keys, allowing faster access to
the required data.

In an Apache Spark framework that supports large-scale
cloud resources, the process in [21] was directed to give a
parallel version of DBSCAN and real-time factor realisation
based on cluster checkpoints with temporal and spatial data
sequencing dubbed RT-DBSCAN.

He et al. [22] introduced the MR-DBSCAN algorithm
based on the MapReduce model, which introduces a data
partitioning strategy to increase the efficiency of the algo-
rithm. Cordova et al. [23] propose RDD-DBSCAN. It is a
kind of DBSCAN algorithm based on RDD and DBSCAN-
PSM [24], which applies a new data partitioning and merg-
ing method. In [25] a parallel adaptive DBSCAN (PDB-
SCAN) algorithm is proposed based on a k-dimensional
tree partition and carries out parallel computing in spark
distributed computing framework. At the same time as
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Figure 1. DBSCAN method.

creating local clusters, this algorithm also puts the mapping
relationship between data points and adjacent points into the
HashMap data structure of the master node and uses it to
merge local clusters into whole clusters, which can reduce
the time cost of data merging.

The approach in [26] attempts to fully parallelize the
DBSCAN implementation by utilizing HPCC systems’ ideal
distributed architecture and executing a tree-based union to
combine local clusters.

From the presented related work, it is clear that:

1) Iteratively, Spark is the best choice in the fields of
machine learning and data mining with iterations.

2) The experimental performance of some algorithms
with Spark is 100 times higher than with MapRe-
duce.

3) The data file can be downloaded and used frequently
through it, with the results of intermediary opera-
tions being stored directly in memory rather than in
HDFS.

3. DBSCAN Algorithm
this section, we’ll go through the basics of the DBSCAN

algorithm. The spark distribution system was then intro-
duced.

A. DBSCAN algorithm
Ester [11] proposed the DBSCAN clustering algorithm.

Because it can discover arbitrarily shaped clusters and
reduce noisy data, it has become one of the most widely
used clustering methods. The fundamental idea behind this
method is to discover all of the core points and then group
them with all of the extra locations (core or noncore) that
can be reached from them to form clusters.

In Figure 1. An Overview of DBSCAN method,
minPT s = 4. Point A and the other red points are core
points because the area surrounding these points in an

Figure 2. DBSCAN Flow Chart

radius contains at least 4 points (including the point itself).
Because they are all reachable from one another, they form
a single cluster. Points B and C are not core points, but are
reachable from A (via other core points) and thus belong to
the cluster as well. Point N is a noise point that is neither
a core point nor directly reachable.

Han [27] provides the pseudocode for the DBSCAN
algorithm. The DBSCAN flow chart is illustrated in Fig-
ure 2. The procedure starts with a random point pD and
checks its eps-neighborhood (). If the size is greater than a
predetermined number of minPT s, the function constructs
a new cluster C. The program then retrieves all the densely
accessible places from p in D and adds them to cluster C.
If the eps neighbourhood has fewer than minPT s points,
p is considered noise. The computational complexity of
the algorithm is O(n2), where n is the number of data
points. When spatial indexing is employed, the complexity
is lowered to O(nlogn) [3].

B. Spark:
A Spark application’s driver process communicates with

many executor processes, giving tasks and receiving results.
The first step in a Spark application is to construct a Spark
Context object in the driver code, which instructs Spark on
how to connect to a cluster. Several HDFS files are read
and processed as RDDs, which are collections of elements
partitioned across nodes and processable in parallel. Spark’s
primary abstraction is the RDD, which may be produced
from a Hadoop file system file or by modifying previous
RDDs. One or more RDDs may be dependent on an RDD
as shown in Figure 3. The DAG Scheduler constructs
stages as a form of execution unit from the graph of RDD
dependencies.

DAG Scheduler generates a Directed Acyclic Graph
(DAG) of stages for each work, recording which RDDs
and stage outputs were satisfied. Task Sets are then given
to the Task Scheduler in phases. Task Scheduler distributes
tasks to executors through the Resource Manager, which
is YARN in this case. After finishing their jobs, executors
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Figure 3. DBSCAN Flow Chart

Figure 4. Parallel DBSCAN.

will either return the results to the driver (see Figure 3),
if it is the end of the RDD of an operation like count()),
[28],[29], or write the output to external storage. All of
MapReduce’s essential functions are included in the Spark
framework. It also comes with Dataproc improvements.
Dataproc on Google Cloud Platform (GCP) is fast and easy
to use for cloud computing. Open-source data analytics
tools perform batch processing, querying, streaming, and
machine learning, which introduces a high-performance
infrastructure. With the following features [28]: Super-Fast,
Automated Management, Low Cost, Autoscaling Clusters,
Cloud Integrated, Flexible and Familiar.

In managing data I/O, MPI/OpenMP and Spark are
much more comparable in disk access time, though
MPI/OpenMP is still quicker. Additionally, Spark on
Hadoop is better suited to take advantage of the GCP
infrastructure because it can divide the data into numerous
chunks, allowing files to be read concurrently from numer-
ous sectors. This is so that I/O performance can be improved
by spreading out virtual disks across several physical disks
in GCP.

4. Implementation of Parallelization
According to existing research, the four phases of the

DBCAN on Spark process are partitioning, local DBSCAN,
data merging, and global clustering construction as shown
in Figure 4. In [19] Rather than partitioning with a virtual
fishnet as in traditional DBCAN-Spark work, this project
divides the partitions with different sample points into
multiple batches to send to the driver end, then broad-
casts to each executor to calculate the distance separately,
then combines the results to achieve the double traversal
indirectly. The spatial index R-tree is constructed before
broadcasting to reduce the amount of calculation required
for broadcasting.

A. Naive Parallelizied DBSCAN
The parallel matrix DBSCAN technique on Spark [28]

is implemented in three stages: partition, local matrix
DBSCAN, and merging. The partitioning stage will be
determined by specifying the partition number, and the
position of the partition block in the space, and constructing
the RDD, which will include the corresponding partition id
and partition dataset assigned by determining whether or
not the points are in the partition block.

Each RDD will use the local matrix DBSCAN method
described in the prior section to perform the local matrix
DBSCAN. The local dataset information as well as the local
cluster label list will be produced after the approach is
completed. In the merge step, the results of each RDD will
be pooled using a global cluster list. If a label exists for a
point in the global list, it will be used to update the local
partition points with the same cluster label.

B. Optimization of Partitioning
The partitioning stage is crucial to the overall perfor-

mance of the clustering process. The top and bottom limits
of all data points in each dimension are first calculated,
generating a rectangle (bounding box), which is then pro-
portionally divided into the whole height and width rectan-
gles. Only when the data points are evenly distributed will
this method succeed. In reality, it’s practically impossible.
If data points are distributed unevenly, the amount of data
allocated to the staff will be highly unbalanced, and overall
performance will be heavily dependent on the execution
time of the most demanding job and the benefits of parallel
processing. The computation will be as straightforward as
possible.

A partitioning plan must be established to ensure that
the personnel’s tasks are spread as evenly as possible. To do
so, we first store the data points in an R-tree data structure,
which allows us to quickly get aggregate data in a given
area.

1) Rtree Based on Boundary: Because the points within
a long distance of the boundary line are within the overlap-
ping region and will be counted and calculated separately
for each partition during their local clustering stage, reduc-
ing the number of points inside the overlapping region will
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Figure 5. Calculate the cost difference between B1 and B2.

Figure 6. Partition strategy. (a) Naive (b) cost-based.

reduce both the overall computation of each partition and
the merging step.

Determine the smallest box that contains all of the data
to begin splitting. Start splitting the rectangle box after
that. Divide the box in half to create temporary B1 and
B2, and consider the junction section, which is made up
of two provided by both sides, to be the boundary section.
Calculate the cost by multiplying the number of points in
B1 and B2 by the number of points in the boundary part.
The R tree’s purpose is to lower the score so that B1 and
B2 are both balanced and there are fewer edge points. If
B1 has fewer points than B2, create a new splitter line
at the location of the fourth segment in B2. Each loop
calculates the large rating while updating the smaller cost.
Select the axis that corresponds to the decreased rating to
split. Place the ultimate B1 and B2 in the queue. Remove
the queue’s leftmost Bm to do the calculation. We get a
lot of Bm until we come to the final partitions at the
end of the loop Figure 5. Because the factors inner the
length of the boundary line are placed in the overlapping
area, the boundary reduction approach reduces the wide
variety of factors in the boundary. The distinct partitions
will be counted and calculated for the duration of the
applicable local clustering phases. The typical computation
and merging techniques for every partition will be faster
if the wide variety of points in the overlapping location is
reduced.

2) Rtree Based on Cost (CBP): The cost-based technique
seeks to distribute workload among partitions as equally as
possible. here we use the notation “cost” to quantize the
workload of performing local DBSCAN in a region. The
division result of CBP is illustrated in Figure 6.

The collection of recommendations above determines a
price that indicates the point’s form. At this phase, the goal
is to keep each worker’s workload (expressed in points)
as evenly distributed as feasible. Cut-up lines are typically
tapped by price, usually in a relatively simple fashion,
such as shrinking bounds, but the valuation features stay
practically unchanged. The road can be drawn at the center
of the rectangle (vertically and horizontally, respectively),
resulting in B1 and B2.

Then it’s discovered that B2 has one extra point. In
other words, it was a better deal for the set of suggestions
that arose in an uneven situation.As a result, at the next
stage of B2, the avenue may be initialised within the center.
Continue using this method until the cutline + double
epsilon benefits from the elements that extend beyond
the boundaries intended to retain the overlapping region’s
position after merging.

3) Statistical Rtree Based on Cost (SCBP): The cost-
based technique seeks to distribute workload among parti-
tions as equally as possible. Before partitioning a statistical
analysis [11] of data is applied to obtain the DBSCAN
parameters which affect the clustering performance. Specif-
ically, the equations below are used to implement the
function EstimateCost (EC) as Eq. (1):

EC(B) =
∑

EC(Ci) (1)

if f represent the fanout of R-tree index, B represents
the bounding box of partition and Np represents number of
data points in partition B; DA represents non-overlapping
cells with side length 2− inside the partition B, and N(Ci)
represents total number of data points in cell Ci.

EC(Ci) = NCi .DA(NCi ) (2)

A(NCi ) ≈ 1 + h + NCi

√
NCi .

2√
f + 1

+ NCi

1
f = 1

(3)

h = 1 +
[
log f (N p/ f )

]
+ NCi (4)

The Statistical Rtree based on cost (SCbs) is shown in
Algorithm 1.

For the Statistical Rtree based on cost (SCbs). If
x1, x2, .., xn are independently and identically distributed
random variables on the d dimensional space Rd, the
probability distribution density function f (x) is estimated
as Eq.(5):
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f̂h(x) =
1
n

n∑
i=1

Kh(x − xi) =
1

nh

n∑
i=1

K
( x − xi

h

)
(5)

h is the bandwidth, n represents the number of samples,
K(.) is the kernel function. In the subsequent approach, the
Gaussian kernel function is applied to fit the probability
density functions of radius and sample number of pre-
clusters as Eq.(6)

K(x − xi) = exp
{
− ∥x − xi∥ 2σ2

}
(6)

The values of eps and minPTs are determined as Eq.(7) and
Eq.(8):

eps = arg maxx f̂R(x) (7)

min PT s = arg maxx f̂P(x) (8)

where, fR(x) and fP(x) is the probability density
functions (pdf) of outer radius R and sample numbers
P =Nin+Ninter of pre-clusters. Figure 7 illustrate the Cal-
culation of Nin+Ninter

5. Experiments
A. Experiments Setup

We gathered a total of three datasets from the Uni-
versity of Eastern Finland’s Clustering Vital Benchmark
[30] to show the practicality and scalability of our parallel
approaches. In particular, the dataset consists of sizeable
datasets such as D31, which in reality display parallel
computation capabilities. In addition, the dataset consists
of a few unbalanced datasets, such as Jain. In addition, we

Figure 7. Calculating Nin+Ninter .

looked at the effect on a high-dimensional dataset, such as
Aggregation, to see how it affected top-notch distance mea-
surements. We additionally utilised an excessive number of
partitions (2, 4, 8, 12, 16, 24, and 32) to consider what
influence they had on the going-for-walks performance on
a big dataset to test the scalability of parallelization.

B. Performance Evaluation
We introduce Silhouette Coefficient (SC), Completeness

(Comp.), and Adjusted Rand Index (ARI) to measure the
clustering performance of the proposed method compared
to other recent parallel DBSCAN methods.

• S ilhouetteCoe f f icient(S C):The Silhouette Coeffi-
cient is calculated using the mean intra-cluster dis-
tance a and the mean nearest-cluster distance b for
each sample. The Silhouette Coefficient for a sample
is (b − a)/max(a, b). To clarify, b is the distance
between a sample and the nearest cluster that the
sample is not a part of.

• Completeness(Comp.): A clustering result satisfies
completeness if all the data points that are members
of a given class are elements of the same cluster.

• Ad justedRandIndex(ARI):
RandIndex(RI): a function that computes a similarity
measure between two clusterings. For this compu-
tation, RI Eq. (9) considers all pairs of samples
and counting pairs that are assigned in similar or
different clusters in the predicted and true clustering.
Afterward, the raw RI score is ‘adjusted for a chance’
into the ARI score by Eq. (10):

ARI =
RI − Expected RI

max(RI) − Expected RI
(9)

RI =
Ci −Cd

(n 2 )
(10)
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Figure 8. Clustering Result of D31 Dataset.

TABLE I. Time Cost and Performance of Different Datasets

Time Cost in milliseconds (ms)
Alg. D31 JAIN Aggregation
Naive 10472 441 7531
Optimized 2712 202 4107
Rbs-DBSCAN 3948 230 6163
Cbs-DBSCAN 3631 187 3930
SCbs-DBSCAN 1037 124 1877

where Ci is the number of points that are in the same
cluster for both clusterings, Cd is for those that are
in a different cluster for both clusterings, and n is the
total number of samples.

C. Dataset
1) D31 (N=3100, k=31, D=2):

The clustering result for the D31 dataset is shown
in Figure 8. It’s worth observing that the same
color of numerous of the clusters on the left of
Figure 8., although they are independent clusters.
The goal is to eliminate any uncertainty about the
clustering results from current and other datasets.
Naive Parallel DBSCAN has a higher time cost than
Optimized Parallel DBSCAN. Furthermore, the time
cost of Naive Parallel DBSCAN is larger than that of
our proposed Optimized Parallel DBSCAN (SCbs-
DBSCAN) utilizing eight partitions, as shown in

TABLE II. Performance of D31 Dataset.

Partition Number
Alg. 2 4 8 12 16 24 32
Rbs-DBSCAN
SC. 27 33 25 18 29 22 17
Comp. 89 90 88 85 87 87 82
ARI 43 46 49 42 54 47 52
Cbs-DBSCAN
SC. 65 45 26 12 17 11 11
Comp. 77 82 82 81 77 73 73
ARI 25 15 28 28 25 19 35
SCbs-DBSCAN (2.2, 8)
SC. 34 31 25 26 21 26 22
Comp. 86 86 85 86 83 82 87
ARI 58 58 58 60 59 62 65

Table I. The best performance is indicated in bold.
We want to investigate how successful parallelization
can boost algorithm efficiency in this dataset.
This could be owing to a significant variation be-
tween the two techniques. The Naive Parallel DB-
SCAN picks a neighborhood at random to compute
the diversity of its internal N neighbors without stor-
ing it. While using the Optimized Parallel DBSCAN
to classify kernel points reduces time by keeping all
distances in a matrix, it does necessitate adequate
storage average overall performance. We chose to
document the time approach via this approach to
identify which step wastes the most time because
the overall performance of the RTree-based full
technique falls short of that of the SCbs-DBSCAN.
The performance of SC, Comp., and ARI for SCbs
compared to Rbs and Cbs for the D31 dataset
is illustrated in Table II. The best performance is
indicated in bold.
The difference between the various optimal ap-
proaches and the RTree method lies in the level
of partitioning. This is because it’s fairly easy to
split all the statistics into each range of a fairly
evenly distributed dataset using a good vintage split
approach. Throughout the RTree-based solution, we
need to find a high-quality partition plan that evenly
distributes the dataset throughout each partition. As
a result, after some search time, the RTree method
provides the same partitioning approach as a similar
historical partitioning strategy. As a result, process-
ing RTree partitions takes a long time, but clustering
and merging take even longer.
This outcome can be explained by two separate
considerations:
• The number of executors does not affect the

serial computation. the procedure will run seri-
ally on one of them. As a result of the increased
number of executors, the time may no longer
be developed.

• Parallel complexity has a strong influence on
overall parallel processing performance. When
the number of executors and walls increases.
As a result, the time cost for each partition, as
well as the overall operating time, will likely
be reduced.

• The parameter of each partition must be inves-
tigated before the partition to boost clustering
performance.

2) Dataset Jain (N=373, k=2, D=2)
The data set Jain is a classic unbalanced data set,
that is, only a small part of the data set contains
data points, while other spaces are empty as shown
in Figure 9. In the process of clustering, it is easy
to cause workload tilt and lead to a sharp increase
in time cost. So, the result of Cost Based (Cbs)
method is to balance the data between workers.
The performance of SC, Comp., and ARI for SCbs
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Figure 9. Clustering Result of Jain Dataset.

TABLE III. Performance of Jain Dataset.

Partition Number
Alg. 2 4 8 12 16 24 32
Rbs-DBSCAN
SC. 41 34 30 15 25 16 21
Comp. 25 24 22 22 21 21 22
ARI 18 16 11 13 09 11 13
Cbs-DBSCAN
SC. 12 14 05 00 12 01 26
Comp. 21 21 18 12 13 19 14
ARI 12 13 12 05 05 11 08
SCbs-DBSCAN (5.2, 23)
SC. 18 27 08 20 34 20 17
Comp. 27 28 25 23 23 23 20
ARI 24 21 21 19 18 17 26

compared to Rbs and Cbs is illustrated in Table III.
The best performance is indicated in bold.

3) Dataset Aggregation (N=788, k=7, D=2)
High-dimensional datasets include the Aggregation
dataset shown in Figure 10. Where different color
indicates different cluster. The performance of SC,
Comp., and ARI for SCbs compared to Rbs and Cbs
is illustrated in Table IV. The best performance is
indicated in bold.

In Figure 11 , Figure 12 and Figure 13, the time
costs of merge, partition, and parallel DBSCAN phases are
illustrated for the three different clustering datasets D31,
Jain, and Aggregation. The partition number against the cost
time in milliseconds (ms) is listed.

As shown in Figure 11, the time cost of the partitioning
phase increases as the partitioning number increases. The
time cost increases due to the time required to partition
the data among the different workers. The time cost also
depends on the data distribution in the dataset. But among
the different partitioning methods, our method outperforms
the other two methods for the three datasets. The cost time

Figure 10. Performance on Aggregation Dataset.

TABLE IV. Performance of Aggregation Dataset.

Partition Number
Alg. 2 4 8 12 16 24 32
Rbs-DBSCAN
SC. 30 27 26 14 22 17 19
Comp. 62 64 59 59 56 59 55
ARI 49 52 43 48 36 46 37
Cbs-DBSCAN
SC. 24 20 18 05 15 01 04
Comp. 56 54 53 49 53 48 46
ARI 36 33 33 28 33 27 23
SCbs-DBSCAN (5.2, 29)
SC. 47 35 24 27 19 22 17
Comp. 85 78 72 72 76 72 71
ARI 84 79 70 70 76 66 69

for partitioning in the Jain dataset is approximately equal,
and this is due to the unbalanced dataset. That is, only a
small part of the data set contains data points, while other
spaces are empty. This requires additional time to compute
the oration section. For the other two datasets, our method
has a 1.6x and 2.8x time cost increase over the Rbs and
Cbs methods, respectively.

As shown in Figure 12, the time cost of the merging
phase increases as the partitioning number increases. The
time cost increases due to the time required to merge
the results from different workers. Here, the time cost
depends on the number of data workers used. But among
the different partitioning methods, our method outperforms
the other two methods for the three datasets. For the three
datasets, our method has a 6x, 6.8x, and 8.7x time cost
increase over the Rbs and Cbs methods, respectively.

As shown in Figure 13, the time cost of the parallel DB-
SCAN Phase increases as the partitioning number increases.
The time cost increases due to the time required to partition
the data among the different workers. The time cost also
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Figure 11. Time Cost of Partition Phase.

Figure 12. Time Cost of merge phase.

Figure 13. Time Cost of Parallel DBSCAN Phase.
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Figure 14. Countries Clustering for COVID-19 dataset using Parallel
Dbscan

depends on the data distribution in the dataset. But among
the different partitioning methods, our method outperforms
the other two methods for the three datasets. The statistics
on the Jain dataset may be distributed inconsistently among
walls, causing a few walls’ burdens to be too high, requiring
extra time to complete the clustering step as shown in
Figure 13. For the three datasets, our method has a 12x,
6.4x, and 9x time cost increase over the Rbs and Cbs
methods, respectively.

Although using the RTree Based Method causes the
partition procedure to take longer, the benefits outweigh
the drawbacks. If you utilise the RTree Partition Method,
all of the walls will share the same burden. As a result,
it saves a significant amount of time while clustering.
For comparison of our proposed SCbs-DBSCAN with
other related work, we chose MR-DBSCAN [22], RDD-
DBSCAN [23], DBSCAN-PSM [24] and PDBSCAN [25].
along with serial-DBSCAN. To generate testing datasets,
we us8e the scilearn [31] tool-sample generator (Dataset
Loading Utilities) to effectively test the clustering effect
under different scales of data.

Figure 14 illustrates the time cost of SCbs-DBSCAN
against related work where the time decreases by a factor
of 3, 2.1, 1.8 and 1.5 for MR-DBSCAN [22][22], RDD-
DBSCAN [23][23], DBSCAN-PSM [24][24] and PDB-
SCAN [25][25]. Also, SCbs-DBSCAN shows scalability
where the time increases a little with dataset lines of
higher dimension. Experiments show that compared with
the original DBSCAN algorithm and its related algorithms,
the SCbs-DBSCAN algorithm is faster and more suitable
for large-scale data sets.

D. Performance on COVID19 dataset
To illustrate the efficacy of our proposed method over

big data, the COVID-19 dataset by the Johns Hopkins
University Center for Systems Science and Engineering is
used. We applied our proposed clustering to an analysis of
the number of new cases and deaths among countries. The

TABLE V. EGYPT’S COUNTRY SITUATION FOR COVID-19.

Country/Region Egypt
Deaths 22522
Cases 419460

Country Code EGY
Population 94447072

Cases3dayAvg 1967.333333
Cases7dayAvg 1790.571429
Cases14dayAvg 1548.714286

Deaths3dayAvg 30.333333
Deaths7dayAvg 33.285714

pop>= 655.28

countries’ rank is determined by clustering over dimension
reduction data using t-SNE, which is a nonlinear dimension-
ality reduction technique that is well suited for embedding
high-dimensional data into lower-dimensional data. A case
study of Egypt’s Country is carried out to show the current
situation and to forecast the future.

COVID-19’s widespread impact has prompted the Johns
Hopkins University Center for Systems Science and En-
gineering (JHU CSSE) to create an online repository that
tracks the number of new cases and deaths, dubbed COVID-
19-CSSE (COVID-19 Data Repository by the Center for
Systems Science and Engineering at Johns Hopkins Univer-
sity) in this manuscript. Reports from various institutions
such as the World Health Organization (WHO) and local
health agencies from nations such as China, Taiwan, the
United States, Australia, Singapore, Italy, France, and Egypt
are contained in such a collection. We were inspired by
the COVID-19-CSSE repository to model how the virus
spreads in order to illustrate its impact over time in the
most impacted countries.

Figure 15 illustrates the country clustering for the
COVID-19 dataset using our proposed Parallel DBSCAN.
Table V shows Egypt’s country situation regarding the
spread of the COVID-19 pandemic. A t-SNE dimension
reduction is computed for the COVID-19 big data. Parallel
DBSCAN is then applied over the data reduction.

6. Conclusions and FutureWork
In DBSCA Clustering, it is crucial to evaluate the best

scenes in each portion to fully grasp the benefits of the
partitioning provided by the R-Tree and make use of them
in conjunction with an efficient segmentation strategy (R-
Tree). This will speed up parallel processing. Performance
of R-Tree is largely dependent on the initial distribution
of datasets as a consequence of DBCAN clustering. This
strategy helps speed up parallel computing. Disseminating
certain information can lead to unnecessary calculations.
Parallel DBSCAN algorithm is Decoded and executed for
Spark Cluster on Google Cloud Platform (GCP). SCbs-
DBSCAN obtains the optimum DBSCAN parameters using
statistical analysis to enhance DBSCAN clustering perfor-
mance and cost-based R-trees to optimize partitioning and

http:// journals.uob.edu.bh

10

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 199

Figure 15. Countries Clustering for COVID-19 dataset using Parallel Dbscan

merging for efficient cost time. Finally, the basic overall per-
formance and partition changes, one for each type section,
in addition to Spark’s parallel programming capabilities.
we have proved the scalability of the optimised parallel
DBSCAN. The desired results by comparing different par-
allel DBSCAN and serial DBSCAN using Basic benchmark
clustering UCI standard datasets and large different scales
of data. First and foremost, we use Spark’s parallelism
to experiment with a better storage structure. Notice the
decrease in time costs and the increase in space efficiency.
Second, we can identify the advantages of partitioning
brought by R-tree when we investigate the process of
optimising partition performance, we discovered statistics
fitted to various partitions to obtain DBSCAN optimum
parameters which enhance clustering performance.
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