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Abstract: The novel coronavirus disease (COVID-19) has caused severe damage worldwide, affecting the lives of millions of people
and destroying the global infrastructure and health systems. The timely prediction of a patient’s mortality risk can facilitate the health
care systems to learn about the patients that are going to become severe and offer timely medical care to those patients, thereby
reducing mortality and the burden on the health systems. This will also ensure the optimal allocation of resources in hospitals. Machine
Learning can prove very helpful in this prediction of mortality. We have evaluated five different machine learning algorithms to predict
the need for ICU admission and mortality of Covid-19 patients using two different datasets and identified the most significant features.
This identification of significant features among an array of available features helps identify the patients at higher risk of severity and
mortality. We have also compared the significant predictors of mortality from two datasets from the US and Mexico to analyze the
effect of the infection on different populations. It was found that Random Forest achieves the best performance in the classification
task, followed by Logistic Regression. Therefore, Random Forest’s predictive model can be helpful for clinicians to prioritize patients

appropriately.
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1. INTRODUCTION

The upsurge of the new pandemic, Covid-19, has led
to devastating effects on people worldwide. The Covid-19
disease, which has been attributed to the newly identified
virus, SARS nCoV2 (Severe Acute Respiratory Syndrome
novel Coronavirus-2), is a highly transmissible disease. The
first reports of the disease came from China on December
31, 2019. Since then, the disease has caused havoc globally,
from people’s lives to the global economy. The rapid spread
and high severity of the disease prompted the World Health
Organization (WHO) to declare a pandemic on March
11, 2020 [1]. As of September 6, 2022, the number of
confirmed cases has risen to more than 603 million, with
more than 6.4 million deaths worldwide [2]. The causative
agent, SARSnCoV2, has shown variations over time, like
other viruses. These variations may have little impact on
the speed of its spread and how severe the disease can
be [3]. However, the phenotype of Covid-19 ranges from
mild or asymptomatic and intermittent recovery to systemic
collapse or death [4], [5], [6], [7]. Therefore, accurate
and rapid diagnosis of severe cases is an important task.
However, the accurate prediction of the outcome of the
patients is quite challenging when the phenotype has such

a range of clinical manifestations. This problem poses a
considerable challenge to the prognosis and proper triage
of patients when admitted to the hospital. The RT-PCR
is the most reliable diagnostic test available for detecting
Covid-19. However, this test is cumbersome as it requires
considerable human resources and may take hours to days
to get the results [8]. In this regard, many researchers
have explored machine learning models to detect Covid-19
using medical images of the suspected individuals. They
have employed deep learning models to detect the Covid-
19 disease from medical images such as X-rays and CT
scans [9], [10], [11], [12], [13]. Although they provide
high-quality detection for Covid19, they lack the ability to
distinguish the severity levels of the patients. During the
peak of the pandemic waves, hospitals have been facing
a deficit in crucial resources like care equipment, oxygen
beds, and other necessities. The rapid surge of COVID-
positive patients, particularly in countries with moderate to
low levels of income, has left health systems overburdened
and in dire need of additional resources [14], [15], [16],
[17]. This can be averted by prioritizing the patients with a
higher risk of severity or mortality so that these patients
receive immediate medical aid or hospitalization, while
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those with a lower severity or mortality risk are treated
on an outpatient or self-quarantine basis [18], [19]. For this
purpose, there should be a proper prognostic model capable
of predicting the severity of illness and risk of mortality to
ensure optimal resource allocation and stratified triage of
the patients. In addition, early and accurate identification
of the patient’s feature variables that are most responsible
for advancing to severity is required to ensure patient
prioritization. The paper is organized as follows in the
ensuing sections: section 2 discusses the related work. In
section 3, we have presented the datasets, the models, and
the evaluation metrics that we have used. Section 4 dis-
cusses the data preprocessing and classification parameters.
Section 5 presents the experimental details, while section 6
outlines the corresponding results. The paper is concluded
in section 7.

2. RELATED WORK

The diagnosis and prognosis of diverse medical con-
ditions and ailments have become increasingly reliant on
machine learning applications, which have now become
indispensable clinical tools. Predicting the severity or mor-
tality of Covid-19 patients is mainly a classification task,
therefore, supervised machine learning algorithms are used
in this problem. The term ‘severity’ has different interpre-
tations, where some studies link it to the need for intensive
care [20], and some relate it to death [21]. At the same
time, some define it according to the specifications from
the national health board [22].

Some researchers performed meta-analyses on Covid-19
positive patients and reported that people with hypertension
[23], [24], diabetes [25], [26], and cerebrovascular and
cardiovascular diseases [27] are at more risk of severity
or mortality. Some studies such as [28] and [29] performed
systematic analyses on the clinical characteristics of Covid
positive patients and found various biomarkers such as ele-
vated levels of troponin, Interlukin, and LDH, and depressed
levels of total lymphocytes and albumin are indicators of
high severity or mortality. Several studies collected patient
information such as demographics, clinical data, underlying
comorbidities, laboratory test results, and medical images.
They used various machine learning models to predict
the severity or mortality of the patients and identify the
significant severity or mortality predictors. Tingting Dan et
al. [20] collected the relevant information of 733 patients
and used SVM to predict the need for ICU, death even after
being admitted to ICU, and length of ICU stay in case of
survivors. They achieved an accuracy of 92% for mortality
prediction. In their study, Darapaneni et al. [30] employed
Logistic Regressor (LR), Decision Trees (DT), Random
Forest (RF), and Ensemble classifiers to accomplish two
objectives. The first objective was to predict confirmed cases
among suspected ones based on their clinical records, while
the second objective was to predict the ward (general, semi-
ICU, or ICU) where positive cases identified in the first task
would be admitted. The RF model used the Ginni score to
identify the predictor variables for the high severity of the

disease and achieved the highest testing accuracy of 94.8%.
However, the data collected did not contain essential fea-
tures such as D-dimer and potassium levels of the suspected
individuals. Li X et al. [31] employed deep learning that
predicted the requirement for ICU admission and mortality
of Covid-19 patients and obtained 85.3% accuracy and 75%
sensitivity. They used the Gini feature of importance to find
the significant predictors of mortality. Ezz M et al. [32]
employed Extreme Gradient Boosting to predict the need
for ICU admission and achieved 97% accuracy and 96%
sensitivity. El-Shafeiy E et al. [33] selected features from
the collected data using Quick Redundant Feature Selection
(QRFS) technique and trained the quantum neural network
to predict the severity of Covid-positive patients. Jianhong
K et al. [34] employed Artificial Neural Networks to predict
different severity levels of Covid-19 patients once admitted
to the hospital. According to them, low albumin and high
globulin levels, and blood urea nitrogen are the main risk
factors for higher severity. Di Castelnuovo A et al. [35]
were able to obtain 83.4% accuracy and 95.25% sensitivity
using Random Forest for predicting the mortality in Covid
positive patients. Using Permutation Feature Importance,
they found eGFR, CRP, and age are the main mortality
predictors.

The authors of [36] collected data of 10,237 patients and
evaluated different machine learning models such as KNN,
SVM (rbf and linear), Lasso, and RF to predict Covid-19
mortality. They obtained the highest accuracy of 91.9% and
the highest sensitivity of 92% using linear-SVM. They used
Lasso and RF separately to find the significant mortality
predictors. According to Lasso and RF, old age, Diabetes
Mellitus and cancer and age, infection route, and hyperten-
sion are the main mortality predictors, respectively. In their
work, Han et al. [21] introduced a neural network system
called the Broad Learning System, which is designed to
predict mortality in Covid-19 patients and achieved 94.64%
accuracy and 94.5% sensitivity. Chowdhury et al. [37]
collected data from 375 patients to build LR classfier to
assess the risk of death due to Covid-19. The authors of [38]
also used various machine learning models such as GBDT
and LR for mortality prediction. They used LR to find the
significant mortality predictors. Elham Jamshidi et al. [39]
used LR and RF models for this purpose. The authors of
[40] used SVM, LR, and XGBoost to predict mortality.

Table I summarizes the works of different studies that
have used machine learning to prognosticate the probability
of death in Covid-infected patients. These studies have
employed different supervised machine learning models.
However, the most frequently used include RF, SVM,
XGBoost, and LR. These studies have been conducted in
different nations for different periods. In most of these
studies, the size of the dataset is very small, with only 250 -
500 data records. In addition, the available data is typically
imbalanced, with a more substantial number of patients who
have recovered than those who have died. While certain
studies have produced models with acceptable accuracy,
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TABLE I. Summary of Machine Learning Models Used for Mortality Prediction of Covid-19 Patients

Techniques to identify

Work 1\2 atas.et Number of Algorithm used significant predictor Mortallt}j Predictor Performance
odality Cases . Variables
variables
Demographics . Glomerular Filtration Acc1‘11ja§y=83.4%
(35] Laboratory tcst; 3394 RF Permutation Feature rate(e—GER), SenS{tlv%ty:95.2%
clinical notes ’ Imortance (PFI) C-Reactive Specificity=30.8%
Protein(CRP), Age F1 score=90.4%
. . Age, LDH, Oxygen Accuracy= 85.3%
Df-:mographllcsj . Deep learning Ginni feature sfturation (Spgi), Sensitivi}t/y:75.0%
[31] | Chronic comorbidities, 1022 model . .o e
Jaboratory tests (5 hidden layers) of importance CRP, 'Procalcuon'm, Specificity=87.2%
Cardiac Troponin F1 score=61.6%
Lymphocyte Absolute
Demographics, value, D-dimer,
[20] Clinical and 733 SVM Recursive Feature Albumin, Respiratory rate, Accuracy=92%
laboratory test (kernel-poly) Elimination LDH, Adenosine AUC=0.98
results deaminase, Direct
Bilirubin (DB)
Accuracy:
LASSO=91.1%
Linear SVM=91.9%
RBF-SVM=70.2%
Lasso: Old age, _
Demographics Lixlldepa‘rsss(\)/’l\/l Diabetes Mellitus(DM), Klgjl\;fgg‘?%
[36] and medical 10,237 ? LASSO and RF Cancer s
information RBE-SVM, RF: Age, Infection Sensitivity:
RE, KNN Rou.te H;/penension Lass0=90.7%
’ Linear SVM=92%
Specificity:
Lasso=91.4%
Linear SVM=91.8%
Demographics, Accuracy=94.64%
laboratory test Broad Learning Sensitivity=94.50%
(211 results, 375 system NA NA Specificity=94.80%
symptoms AUC=98.84%
Accuracy:
GBDT =88.9%
LR=86.8%
Clinical, LR-5=88.7%
demographic GBDT, o - LDH, BUN, Sensitivity:
[38] ’ 2924 LR, Logistic Regression Lymphocyte(%), Age, GBDT=89.9%
laboratory, .
radiological data LR-5 Interlukin LR=87.8%
LR-5=89.8%
Specificity: GBDT=78.8%
LR=76.9%
LR-5=77.1%
Epidemiological,
[41] der:ﬁf{:;{‘m’ 485 XGBoost XGBoost L]]“)ylfl‘}‘;};l‘ficﬁgp Accuracy =90%
laboratory data
BUN, Creatinine, Sensitivity:
. RF=70%
Laboratory albumin, gender, LR=65%
[39] indicators, 263 LR and RF RF age, Red cell distribution Specificity:
demographics width(RDW),INR (International RF=75% :
Normalized Ratio) LR=70%
Demographics SVM, Recursive Feature Age, SpO2,
[40] e ’ 3841 Logistic Regression, Elimination, type of patient AUC=0.91
Clinical
XGBoost XGBoost encounter
Demographics, LDH, Neutrophils(%),
[37] clinical, 375 Logistic Regression XGBoost Lymphocyte(%), AUC=0.991
laboratory tests CRP, Age
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they have not been able to achieve higher sensitivity [31]
[39]. Achieving high sensitivity in predicting mortality is
essential as predicting a low risk of death (false negative)
for a patient who is actually at a higher risk of death can
lead to unfavorable results.

3. MATERIALS AND METHODS
A. Data

In this study, we have worked on two datasets, one
from Xiaoran Li et al. [31], obtained from Stony Brook
University Hospital, NY, USA, and another dataset from
[42], released by the Mexican government. The US dataset
[31] consists of patient records with demographic informa-
tion such as age, gender, nationality; comorbidities such as
hypertension, asthma, COPD; clinical notes such as fever,
sore throat, chest pain, sputum; and laboratory tests details
like LDH, ALT, D-dimer, Lymphocytes, procalcitonin. The
US dataset contains two separate datasets; a) US dataset 1:
for predicting the need for ICU admission (containing
1106 records and 43 features (target label included)), and
b) US dataset 2: for predicting the mortality (containing
1020 records and 43 features (target label included)). In
these datasets, nearly 43% are women and 57% are men;
about 29% of men and 19% of women are admitted to
ICU. About 27% of the patients are diabetic and 48% are
having hypertension. The Mexican dataset [42], accessed
on 23 February 2021, consists of 10,48,575 patient records
containing patients’ demographic and comorbidities infor-
mation. The demographic information includes age, gen-
der, residence, and nationality; and comorbidities include
diabetes, hypertension, obesity, renal chronic disease. This
dataset consists of 40 features (including columns of ’icu’
and ’death’). In this dataset, nearly 12% of patients are
diabetic and 16% are having hypertension.

B. Methodology

To account for missing values in the US dataset, the
predictive mean modeling technique was implemented,
whereas for the Mexican dataset, columns or features with
missing data exceeding 20% were removed due to the
dataset’s substantial size. We have divided the problem into
three parts:

e To predict the need for ICU admission and identify
the significant predictors for ICU admission

o To predict the mortality of Covid patients and identify
the significant predictors of mortality, and

e Perform a comparative analysis of the predictor vari-
ables of mortality in the two datasets

We aim to categorize patients based on their need for
ICU and determine their likelihood of mortality. To achieve
this, we have opted for five supervised learning models.
These algorithms are simple to implement and are robust in
nature. Our inclination is towards machine learning models
instead of deep learning for prediction and classification,

primarily to decrease computational complexities. Addition-
ally, machine learning models provide us with the capability
to obtain insights into our data, such as feature importance,
using algorithms like Random Forest.

1) K-Nearest Neighbor (KNN) [43] [44]: It uses the
concept of feature similarity to predict the cate-
gory of a new data point. KNN [45] being a non-
parametric algorithm does not make any hypothesis
on the training data and therefore does not derive any
pattern or fit a curve in it. It stores the training data,
and at the time of prediction, it finds the k closest
neighbors and predicts the class of a new data point
on the majority voting principle. Fitriyadi et al. [46]
have used KNN to predict the degree of Covid-19
dissemination and [47] have implemented KNN to
predict the status of infected patients.

2) Logistic Regression (LR) [48] [49] [50]: The algo-
rithm is a predictive analysis tool that operates on
probabilities. Logistic Regression (LR) is its basic
form and deals with predicting binary outcomes,
i.e., either 0 or 1. By employing a logistic function,
it maps the input data to these two values. LR is
effective when data is linearly separable, but can
result in overfitting if the dataset has more features
than records.

3) Support Vector Machine (SVM) [51] [52] [53]
[54]: SVM represents distinct classes in a multi-
dimensional space using a hyperplane. It maps data
points onto an n-dimensional plane, with n signifying
the attribute count in the dataset, and each coordinate
on the plane representing a feature of the data point.
The algorithm endeavors to identify a hyperplane
that effectively separates the two classes and assigns
the class of a new data point according to which side
of the hyperplane it belongs to. It works pretty well
with a higher number of features.

4) Decision Tree (DT) [55] [56] [57] [58]: Decision
Tree is a structure resembling a tree where the
internal nodes are known as decision nodes as they
are used to make decisions. The leaf nodes denote
the output. At each split of the tree, a decision is
made based on the feature taken into consideration.
The order of attributes to be taken as a root node or
decision node is based on statistics that measure a
particular attribute’s importance using measures such
as entropy, information gain, or Gini score.

5) Random Forest (RF) [59] [60] [61] [62]: It is an
ensemble technique that employs a collection of de-
cision trees to solve complex problems and provide
improved model performance. The decision trees in
a Random Forest take different overlapping subsets
of the training dataset and, based on majority voting
on the predictions of decision trees, RF provides the
output. RF usually obtains higher accuracy when the
number of trees is greater.

In order to determine the variables that are most
predictive in the classification task, we have used
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the RF algorithm that, by default, uses the Gini score
[63] to find the most important variables that lead to
the higher prediction accuracy [64]. The lower the
Gini score, the more important the variable is.

4. MODEL EVALUATION

The dataset is partitioned into training and testing sets
at a ratio of 75:25 to assess the models’ performance. The
classifier’s true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) help us to calculate
the following measures.

Accuracy: It represents the percentage of the model’s
total predictions that were accurate [65].
TP+TN

Accuracy = (H
TP+TN+FP+FN

Sensitivity (or recall): This pertains to the true positive
rate, which represents the proportion of correct positive
predictions out of all the positive predictions made [65].

S ensitivity = L 2)

TP+ FN

In the case of mortality prediction, it tells us what per-
centage of patients that actually died was predicted in
the death category. High sensitivity is quite essential in
mortality prediction or prediction of the need for ICU
because identification of patients at higher risk is more
important than reducing false positive prediction.

Specificity: It is a measure of the model’s ability to
predict true negatives in each available category [65].
TN
S pecificity = ———— 3
pecificity TN FP 3
It tells us what percentage of patients that did not die, were
predicted by the model in the ‘no_death’ category.

Precision: This pertains to the ratio of positive predic-
tions that are accurately correct [65].
TP
Precision = ———— @
TP+ FP
This measure indicates the percentage of patients in the
“death” category that were accurately predicted in the
"death’ category.

F1 Score: It tries to find a steadiness between precision
and sensitvity. It is measured as the harmonic mean of the
two [66].

Precision = S ensitivit
F1Score =2 Y

&)

k
Precision + S ensitivity

AUC: The AUC-ROC curve is a widely used method
of assessing the efficacy of a binary classifier, with the
true positive rate plotted against the false positive rate.
The AUC-ROC score, which is the area under this curve,
provides a gauge of the classifier’s capacity to differentiate

between the classes. An AUC score ranging from O to 1 is
possible, with a higher value indicating a superior classifier
[65].

5. EXPERIMENTAL SETUP

Model
Development

F—Jﬁ .
. R
US and Mexican
datasets

l —

Data Cleaning

l

Feature Scaling

Data Preprocessing

——— > Dataset splitting

Test data Training data

Machine Learning
Models

1. KNN
2.LR

3.8VM
. 4.DT
Oversampling/ 5 RF

Undersampling

L l

Balanced Dataset

Trained Models

l

Performance
Evaluation and
Comparison

Figure 1. Proposed Processing model

Figure 1 shows our proposed processing model with dif-
ferent steps of data pre-processing and model development.
The two US datasets do not contain any missing values
as the missing values have been imputed by predictive
mean modeling by [31]. The Mexican data had a lot of
missing data for many columns. The columns with more
than 20% missing values were removed. Moreover, the
rows containing missing data were also removed. Since
the dataset is quite large, therefore discarding records with
missing values would not affect the model performance.
This step of eliminating rows with missing values is re-
quired as many machine learning models do not support it,
leading to biased results otherwise. We used feature scaling
for both the Mexican and US datasets to make all the data
values present in the same range. For this purpose, all the
data features are scaled using min max normalization of
data to rescale all the data values in the range of [0, 1]. An
imbalance was found in the distribution of categories in the
“Death” and ”ICU” columns in the US dataset. Figure 2a
clearly shows the imbalance in the class distribution in US
dataset 1 as Class O ("no ICU”) has 875 data samples, and
Class 1 ("ICU”) has only 271 data samples. Similarly, in US
dataset 2 (Figure 2b), category O (’no death”) has 878 data
samples, and category 1 (“death”) has 142 data samples. To
balance the data in both cases, we applied data oversampling
to make the number of minority-class samples equal to
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Death

14% \

(a) (b)

Figure 2. US Data: Class distribution for (a) ICU admission (b)
Mortality

the majority-class samples. Therefore, after oversampling,
class 0 and class 1 each consist of 875 samples in the
US dataset 1 and 878 samples in US dataset 2. Table
II represents the number of data samples before and after
sampling of the US dataset.

From Figure 3, we can depict that the Mexican dataset
also has a class imbalance in both cases. Hence, we per-
formed the over and undersampling of the dataset. After
data cleaning and keeping the ’icu’ feature as the target label
in the Mexican dataset, the dataset contains 166796 records
with 28 features, including the target label. It consists of
152010 data samples of class 0 ("no ICU”) and 14786
data samples of class 1 ("ICU”). After oversampling, both
classes consist of 152010 data records. Table III represents
the number of data samples before and after sampling of
the Mexican dataset. In all cases of oversampling, we have
used Random Oversampler (in python) [67]. RandomOver-
Sampler uses a naive oversampling technique that randomly
duplicates the data records in the minority dataset so that
both the classes of the dataset contain an equal number of
data records. While keeping the ’death’ feature as the target
label, the Mexican dataset contains 833457 records with 29
columns, including the target label. It consists of 767544
data samples of class 0 ("no death”) and 65913 samples of
class 1 (death”). In this case, the size of the dataset is quite
large, we undersample the dataset to reduce the computa-
tional time complexities. We performed undersampling of
class 0 using Near miss (version 3) undersampler [68] so
that each class contains 65913 samples of data. Near Miss
UnderSampler uses the knn technique to eliminate the data
points from the large class distribution. It calculates the
distance between the closer data points from the two class
distributions and eliminated the closer data points from the
majority class.

A. Classification

In each experiment, we divided the data into a training
set of 75% and a test set of 25%. To optimize the classi-
fication performance, we employed hyperparameter tuning
with 10-fold cross-validation using GridSearchCV for each
machine learning model. By using a grid of parameters,
GridSearchCV identified the optimal parameters for a given
model and training dataset.

Death
Icu
-~ N

(a) (b)

Figure 3. Mexican Data: Class distribution for (a) ICU admission
(b) Mortality

1) Experiment 1

1) Need for ICU prediction (US dataset): To determine
the model with the optimal performance, we em-
ployed five distinct machine learning models. KNN
gives the best results when k is set to 1. The
optimal performance for LR is achieved by setting
the value of C to 10, max_iter to 100, and using
the L1 penalty. SVM shows the best performance
with the rbf kernel. Decision Trees show the best
performance with default parameters, and RF shows
the best performance with n_est set to 19 and all
other parameters set to default values.

2) Mortality prediction (US dataset): To determine the
model with the optimal performance, we employed
five distinct machine learning models. KNN shows
its best performance when K is set to 1; logistic re-
gression shows the best performance with parameters
C =100, the penalty set to L2, and max _iter=100.
SVM shows the best results with kernel ’rbf’, the
Decision tree shows the best results with default
parameters, and random forest gives the best per-
formance when 'n_est’ is set to 19, and all other
parameters are default.

We have used the Random Forest algorithm to find
the significant features for each case, that is, for [CU
admission and mortality prediction.

2) Experiment 2

1) Need for ICU prediction (Mexican dataset): The
best performance by these models is achieved when
K is set to 1 in KNN; C=0.01, max iter =100
and penalty=L2 for LR model; rbf kernel in SVM,;
default parameters in Decision Trees and in Random
Forest, n_est=19, and all other parameters are de-
fault.

2) Mortality prediction (Mexican dataset): For mortality

prediction, the best performance is achieved when
k=25 in KNN; default parameters in all other mod-
els.
We have used the Random Forest algorithm to find
the significant features for each case, that is, for
the prediction of the need for ICU admission and
mortality prediction.
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TABLE II. Data Sampling in the US dataset

ICU Mortality
Class 0 | Class 1 | Class 0 Class 1
Before Sampling 875 271 878 142
After Sampling 875 875 878 878 .
(oversampling)

TABLE III. Data Sampling in the Mexican dataset

ICU Mortality
Class 0 | Class 1 Class 0 Class 1
Before Sampling | 152010 | 14786 833457 767544.
(oversampling)
. 65913 65913
After Sampling | 152010 | 152010 (undersampling) | (undersampling)

3) Experiment 3

1) We conducted a comparative examination of mor-
tality prediction between US and Mexican datasets.
Our analysis involved utilizing comparable input fea-
tures that only contained information concerning the
demographic and underlying comorbidities of Covid-
positive patients. To identify the crucial predictors of
mortality in both datasets, we employed the Random
Forest algorithm.

6. RESULTS AND DISCUSSION

TABLE IV. US data: Confusion Matrices for ICU admission pre-
diction

TP | TN | FP | FN

KNN | 156 | 195 | 52 | 15
LR | 140 | 118 | 68 | 92
SVM | 158 | 199 | 50 | 11
DT | 148 | 198 | 60 | 12
RF | 165 | 194 | 43 | 16

TABLE V. US data: Confusion Matrices for mortality prediction

TP | TN | FP | FN
KNN | 192 {216 | 31 | O
LR | 174 | 177 | 49 | 39
SVM | 201 | 216 | 22 | O
DT | 190 | 215 | 33 1
RF | 200 | 214 | 23 | 2

A. Experiment 1: US data: Need for ICU admission and
Mortality prediction
Tables IV and V represent the confusion matrices
obtained in the classification task of ICU and mortality
prediction respectively in the case of US data. Tables VIII
and IX show the results of the prediction of the need for
ICU admission and mortality, respectively, in the case of

TABLE VI. Mexican data: Confusion Matrices for ICU admission
prediction

TP TN FP FN
KNN | 35396 | 37830 | 2679 100
LR | 27619 | 27063 | 10456 | 10867
SVM | 29486 | 27832 | 8589 | 10098
DT | 35572 | 37921 | 2503 9
RF | 36374 | 37928 | 1701 2

TABLE VII. Mexican data: Confusion Matrices for mortality pre-
diction

TP TN FP FN
KNN | 10790 | 9490 | 5622 | 7055
LR 9854 | 10961 | 6558 | 5584
SVM | 8776 | 11553 | 7636 | 4992
DT | 9666 | 9675 | 6746 | 6870
RF | 10428 | 10102 | 5984 | 6443

US data. Since the dataset used is the same, we have
compared the results of the models used in our paper with
[31], as shown in tables VIII and IX. Li et al. [31] utilized
a deep learning model to anticipate both the requirement
for ICU admission and death in patients infected with
Covid. Their risk score model facilitated the evaluation of
the possibility of the need for ICU and mortality based
on specific clinical factors of an individual. The Random
Forest model used in our paper has outperformed the
deep learning model [31] and other models used in this
paper. The RF model achieves an accuracy of 89% and
sensitivity of 93% for ICU prediction and 97% accuracy
and 100% sensitivity for mortality prediction. We have
plotted various features against their Ginni values to depict
their significance in the prediction process. Figures 4 and
5 show the various significant features for ICU admission
and mortality prediction, respectively, in order of their
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TABLE VIII. US data: Performance indices for icu admission prediction

Accuracy | Sensitivity | Specificity | Precision | F1 Score | AUC
KNN 84 93 75 79 85 0.84
LR 62 57 67.3 64 60 0.69
SVM 85 95 75.9 80 87 0.91
DT 84 95 73.55 78 86 0.82
RF 89 93 85 86 89 0.96
Deep
Learning [31] 72 76 71 43 55 0.73
TABLE IX. US data: performance indices for mortality prediction
Accuracy | Sensitivity | Specificity | Precision | F1 Score | AUC
KNN 93 100 86 87 93 0.93
LR 80 82 78 78 80 0.87
SVM 95 100 90 91 95 0.97
DT 92 100 85 87 93 0.93
RF 97 100 95 95 98 1
Deep
Learning [31] 85 75 87 52 62 0.84

TABLE X. Mexican data: performance indices for icu admission prediction

Accuracy | Sensitivity | Specificity | Precision | F1 Score
KNN 96 100 93 93 96
LR 72 72 72 72 72
SVM 76 73 78 77 75
DT 97 100 94 94 97
RF 98 100 96 96 98

TABLE XI. Mexican data: performance indices for mortality prediction

Accuracy | Sensitivity | Specificity | Precision | F1 Score
KNN 62 57 66 63 60
LR 63 66 60 62 64
SVM 62 70 54 61 65
DT 59 59 58 59 59
RF 62 61 63 63 62

significance. We find that the main five significant predictors
of the need for ICU admission are Lactate Dehydrogenase
(LDH), Procalcitonin, C-Reactive Protein (CRP), Ferritin,
and Oxygen Saturation (SpO2). The top five significant
predictors of mortality are Age, Procalcitonin, D.dimer,
LDH, and CRP. The higher levels of LDH are indicative
of severe tissue damage [29]. Elevated levels of CRP and
ferritin show inflammation in the patient’s body [29], and
elevated levels of procalcitonin usually are associated with
a high bacterial or viral infection. Low values of SpO2
indicate less oxygenated blood in the body. Higher levels of
D.dimer indicate high blood clots in the body. Therefore, the
changes in the normal levels of these biomarkers indicate

the severity level of the Covid-positive patients. Moreover,
from Figure 5, we can see that older Covid-infected people
are at more risk of death.

B. Experiment 2: Mexican data: Need for ICU admission

and Mortality prediction

Tables VI and VII represent the confusion matrices
obtained in the classification task of ICU and mortality
prediction respectively in the case of Mexican data. The
results obtained from different models for the need for ICU
and mortality prediction are shown in tables X and XI,
respectively. We get the best results from the Random Forest
algorithm with 98% accuracy and 100% sensitivity for ICU
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Figure 4. Significant features for ICU prediction (US data)
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Figure 5. Significant features for Mortality prediction (US data)
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Figure 6. Significant features for ICU prediction (Mexican data)

prediction, and the LR model gives the best results for
mortality prediction with 63% accuracy and 66% sensitivity.
It can be seen from table XI that all the models show
comparable results in mortality prediction, however, LR
shows higher sensitivity and specificity than other models.
It may be noted that RF shows the best performance

Figure 7. Significant features for Mortality prediction (Mexican data)

except in the case of mortality prediction in Mexican data.
This is due to the reason that the data preprocessing and
undersampling done before classification has changed the
dataset properties. The dataset has become more linearly
separable and hence LR performs slightly better than the
RF model. As per the RF algorithm, Age, Intubed, Sector,
Municipality residence, Medical unit location, and patient
residence are the top five significant predictors among
the provided input features for ICU admission. The top
mortality predictors obtained from the RF algorithm include
Age, Municipality residence, Birth place, Medical unit
location, and residence of the patient. We have plotted
various features against their Ginni values to depict their
significance in the prediction process. The various sig-
nificant predictors of the need for ICU admission and
mortality prediction in the case of Mexican data are shown
in Figures 6 and 7, respectively. It can be observed that
the residence information of the patient is more significant
than the comorbidities information for the prediction of ICU
admission and mortality. This indicates that people from
one place are at more risk than people from other places.
Possible reasons may include more availability of medical
assistance, sanitization, and awareness about the Covid-19
disease in some places than the other ones.

C. Experiment 3

In order to know whether the same features are respon-
sible for mortality in the two datasets, we compared the sig-
nificant features of the two datasets. To make a comparison,
we employed identical feature types in both datasets that
included patient demographic information and underlying
comorbidities. Figure 8 and Figure 9 present the relationship
between these features and their corresponding Ginni values
in the case of the US and Mexican datasets respectively. The
features with higher Ginni values are mainly responsible
for prediction. Based on Figure 9, we can infer that age,
ethnicity, gender, diabetes, and hypertension are the top
five predictors of mortality in the US data. In the case
of Mexican data, age, pneumonia, hypertension, diabetes,
and gender are the top five significant mortality predictors
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(Figure 9). This indicates that the types of patients more
vulnerable to Covid-19 are similar with respect to the un-
derlying comorbidities. However, the order of significance
may vary; for example, in the US, diabetic people are
at more risk of death due to Covid-19 than people with
hypertension, but it is vice-versa in the case of Mexican
data.
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Figure 8. Significant features for mortality prediction using demo-
graphic and comorbidities features from US data
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Figure 9. Significant features for mortality prediction using demo-
graphic and comorbidities features from Mexican data

7. CONCLUSION AND FUTURE WORK

The Covid-19 pandemic has had a catastrophic impact
worldwide, with hospitals and healthcare systems struggling
to cope with the surge in cases during the peak of the
pandemic. Shortages of essential supplies and overwhelm-
ing patient numbers have been major challenges. Having a
reliable prognostic model that can precisely forecast the risk
of ICU admission necessity and death in Covid-19 patients
is critical to avoid similar circumstances in the future and
to facilitate appropriate triage. This study highlights the
efficacy of machine learning models in achieving these ob-
jectives. The findings suggest that among all the algorithms
evaluated, Random Forest outperformed the rest.

From the Mexican dataset, we can deduce that al-
though the demographic and comorbidities information of
the Covid-19 patients only gives good results for the need
for ICU prediction, it does not provide good results for

mortality prediction. Therefore, more data about Covid-
19 patients, such as clinical notes and laboratory tests, is
essential for mortality prediction. The US dataset shows
promising results as we obtained 97% accuracy and 100%
sensitivity for mortality prediction, which is higher than
other previous studies. Comparing the demographic and
comorbidities features of the two datasets, we find that the
significant predictors of mortality are similar. The type of
Covid-19 patients that are more vulnerable does not differ
much in the US and Mexican data. We have found that
patients that are older or have hypertension or diabetes are
more vulnerable to Covid-19.

We build a model based on patients’ demographics
and comorbidities information only to predict the need for
ICU admission and mortality risk. Other similar studies
can compare the performance with our model based on
Mexican data. Further studies can be done to collect the
patients’ data affected by different variants of the virus.
More research can be done to find if the significant mortality
predictors are the same in the case of different variants of
the virus. Furthermore, we can extend the study to other
nations and analyze the effect of the virus on their people. A
more generalized model that is trained from data containing
information on patients from different nations can be built,
and significant predictors of mortality can be analyzed on
a more general population. In addition to this, we can have
image data along with the current datasets and develop
a prediction model that can use combined data for the
prediction task. It would be interesting to find if the mixed
data gives better performance than individual types of data.
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