
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.14, No.1 (Jul-23)

http://dx.doi.org/10.12785/ijcds/140123

Requirements Traceability:
Recovering and Visualizing Traceability Links Between Requirements and Source

Code of Object-oriented Software Systems

Ra’Fat Al-Msie’deen1

1Department of Software Engineering, Faculty of IT, Mutah University, Mutah 61710, Karak, Jordan

Received 5 Oct. 2022, Revised 6 May. 2023, Accepted 8 May. 2023, Published 1 Jul. 2023

Abstract: Requirements traceability is an important activity to reach an effective requirements management method in the requirements
engineering. Requirement-to-Code Traceability Links (RtC-TLs) shape the relations between requirement and source code artifacts.
RtC-TLs can assist engineers to know which parts of software code implement a specific requirement. In addition, these links can
assist engineers to keep a correct mental model of software, and decreasing the risk of code quality degradation when requirements
change with time mainly in large sized and complex software. However, manually recovering and preserving of these TLs puts an
additional burden on engineers and is error-prone, tedious, and costly task. This paper introduces YamenTrace, an automatic approach
and implementation to recover and visualize RtC-TLs in Object-Oriented software based on Latent Semantic Indexing (LSI) and Formal
Concept Analysis (FCA). The originality of YamenTrace is that it exploits all code identifier names, comments, and relations in TLs
recovery process. YamenTrace uses LSI to find textual similarity across software code and requirements. While FCA employs to cluster
similar code and requirements together. Furthermore, YamenTrace gives a visualization of recovered TLs. To validate YamenTrace, it
applied on three case studies. The findings of this evaluation prove the importance and performance of YamenTrace proposal as most
of RtC-TLs were correctly recovered and visualized.

Keywords: Software engineering, Requirements traceability, Requirements engineering, Formal concept analysis, Latent semantic
indexing, Object-oriented source code.

1. INTRODUCTION
Requirements Engineering (RE) aims at discovering,

documenting, and maintaining a collection of requirements
for the software system [1] [2]. RE involves five steps which
are requirement discover, analysis, specification, validation,
and management [3]. Requirements Management (RM)
helps in maintaining requirement evolution during software
development. RM is interested in all processes that lead
to changing functional requirement of the software system
[4]. Requirements Traceability (RT) is the key activity of
RM process. RM process aims at finding and maintaining a
traceability link of a particular requirement from its origins
(or sources), across its specification and development to
its, consequent deployment and use, and over a cycles
of continuous improvement and repetition in any of these
stages [5].

In RE, RT is an important task to attain a successful
and effective RM process [6]. RtC-TLs shape the relations
between requirement and source code artifacts. RtC-TLs
can assist software engineers to know which segments of
code implement a particular requirement. Recovering TLs

between software Requirements and Source code (RaS) is
very useful in numerous Software Engineering (SE) tasks
such as software maintenance, reuse, and change [7] [8]
[9]. Manually recovering and maintaining these TLs puts
a further burden on engineers and is error-prone, tedious,
costly mission, and some TLs may be missing. Traceability
is a unique way to guarantee that the software code is
consistent with its functional requirements. Traceability also
ensures that software engineers have implemented all and
only the required functional requirements [10]. This paper
introduces YamenTrace, an automatic approach to recover
and visualize RtC-TLs in Object-Oriented (OO) software
system [11].

The manual creation of TLs among software RaS is time
consuming, error-prone, tedious task, and complex activity
in the SE domain [12]. Therefore, this study suggests
mainly an automatic approach to recover TLs between RaS.
TLs between RaS is an important process for software
engineers to know which segments of code implement a
certain requirement [13]. Thus, when requirement changes
are suggested software developers know which parts of

E-mail address: rafatalmsiedeen@mutah.edu.jo http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140123
http://journals.uob.edu.bh


280 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

software code have to be modified [14]. Throughout soft-
ware maintenance, a modification (or change) can not only
influence source code but also cause an influence upon
other artifacts such as requirements. Consequently, impact
analysis [15] can use TLs to comprehend relations and
dependencies between software RaS.

The traceability concept is defined as the degree of
which every component in a software determines its reason
for existing [16]. Furthermore, traceability can defined as
the degree of which a link can be formed among two or
more software artifact [17]. In this work, TLs is established
between requirement and class documents of software sys-
tem based on the Textual Similarity (TS) between those doc-
uments. In RE domain, RT term is defined as the capacity to
illustrate and follow the life cycle of a requirement, in both
a forwards and backwards orientation [18]. Therefore, the
ability of software engineers to follow the traces to and from
a requirement (e.g., from its origins to its implementation)
called RT [19]. Backward traceability means the capacity to
follow a TL from a particular software artifact to its origins
(or sources) of which is has been developed (e.g., code −→
requirement). While forward traceability [20] means the
capacity to follow a TL from software artifact sources to
its developed artifact (e.g., requirement −→ code). Figure 1
shows the Backward and forward directions of requirement
traces. Software requirements define what the software
should do. Functional requirements of software are state-
ments of the services (or tasks) that the software must
provide to its users [21] [22]. In this work, functional
requirements are described by natural language [23]. Thus,
for each requirement, there is a document describing single
software service via short paragraph(s).

Figure 1. Backward and forward directions of requirement traces.

YamenTrace combines two techniques in order to re-
cover TLs between RaS. The first technique is LSI and
the second one is FCA [24] [25]. Information Retrieval
(IR) techniques aim at identifying the documents that are
relevant to a query in a group of documents [26]. LSI
is an IR technique. It uses Singular Value Decomposition
(SVD) on the Term-document Matrix (TDM). In the scope
of this study, LSI can be described as an IR technique
that uses a set of documents as the inputs and produces an
indicator with document similarities (i.e., TS) as the output
[27]. FCA is a clustering technique. It allows to obtain
an ordered collection of concepts from a dataset consisted
of objects expressed by attributes [28]. The researcher
who is concerned with FCA and LSI can find additional
information in several studies [29] [30] [31].

FCA considers as an important clustering technique in
SE filed [32]. FCA enables software engineers to extract an
ordered set of concepts (i.e., C ={C0, C1, C2, C3, C4, ...})
from a considerable dataset. This dataset is called a Formal
Context (FC) which contained Objects (O) expressed by At-
tributes (A). An FC is a triple X = (O, A, BR) where BR is
a Binary Relation between O set and A set (i.e., BR ⊆ OA).
An illustrative example of FC is presented in Table I. This
FC describing Jordan maps application releases (i.e., O)
by their requirements (i.e., A). A Formal Concept (FO) is a
pair (X, Y) made of an object set X ⊆ O and their common
attribute set Y ⊆ A. For the given concept C1 = (X1, Y1),
X1 is the extent of the concept C1, while Y1 is the intent of
the concept C1. In this paper, author will use the AOC-poset
for concepts visualization [33]. Figure 2 shows AOC-posets
for FC of Table I.

TABLE I. FC describing Jordan maps application releases by their
requirements.

R
eg

is
tr

at
io

n

L
og

in

V
ie

w
m

ap

V
ie

w
m

os
qu

es

V
ie

w
re

st
au

ra
nt

s

V
ie

w
m

us
eu

m
s

C
ha

ng
e

m
ap

vi
ew

Se
t

fa
vo

ri
te

pl
ac

es

Release 1 x
Release 2 x x
Release 3 x x x x
Release 4 x x x x x x
Release 5 x x x x x x x x

As concepts (i.e., FOs) of AOC-posets are well ordered,
the intent of the top concept (i.e., Concept 0) contains
requirements that are shared with all Jordan maps releases.
While the intents of all remaining FOs (i.e., Concept 1 to
Concept 4) contain sets of requirements shared to a subset
of Jordan maps releases but not all releases. Moreover, the
extent of each concept in AOC-posets is the set of Jordan
maps releases that shared these requirements. For example,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 281

the extent of Concept 0 is ”Release 1”, and the intent of
this concept is ”View map”.

Figure 2. AOC-poset for FC of Table I.

In this paper, after measuring TS between software
requirement and code documents using LSI, YamenTrace
relies on FCA as a clustering technique to group similar
documents together (cf. Figure 3). As another example
regarding FCA technique, Table II shows a FC of a set
of software requirements described by their implementation
(i.e., classes).

TABLE II. FC describing software requirements by their implemen-
tation (i.e., classes).

cl
as

s
F

cl
as

s
G

cl
as

s
H

cl
as

s
I

cl
as

s
J

cl
as

s
K

cl
as

s
L

cl
as

s
M

requirement A x
requirement B x x
requirement C x x
requirement D x x
requirement E x x x

Figure 3 displays AOC-posets for FC of Table II.
Through this AOC-posets, we can notice that the Con-

cept 0 contains the requirement A in its extent, and class F
in its intent. Thus, the requirement A is textually similar to
the class F, and is therefore grouped together into a disjoint
concept. Also, we can notice from this AOC-posets that
the requirement B is textually similar to class G, class I,
and class M. Moreover, class H is the implementation of
requirement C. Similarly, requirement D implemented by
class L and class I.

Figure 3. AOC-poset for FC of Table II.

LSI refers to a technique that calculates TS between
different documents. TS is calculated using the occurrences
of terms in documents of the corpus. If several documents
share a significant number of terms, then those documents
are deemed to be similar [34]. A complete example explain-
ing how to calculate TS between a set of documents using
LSI technique is presented in Section 3-C.

YamenTrace takes the software requirements and code
as its inputs (cf. Figure 4). Then, YamenTrace recovers
and visualizes the identified TLs between RaS. The first
step of YamenTrace aims at extracting software source
code (cf. Section 3-A). The second step generates all class
documents of a given software code (cf. Section 3-B). Then,
in the third step, YamenTrace relies on LSI method to define
the similarity between requirement and class documents
(cf. Section 3-C). Finally, in the fourth step, YamenTrace
uses the similarity measure to identify TLs between RaS
by using FCA (cf. Section 3-D).

When software engineers maintain and evolve software
system, RT becomes outdated because engineers don’t care
about updating traceability information. However, recover-
ing RT later is a tedious and costly task for engineers. Thus,
current studies have proposed several approaches to recover
RT either semi-automatically or automatically (cf. Section
2). Among the suggested studies, the current approaches
revealed that IR methods can automatically retrieve TLs
between RaS. Though, IR methods lack accuracy. This
paper suggests an automatic approach to recovering and
visualizing TLs between RaS based on LSI and FCA
techniques. The originality of YamenTrace is that it exploits
all code identifier names (e.g., method and attribute), com-
ments, and relations (e.g., inheritance) in TLs recovery pro-
cess. YamenTrace uses LSI to find textual similarity across

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


282 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

software code and requirements. While FCA employs to
cluster similar code and requirements together. Furthermore,
YamenTrace gives a visualization of recovered TLs.

The rest of this paper is organized as follows. Studies
relevant to YamenTrace contributions are included in Sec-
tion 2. YamenTrace is detailed in Section 3. Experiments
are shown in Section 4. Finally, Section 5 wraps up this
paper and makes suggestions for future work.

2. A LITERATURE REVIEW OF RT RECOVERY: A
MINI SYSTEMATIC SURVEY
This section presents a systematic literature review re-

lated to YamenTrace contributions. The closest approaches
to YamenTrace contributions are selected and presented in
Table III. In this Table, the used code relations, element
names, and IR techniques (resp. FCA) are highlighted.

Antoniol et al. [35] presented an IR technique to retrieve
TLs between software source code and documentation.
They applied the suggested approach to trace software
code to functional requirements (resp. manual pages). The
authors used IR technologies, such as Probabilistic Model
(PM) and Vector Space Model (VSM).

Tsuchiya et al. [36] offered a semi-automatic approach
to retrieve TLs between RaS in a collection of Product
Variants (PVs). The authors exploited commonality and
variability at code elements and requirements to reduce the
search space, then recover the TLs. The authors recovered
TLs using the Configuration Management Log (CML).

Gethers et al. [37] presented an automatic approach to
create a links between RaS of a single software system.
Their approach combines several IR techniques such as:
Jensen and Shannon (JS) model, VSM and Relational Topic
Modeling (RTM). Their approach shows that the integrated
technique outperforms separate IR techniques. The authors
reached an average precision of about 40%. On the other
hand, they did not offer specific values for recall metric.

Marcus and Maletic [38] used LSI technique for recov-
ering TLs between software RaS. By using the identifier
names and comments appear in software source code,
they manage to mine semantic information valuable for
retrieving TLs.

Ali et al. [39] suggested an automatic IR approach in
order to decrease the number of recovered false positive TLs
by other IR studies. The suggested approach considers that
information obtained from various code entities (e.g., class
and comments) are unique sources of information. Where,
every source of information may serve as a specialist
recommending TLs. The approach is used to decrease false
positive TLs of VSM technique. The results reveal that
the approach increases the accuracy of VSM, and it also
decreases the efforts needed to manually eliminate false
positive links. The current approaches for recovering TLs
between RaS are summarized in Table III.

Table IV shows a comparison between current ap-
proaches related to YamenTrace contributions. The selected
approaches are evaluated according to the following criteria:
link creation, tool support, empirical evidence, evaluation
metrics, and code language.

Several studies have recovered TLs between require-
ments and a variety of software artifacts, such as design
documents, Unified Modeling Language (UML) diagrams.
Dagenais et al. [40] have suggested a technique to extract
TLs from API and learning sources based on code-like
terms in documents. Their technique automatically analyzed
the software documentation and linked code-like terms
(e.g., day()) to explicit code elements (e.g., DateTime.day())
in the API. Kaiya et al. [41] have suggested a technique
to discover change impacts on software code produced
by requirements changes. They suggested a technique and
a tool for impact analysis on source code produced by
requirements changes. In their technique, an IR method is
utilized to determine TLs between RaS.

Lin et al. [42] have introduced the Poirot tool. This
tool supports traceability of diverse software artifacts. A
PM is utilized as an IR technique to automatically create
traces among different kinds of software artifacts, involving
software code and requirements. The authors did not employ
precision (resp. recall) metric to evaluate the quality of
the produced TLs. Charrada et al. [43] have suggested
an approach to distinguishing outdated requirements by
using changes in software source code. Their approach first
finds changes in code that are likely to influence software
requirements. Then it obtains a collection of keywords
depicting changes. These keywords are tracked to Software
Requirements Specification (SRS) document to detect influ-
enced requirements. The authors did not offer values for
recall metric.

Yadla et al. [44] have presented an approach to tracing
software requirements to bug reports by using LSI. Their
approach is implemented in the RETRO tool. RETRO uses
LSI technique to find TS among requirements and bug
reports. Eaddy et al. [45] have proposed CERBERUS, a
hybrid method for concern (or concept) location. The con-
cern location problem is identifying code elements within
a software that are relevant to the implementation of a
feature or requirement. Their approach gave a value of 73%
(resp. 75%) to the recall (resp. precision) metric. Khetade
and Nayyar [46] have suggested a method based on LSI to
find TLs between software code and free text documents.
They used LSI technique to automatically identify TLs
among software code and requirements.

Eyal-Salman et al. [47] have suggested an approach
based on LSI to recover TLs among source code and
features of a collection of PVs. While YamenTrace recovers
RtC-TLs in a single software system. Chen et al. [48]
[49] have suggested an automatic approach that exploits
hierarchical tree and tree map visualization techniques to

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 283

TABLE III. Summary of RT approaches (comparison table).

ID Approach Source code IR techniques

Code relations Element names FC
A

In
he

ri
ta

nc
e

A
ttr

ib
ut

e
ac

ce
ss

M
et

ho
d

in
vo

ca
tio

n

Pa
ck

ag
e

C
la

ss

A
ttr

ib
ut

e

M
et

ho
d

M
et

ho
d

pa
ra

m
et

er

M
et

ho
d

lo
ca

l
va

ri
ab

le

C
od

e
C

om
m

en
t

C
la

ss
fil

e

L
SI

V
SM

PM C
M

L

JS R
T

M

1 Antoniol et al. [35] x x x x x x x
2 Tsuchiya et al. [36] x x x x x
3 Gethers et al. [37] x x x x
4 Marcus & Maletic [38] x x x x x
5 Ali et al. [39] x x x x x x x
⇝ YamenTrace x x x x x x x x x x x x

TABLE IV. An overview of RT approaches (comparison table).

ID Approach Link creation Empirical evidence Evaluation metrics Code language

A
ut

om
at

ic

Se
m

i-
au

to
m

at
ic

To
ol

su
pp

or
t

A
ca

de
m

ic

In
du

st
ri

al

O
pe

n
So

ur
ce

Pr
ec

is
io

n

R
ec

al
l

C
+
+

Ja
va

1 Antoniol et al. [35] x x x x x x x
2 Tsuchiya et al. [36] x x x x x x x
3 Gethers et al. [37] x x x x x
4 Marcus and Maletic [38] x x x x x x
5 Ali et al. [39] x x x x x x

−−⇝ YamenTrace x x x x x x x

offer a universal structure of requirement traces and a
comprehensive overview of each trace. While YamenTrace
provides graph-based visualization of RT information. This
graph visualizes traceability information among software
RaS.

A study of the literature and comparisons of current
approaches showed that there is no study or approach in
the literature that uses the code relations (resp. FCA) in
the process of recovering TLs between software RaS. In
this paper, LSI is used to measure TS between requirement
and class documents. The use of LSI in YamenTrace is not
considered a novel aspect, as several studies have employed
LSI to recover TLs between RaS. On the other hand, FCA
technique is used to cluster similar requirement and class
documents together based on TS measured by LSI. The use
of FCA here is considered a novel aspect of YamenTrace
approach where it has not been used before in RT studies,
especially in the context of RaS. Also, YamenTrace prepares
the class document in a novel way, where it exploits the

identifier names, code relations and comments to construct
the class document. Existing approaches used class files as it
without any preprocessing. Finally, YamenTrace visualizes
the recovered TLs between RaS.

3. YAMENTRACE APPROACH
A summary of YamenTrace is presented in Figure 4.

The inputs of YamenTrace are software source code and
requirements. While the outputs of YamenTrace are TLs
across software RaS.

This study focuses on the recovering of TLs between
RaS. Functional requirements describe the software ser-
vices that must present to end users. This study considers
that functional requirements are implemented via software
source code. YamenTrace works only with OO software
system [50]. Consequently, functional requirements are im-
plemented using main OO code elements (e.g., class and
method). This study also assumes that code identifiers that
implement a particular requirement are textually similar to

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


284 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

requirement name and description.

Figure 4. RT recovering process - YamenTrace approach.

Figure 5 displays a meta model representing the relation
(or link) between software requirements and classes. In this
work, requirement document is linked to one or more class
documents based on the TS. Thus, for each requirement
traceability, there is a requirement document and one or
more class documents (cf. Figure 5). Each class document
contains main source code elements that belong to this class.
The software class may inherits attributes and methods from
the superclass (i.e., inheritance relation) [51]. Also, each
software class belongs to a particular software package.
Also, software class contains many attributes, methods,
and several code comments. In addition, software method
may contains parameter name(s) in its signature. Also, in
its body, the method may contains a local variable, code
comment, attribute access, or method invocation. All code
elements, code dependencies and requirement traceability
relations are given in Figure 5.

To illustrate some steps of YamenTrace, the author con-
siders the Drawing Shapes (DS) software as an illustrative
example in this study [52]. DS permits the user to draw
several types of shapes such as line, and rectangle. DS
software is considered as a small sized software system
[53]. The author uses this example to better clarify the steps
of YamenTrace approach. The author does not know the
TLs between class and requirement documents in advance.

YamenTrace only uses software RaS as an inputs for RT
recovering process. Figure 6 displays the Graphical User
Interface (GUI) of DS software.

Figure 5. RT meta model of YamenTrace approach.

DS allows user to choose a color and a kind of shape
to be drawn from software interface. The possible shapes
involve line, rectangle, and oval [54] [55]. The software
engineer can extend this version by adding other kind of
shapes. Furthermore, DS lets the user to press a mouse
button to generate a shape on drawing zone. Users of this
software can resize the drawn shape by dragging the mouse
anywhere on the drawing zone. DS allows the user to
draw a picture by mixing multiple shapes together. Table
V describes the functional requirements of DS software.

Figure 6. The GUI of DS application.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 285

SRS document is the official document that contains
functional (resp. non-functional) requirements of software
system. This document contains the names of the re-
quirements and a detailed description of each requirement.
Natural language is usually used to describe a requirement
of a program [56].

TABLE V. Requirements and their description of DS software.

Requirement Requirement description
Draw a line The software shall allow user to

draw lines, and choose the right
color of the drawn lines. Also, it
shall allow end user to draw a single
line or unlimited lines on the draw-
ing zone. To draw a line, software
shall provide a method like draw-
Line() to draw a line between two
points.

Draw oval The software shall allow user to
draw ovals, and choose the right
color of the drawn ovals. Also, it
shall allow end user to draw a sin-
gle oval or unlimited ovals on the
drawing zone. To draw an oval, the
software shall provide a method like
drawOval() to draw an oval.

Draw rectangle The software shall allow user to
draw rectangles, and choose the
right color of the drawn rectangles.
Also, it shall allow end user to
draw a single rectangle or unlimited
rectangles on the drawing zone. To
draw a rectangle, the software shall
provide a method like drawRectan-
gle() to draw a rectangle.

According to the suggested approach, YamenTrace re-
covers TLs between software RaS in four steps as described
in the following.

A. Extracting software source code
The initial step of YamenTrace is the extraction of

software source code. Static code analysis [57] aims at
identifying main OO elements (e.g., class, method and
comment). Static code analysis examines structural infor-
mation (e.g., data dependencies) of code [58]. For example,
MyOval class extends MyShape class in DS software.
This step takes software code as input and gives the code
elements of software as output. YamenTrace relies on this
code elements to construct the class documents of the whole
software. The main code elements such as class and method
names are important sources of information in order to
identify TLs between RaS. Figure 7 shows the extracted
code elements from DS software as XML file [59].

Figure 7. The code elements file of DS software (partial).

B. Generating class documents
In this step, YamenTrace relies on the code elements

file that is extracted in the previous step (cf. Section
3-A). YamenTrace constructs the class documents for whole
software based on code elements file. Each class document
contains main code element names of this class, in addition
to class and method comments (resp. . code relations).
Figure 8 shows the code of MyLine class from DS software.

Figure 8. The code of MyLine class from DS software.

Figure 9 gives an example of the class document ex-
tracted from DS application. This document contains the
package name (i.e., Drawing.Shapes.coreElements). This
document also contains the class name (i.e., MyLine). In ad-
dition, it includes attribute and method names (e.g., draw).
Also, from the method signature, it involves parameter
names (i.e., g). Regarding the method body, it contains the
local variable names. Also, class document contains code
relation names such as: inheritance (i.e., MyShape), attribute

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


286 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

access (e.g., X1) and method invocation (e.g., drawLine).
Finally, the class document involves class and method com-
ments (e.g., // draw a line). Moreover, YamenTrace names
the document with the name of the class (i.e., MyLine).

Figure 9. An example of a class document (i.e., MyLine) from DS
software.

C. Measuring requirement and class documents similarity
by using LSI
This paper considers that functional requirements are

implemented by software classes. YamenTrace bases the
detection of subsets of software classes, which each im-
plements a functional requirement, on the measurement of
TS between these classes and software requirements. This
similarity measure is determined based on LSI technique.
YamenTrace relies on the truth that classes engaged in
implementing (or realizing) a functional requirement are
textually nearer to one another than to the remainder of
software classes. To calculate TS between software require-
ments and classes, YamenTrace applied LSI technique in
four steps: 1) constructing LSI corpus, 2) preprocessing of
corpus documents, 3) constructing TDM and Term-Query
Matrix (TQM) and, finally, 4) constructing the Cosine
Similarity Matrix (CSM). The similarity of requirement and
class documents is constructed with LSI as detailed in the
following.

1) Constructing LSI corpus
LSI technique is a textual matching technique that aims

to discover the TS between a query and a specified corpus of
documents [60]. A corpus represents a group of documents.
In YamenTrace, LSI corpus contains all software class
documents. For query documents, each requirement doc-
ument represents a query. The query document includes a
description of a single software requirement, and it is named
based on the name of that requirement. In YamenTrace, the
document-corpus contains all class documents, while the
query-corpus contains all requirement documents. Table VI
offers the document and query corpus for DS software.

TABLE VI. Document and query corpus for DS software.

Query-corpus Document-corpus
(i.e., requirement documents) (i.e., class documents)

Draw a line DrawingShapes
Draw oval MyLine

Draw rectangle MyOval
MyRectangle

MyShape
PaintJPanel

2) Preprocessing of corpus documents
When corpus is created, the textual data of each doc-

ument must be preprocessed in order to recover TLs be-
tween RaS. At the beginning, YamenTrace removes stop
words (e.g., my, to, an, a, the, etc.), punctuation marks
(e.g., ?, !, etc.), special characters (e.g., //, &, $, etc.),
and numbers (i.e., 0-9) from all corpus documents. Then,
all document words are split into word tokens (cf. Table
VII) by using the camel-case syntax (e.g., fillRect → fill
and Rect). Camel-case is a generally applied technique for
code splitting (or dividing) algorithms in the SE field [61].
Finally, YamenTrace performs word stemming (e.g., drawn
→ draw) on all document words (cf. Table VIII). In a SE
domain, stemming (e.g., removing word endings) is a text
normalization method [62] [63]. In this step of YamenTrace,
the word stemming is made by using WordNet [64]. All
documents in document-corpus (resp. query-corpus) are
preprocessed based on the previous procedure.

TABLE VII. Samples of the split word tokens from MyLine class
document.

Word Tokens
shapeColor shape and color

getColor get and color
Shapes.coreElements shapes, core, and elements

This step aims at removing noise data from LSI corpus,
saving memory space, and increasing the scale of Yamen-
Trace to work with the large sized software system. Thus,
preprocessing helps software engineers to find better textual
matching between RaS and improves the achieved results.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 287

TABLE VIII. Samples of the word stems (or roots) retrieved from
MyLine class document.

Word Word stem (or root)
Drawing draw
Elements element
Declares declare

3) Constructing TDM and TQM for corpus documents
LSI technique starts with a TDM to count the occur-

rences of the t terms within a set of d documents. Thus,
TDM is of the size t × d (i.e., TDM[t][d]) where t
(resp. d) is the number of unique-terms (resp. class docu-
ments) obtained from processed document-corpus (cf. Table
IX). In this matrix, each unique term (resp. class document)
is denoted by a row (resp. column), with each matrix cell
(i.e., TDM[t][d]) representing an indicator of the weight
of the tth distinctive term in the dth class document.
The weight is really specified based on the value of term
occurrence of the tth term in the dth class document [57].

TABLE IX. TDM mined from document-corpus of DS software
(partial).

Term / Class D
ra

w
in

gS
ha

pe
s

M
yL

in
e

M
yO

va
l

M
yR

ec
ta

ng
le

M
yS

ha
pe

Pa
in

tJ
Pa

ne
l

line 0 6 0 0 0 1
draw 1 5 3 3 2 2
shape 21 4 3 3 6 29
... ... ... ... ... ... ...

In the same way of TDM, TQM is aimed to count the
iterations of the t terms within a set of q query documents.
Table X shows part of TQM mined from query-corpus of
DS software.

TABLE X. TQM mined from query-corpus of DS software (partial).

Term / Requirement D
ra

w
a

lin
e

D
ra

w
ov

al

D
ra

w
re

ct
an

gl
e

draw 7 7 7
line 7 0 0
shape 0 0 0
... ... ... ...

TQM is of the size t × q (i.e., TQM[t][q]) where
t (resp. q) is the number of unique-terms (resp. require-

ment documents) obtained from processed document-corpus
(resp. query-corpus).

4) Constructing the similarity matrix
TS between query-corpus and document-corpus is rep-

resented by CSM. CSM columns and rows are represented
as vectors of documents. The columns of CSM are doc-
uments of the document-corpus (i.e., class documents),
and the rows of CSM are documents of the query-corpus
(i.e., requirement documents). CSM cells take a value in a
range between -1 to 1 [65]. Table XI shows the extracted
similarity matrix from requirement and class documents of
DS software.

D. Identifying TLs using FCA
In this step, YamenTrace uses FCA technique to recover,

from requirement and class documents, which documents
are textually similar. To convert the (numerical) CSM of
the previous phase into (binary) FC, YamenTrace utilizes
a commonly used threshold for cosine similarity which
is 0.70. Thus, the only pairs of requirement and class
documents having a counted similarity larger than or equal
to the selected threshold (i.e., ≥0.70) are deemed textually
similar. Table XII illustrates the FC achieved by transform-
ing CSM from Table XI to binary FC.

TABLE XII. FC obtained from CSM in table XI.

D
ra

w
in

gS
ha

pe
s

M
yL

in
e

M
yO

va
l

M
yR

ec
ta

ng
le

M
yS

ha
pe

Pa
in

tJ
Pa

ne
l

Draw a line 0 1 0 0 0 0
Draw oval 0 0 1 0 0 0
Draw rectangle 0 0 0 1 0 0

As an instance, in FC of Table XII, the require-
ment query document ”Draw a line” is associated to
the class document ”MyLine” since their similarity value
equals 0.99, which is larger than the chosen threshold
(i.e., ≥0.70). On the other hand, requirement query doc-
ument ”Draw a line” and the class document ”Drawing-
Shapes” are not associated since their TS equals 0.03,
which is fewer than the selected threshold (i.e., ≥0.70).
Figure 10 shows the resulting AOC-poset from FC of Table
XII.

AOC-poset in Figure 10 displays four concepts. Each
concept of AOC-poset involves two elements: concept intent
and extent [66]. Concept intent contains class documents,
while concept extent contains requirement documents. For
example, ”draw a line” requirement is textually similar to
”MyLine” class (cf. intent and extent of Concept 0). Also,
some class documents do not show any TS with any require-
ment documents (cf. intent of Concept 3). Moreover, the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


288 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

TABLE XI. Similarity matrix for requirement and class documents of DS software.

DrawingShapes MyLine MyOval MyRectangle MyShape PaintJPanel
Draw a line 0.037023712 0.989989848 -0.131160318 0.010703977 -0.03271227 0.012714135
Draw oval 0.026077607 -0.070876593 0.88846873 -0.452309648 -0.011457777 0.014299836
Draw rectangle 0.033470816 0.014789518 -0.395774033 0.9171953 -0.020937944 0.018392209

intent of Concept 2 (i.e., MyRectangle) is textually similar
to the extent of the same concept (i.e., Draw rectangle).

Figure 10. AOC-poset for FC of Table XII.

YamenTrace measures the quality and soundness of the
recovered TLs using precision and recall measures. Preci-
sion and recall are two standard metrics widely employed
in IR techniques [67]. Precision measure is the portion of
recovered instances that are related (cf. Equation 1), while
recall measure is the portion of related instances that are
recovered (cf. Equation 2). The precision and recall metrics
are computed as follows [68]:

Precision =
RelatedLinks ∩ RecoveredLinks

RecoveredLinks
(1)

Recall =
RelatedLinks ∩ RecoveredLinks

RelatedLinks
(2)

The most critical parameter to LSI technique is the
number of selected Term-topics (T). This parameter is called
the Number of Topics (NoT). In LSI, T is a set of terms
that commonly co-occur in LSI corpus. YamenTrace needs
a sufficient T to obtain real term associations. YamenTrace
cannot employ a fixed NoT for LSI because it deals with
several case studies of different sizes. For DS software case
study, NoT is equal to 6.

Figure 11 shows the YamenTrace visualization of TLs
between requirement and class documents for DS software.

Visualizing TLs supports software engineers to recover and
browse inter-relations among software documents in an
intuitive manner [69].

Figure 11. YamenTrace visualization of the recovered TLs from DS
software.

The author manually identified the correctly recovered
TLs between software artifacts (i.e., requirement and class
documents) based on his excellent knowledge about DS
software. Thus, RT information of DS software is well
known and documented. RT information helps software

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 289

developers or engineers in order to check and validate
YamenTrace findings. The success of YamenTrace is deter-
mined by the values of the metrics of precision and recall.
Each measure has a value between 0 and 1. Figure 12
shows that recall measure is equal to 100% for all recovered
TLs, which means that all related links are recovered. Also,
Figure 12 shows that precision measure is equal to 100% for
all recovered TLs, which means that all recovered links are
related.

Figure 12. Evaluation metrics for the recovered TLs from DS
software.

YamenTrace obtained excellent results based on the
evaluation metrics calculated for each TL. One explanation
for this excellent finding is that a shared vocabulary is
utilized in requirement descriptions and their implementa-
tions; therefore, TS was an appropriate way to identify TLs
between RaS.

4. EXPERIMENTATION
This section presents the selected case studies, experi-

mental results, evaluation metrics, implementation informa-
tion, and threats to the validity of YamenTrace.

Mobile Media (MM) is a Java open-source software sys-
tem [70]. This software manipulates media (e.g., photo) on
mobile phones [71]. The reason behind choosing MM as a
case study is that this study is well documented and known.
Also, software requirements and source code of MM are
available freely online [70]. Moreover, the implementation
of each requirement is well-known. Thus, MM (i.e., release
8) artifacts are accessible for comparison with YamenTrace
results, and to validate the approach proposal.

Health Watcher (HW) is a public health system [72]. It
is a Java open source software system [72]. HW is a real
health complaint software system [73]. This software allows
the citizen to register numerous types of health complaints
(e.g., complaints against food shops) [74]. Table XIII shows
the standard software metrics for HW (resp. MM) software
system. HW software considered as a large sized software

system. HW software is well documented and known in SE
filed. Requirements document of HW software is available
for researchers [75]. In this case study, the implementation
of each requirement is well known and documented.

DS, MM and HW software systems are presented in
Table XIII. DS, MM and HW are described by the following
metrics: Number of Software Packages (NOP), Number of
Software Classes (NOC), Number of Software Attributes
(NOA), Number of Software Methods (NOM), Number of
Software Identifiers (NOI), Number of Software Comments
(NOO), Number of Local Variables (NOL), Number of
Method Invocations (NOI), and Number of Attribute Ac-
cesses (NOE). All software metrics are extracted by the
YamenTrace parser [59]. The extracted XML code file for
MM contains all needed code information for YamenTrace
approach [76].

TABLE XIII. DS, MM, and HW software metrics.

C
as

e
st

ud
y
/

M
et

ri
c

N
O

P

N
O

C

N
O

A

N
O

M

N
O

I

N
O

O

N
O

L

N
O

I

N
O

E

DS 4 6 16 29 55 112 13 99 125
MM 17 51 166 271 505 904 258 1200 1790
HW 22 88 187 527 824 210 524 1952 3303

The number of requirements for MM (resp. HW) soft-
ware is equal to 17 (resp. 9). Requirement names and
descriptions are extracted from SRS document for each case
study [77] [75]. Table XIV gives a samples of requirement
names and their descriptions from MM and HW case stud-
ies. The complete set of requirements and their descriptions
are available at YamenTrace webpage [59].

Let’s imagine that a software engineer is expected
to trace a receive photo requirement to its source code
(cf. Figure 13). The code is developed in Java language,
and software requirements are created (or written) in En-
glish language (cf. Table XIV). Let’s assume that software
engineer is using YamenTrace, to identify TLs between
requirements and code of MM case study. The software
engineer is tracing a receive photo requirement (cf. Req02
in Table XIV). Let’s assume that the SmsReceiverThread
and SmsReceiverController classes are the real implemen-
tation of receive photo. In this case, engineer identifies
a link via YamenTrace between Req02 to SmsReceiver-
Thread and SmsReceiverController because the approach
will find matched terms between Req02 and these two
class documents. So, it is essential to consider all source
code elements, comments, and relations in YamenTrace
approach.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


290 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

TABLE XIV. Samples of requirement names and their descriptions from MM and HW case studies.

MM Requirement Requirement description
Req01 Edit media label Edit media label feature allows a user to label (or name) a photo (or media) with

specific text. Labels or captions could be utilized for future search functionality.
Req02 Receive photo Receive photo via SMS message allows mobile user to receive a photo (or media)

from other users by short messaging service. This requirement shall allow the
SMS receiver controller to accept or reject the photo or media.

Req03 Exception handling Exception handling is a non-functional requirement, and allows MM to handle
exception related to media such as: image, photo album, and persistence exception.

HW Requirement Requirement description
Req01 Specify complaint This requirement lets a citizen to register complaints. Complaints can be: animal,

food, or special complaint.
Req02 Register new employee This requirement lets new employees to be registered on HW software.
Req03 Update employee This requirement lets of the employee’s data or information to be updated on HW

software.

Figure 13. Running YamenTrace approach on MM software.

Table XV shows RtC-TLs results obtained from MM
and HW software systems. Considering recall measure, its
value is 100% for all recovered TLs. This implies that
all class documents that implement software requirements
are recovered correctly. Also, results appear that precision
metric seems to be high for some requirements and low for
others. This means that not all recovered class documents
are relevant to software requirements.

Results show that some class documents are associated
with more than one requirement documents. For instance,
addMediaToAlbum, captureVideoScreen, and videoCapture-
Controller class documents are linked to capture photo and
capture video requirement documents. The reason behind

this result is that capture photo and capture video require-
ments are implemented by same classes. Also, there are
many textually matched terms between these documents.

TABLE XV. RtC-TLs results for MM and HW case studies.

MM RtC-TL Evaluation Metrics
Precision Recall

R01 Create album 55% 100%
R02 Delete album 80% 100%
R03 Set favorite 30% 100%
R04 View favorite 20% 100%
R05 Sorting photo 70% 100%
R06 Create media 60% 100%
R07 Delete media 80% 100%
R08 Edit media label 74% 100%
R09 Copy media 50% 100%
R10 Receive photo 80% 100%
R11 Send photo 80% 100%
R12 View photo 40% 100%
R13 Capture photo 60% 100%
R14 Play song 50% 100%
R15 Play video 40% 100%
R16 Capture video 70% 100%
R17 Exception handling 60% 100%
HW RtC-TL Precision Recall
R01 Query information 50% 100%
R02 Specify complaint 80% 100%
R03 Login 60% 100%
R04 Register tables 65% 100%
R05 Update complaint 40% 100%
R06 Register new employee 30% 100%
R07 Update employee 40% 100%
R08 Update health unit 50% 100%
R09 Change logged employee 70% 100%

The results revealed that the use of all details from
the class file, including identifier names, comments, and

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 291

relations between code elements, caused a high value for
the recall metric for all requirement documents. Thus,
YamenTrace approach is capable of identifying the real
implementation of software requirements. Furthermore, the
results of the MM and HW software systems demonstrated
that a single requirement can be implemented by one or
more classes. On the other hand, one class can implement
more than one requirement.

Moreover, results proved the ability of YamenTrace
to identify the implementation of functional and non-
functional requirements. For instance, YamenTrace recov-
ered the real implementation of the exception handling
requirement from MM case study. Based on the manual
analysis of the obtained RtC-TLs results, usually there is
textual similarity between a requirement and its implemen-
tation. Generally, engineers name the code elements through
which the requirement is implemented with a vocabulary
similar to the requirement description (or name). For each
case study (i.e., DS, MM, or HW), all experiment artifacts
(e.g., similarity matrix, AOC-poset, RtC-TLs visualization,
etc.) are available on the YamenTrace webpage [59].

Implementation: In order to recover TLs between RaS of a
software system, YamenTrace tool was developed and avail-
able on YamenTrace webpage [59]. In order to extract the
main OO elements, author has developed a code parser that
depends on the Abstract Syntax Tree (AST). AST is broadly
employed in several areas of SE [78]. AST is utilized as
representation of software code. YamenTrace parser uses the
JDOM library to extract the code elements in the form of an
XML file. In order to apply LSI, the author has developed
his LSI tool, which is available on YamenTrace webpage
[59]. For applying FCA, author used the Eclipse eRCA [79].
Also, in order to visualize AOC-poset and recovered RtC-
TLs, YamenTrace uses the Graphviz library [80].

Threats to validity: YamenTrace works only with Java
applications. This considers a threat to implementation
validity that restricts YamenTrace capability to work only
with the applications that are written by Java language.
Another threat to the validity of YamenTrace is that de-
veloper might not employ the same vocabularies used in
requirement description to name source code elements that
implement this requirement. This implies that TS may be
not trustworthy (or should be enhanced with other methods)
in all cases to recover TLs between software RaS.

5. CONCLUSION AND PERSPECTIVES
This paper suggested an approach based on LSI and

FCA to recover and visualize RtC-TLs in a single software
system. YamenTrace has been implemented and evaluated
on three case studies (i.e., DS, MM, and HW). Findings
displayed that most of RtC-TLs were recovered correctly.
Figure 14 illustrates the key elements of YamenTrace ap-
proach.

Figure 14. The key elements of YamenTrace approach.

The current approach works only with single software;
therefor, one direction for future work of YamenTrace
approach is to extend the current approach to work with
a collection of PVs [81]. Then, it is important to extend the
approach to identify the TLs between features and code of
these PVs (i.e., feature location) [82].

YamenTrace can be extended in many ways. For in-
stance, YamenTrace approach is designed for product writ-
ten in Java language, thus, future work could aim on extend-
ing the current implementation of YamenTrace to deal with
other programming languages (e.g., C++). Also, a further
evaluation of YamenTrace can be done with other case
studies. To do this, it would be necessary to find suitable
case studies whose requirements and source code are freely
available to carry out the whole approach described in this
paper.

YamenTrace also plans to exploit useful information
available in SRS document (e.g., requirements dependency)
in TLs recovery process. Requirements dependency is an
important aspect in tracing software requirements [83]. Fur-
thermore, there is an urgent need to convert YamenTrace to
a generic approach, in order to be able to find TLs between
any kind of software artifacts (e.g., design documents, or
features) and source code.

References
[1] I. Sommerville and P. Sawyer, Requirements Engineering: A Good

Practice Guide, ser. The Kluwer International Series on Information
Retrieval. Wiley, 1997.

[2] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


292 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

Ajagbe, E. Chioasca, and R. T. Batista-Navarro, “Natural language
processing for requirements engineering: A systematic mapping
study,” ACM Comput. Surv., vol. 54, no. 3, pp. 55:1–55:41, 2022.
[Online]. Available: https://doi.org/10.1145/3444689

[3] I. Sommerville, Software Engineering. Pearson, 2016.

[4] R. Al-Msie’deen, “A requirement model of local news web/wap
application for rural communities,” Master’s thesis, Universiti Utara
Malaysia, Utara, Malaysian, 2008.

[5] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and
K. Kamran, “Requirements traceability: A systematic review and
industry case study,” International Journal of Software Engineering
and Knowledge Engineering, vol. 22, no. 3, pp. 1–49, 2012.

[6] R. White and J. Krinke, “Tctracer: Establishing test-to-code
traceability links using dynamic and static techniques,” Empir.
Softw. Eng., vol. 27, no. 3, p. 67, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-021-10079-1

[7] D. Hanspeter, A. Janes, A. Sillitti, and G. Succi, “Improving
the identification of traceability links between source code and
requirements,” in Proceedings of the 18th International Conference
on Distributed Multimedia Systems, DMS 2012, August 9-11, 2012,
Eden Roc Renaissance, Miami Beach, FL, USA. Knowledge
Systems Institute, 2012, pp. 95–100.

[8] M. Zhang, C. Tao, H. Guo, and Z. Huang, “Recovering semantic
traceability between requirements and source code using feature
representation techniques,” in 21st IEEE International Conference
on Software Quality, Reliability and Security, QRS 2021, Hainan,
China, December 6-10, 2021. IEEE, 2021, pp. 873–882.

[9] L. Linsbauer, S. Fischer, G. K. Michelon, W. K. G. Assunção,
P. Grünbacher, R. E. Lopez-Herrejon, and A. Egyed, “Systematic
software reuse with automated extraction and composition
for clone-and-own,” in Handbook of Re-Engineering Software
Intensive Systems into Software Product Lines, R. E. Lopez-
Herrejon, J. Martinez, W. K. G. Assunção, T. Ziadi, M. Acher,
and S. R. Vergilio, Eds. Springer International Publishing,
2023, pp. 379–404. [Online]. Available: https://doi.org/10.1007/
978-3-031-11686-5 15

[10] N. Ali, Y. Guéhéneuc, and G. Antoniol, “Trustrace: Mining software
repositories to improve the accuracy of requirement traceability
links,” IEEE Trans. Software Eng., vol. 39, no. 5, pp. 725–741,
2013. [Online]. Available: https://doi.org/10.1109/TSE.2012.71

[11] R. Al-Msie’deen, “Visualizing object-oriented software for under-
standing and documentation,” International Journal of Computer
Science and Information Security (IJCSIS), vol. 13, no. 5, pp. 18–
27, 2015.

[12] G. Spanoudakis and A. Zisman, Software traceability: A roadmap.
World Scientific Publishing, 2004, pp. 395–428.

[13] M. Rahimi and J. Cleland-Huang, “Evolving software trace
links between requirements and source code,” Empir. Softw.
Eng., vol. 23, no. 4, pp. 2198–2231, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9561-x

[14] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A
case study on the impact of refactoring on quality and productivity
in an agile team,” in Balancing Agility and Formalism in Soft-
ware Engineering, Second IFIP TC 2 Central and East European
Conference on Software Engineering Techniques, CEE-SET 2007,

Poznan, Poland, October 10-12, 2007, Revised Selected Papers, ser.
Lecture Notes in Computer Science, B. Meyer, J. R. Nawrocki, and
B. Walter, Eds., vol. 5082. Springer, 2007, pp. 252–266.

[15] T. W. W. Aung, H. Huo, and Y. Sui, “A literature review of
automatic traceability links recovery for software change impact
analysis,” in ICPC ’20: 28th International Conference on Program
Comprehension, Seoul, Republic of Korea, July 13-15, 2020.
ACM, 2020, pp. 14–24.

[16] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. I. Maletic, and P. Mäder,
“Traceability fundamentals,” in Software and Systems Traceability,
J. Cleland-Huang, O. Gotel, and A. Zisman, Eds. Springer, 2012,
pp. 3–22.

[17] IEEE, “IEEE standard glossary of software engineering terminol-
ogy,” IEEE Std 610.12-1990, pp. 1–84, 1990.

[18] O. C. Z. Gotel and A. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings of the First IEEE International
Conference on Requirements Engineering, ICRE ’94, Colorado
Springs, Colorado, USA, April 18-21, 1994. IEEE Computer
Society, 1994, pp. 94–101.

[19] S. Winkler and J. von Pilgrim, “A survey of traceability in re-
quirements engineering and model-driven development,” Softw. Syst.
Model., vol. 9, no. 4, pp. 529–565, 2010.

[20] IEEE, “IEEE guide for software requirements specifications,” IEEE
Std 830-1984, pp. 1–26, 1984.

[21] R. Al-Msie’deen, A. H. Blasi, and M. A. Alsuwaiket, “Constructing
a software requirements specification and design for electronic it
news magazine system,” International Journal of Advanced and
Applied Sciences, vol. 8, no. 11, pp. 104–118, 2021.

[22] R. Al-Msie’deen, A Requirement Model of Local News Application
for Rural Communities: A New Model for Rural News. LAP
LAMBERT Academic Publishing, 2014.

[23] A. M. Alfrijat and R. Al-Msie’deen, “A requirement model of local
news WAP/WEB application for rural community,” Advances in
Computer Science and Engineering, vol. 4, no. 1, pp. 37 –53, 2010.

[24] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Mining features from the object-oriented source code
of a collection of software variants using formal concept analysis
and latent semantic indexing,” in The 25th International Conference
on Software Engineering and Knowledge Engineering. Knowledge
Systems Institute Graduate School, 2013, pp. 244–249.

[25] R. A. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier,
and H. E. Salman, “Feature mining from a collection of software
product variants,” in Actes des Cinquièmes journées nationales du
Groupement De Recherche CNRS du Génie de la Programmation et
du Logiciel, ser. GDR GPL, L. Duchien, Ed., 2013, pp. 185–186.

[26] J. Lin, Y. Liu, and J. Cleland-Huang, “Information retrieval versus
deep learning approaches for generating traceability links in bilin-
gual projects,” Empir. Softw. Eng., vol. 27, no. 1, p. 5, 2022.

[27] A. Yürekli, C. Kaleli, and A. Bilge, “Alleviating the cold-start
playlist continuation in music recommendation using latent semantic
indexing,” Int. J. Multim. Inf. Retr., vol. 10, no. 3, pp. 185–198,
2021.

http:// journals.uob.edu.bh

https://doi.org/10.1145/3444689
https://doi.org/10.1007/s10664-021-10079-1
https://doi.org/10.1007/978-3-031-11686-5_15
https://doi.org/10.1007/978-3-031-11686-5_15
https://doi.org/10.1109/TSE.2012.71
https://doi.org/10.1007/s10664-017-9561-x
http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 293

[28] J. Carbonnel, K. Bertet, M. Huchard, and C. Nebut, “FCA for soft-
ware product line representation: Mixing configuration and feature
relationships in a unique canonical representation,” Discret. Appl.
Math., vol. 273, pp. 43–64, 2020.

[29] R. Al-Msie’deen, A. H. Blasi, H. E. Salman, S. S. Alja’afreh,
A. Abadleh, M. A. Alsuwaiket, A. Hammouri, A. J. Al Nawaiseh,
W. Tarawneh, and S. A. Al-Showarah, “Detecting commonality and
variability in use-case diagram variants,” Journal of Theoretical and
Applied Information Technology, vol. 100, no. 4, pp. 1113–1126,
2022.

[30] R. A. Al-Msie’deen and A. H. Blasi, “Software evolution un-
derstanding: Automatic extraction of software identifiers map for
object-oriented software systems,” Journal of Communications Soft-
ware and Systems, vol. 17, no. 1, pp. 20–28, 2021.

[31] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,
“Automatic documentation of [mined] feature implementations from
source code elements and use-case diagrams with the REVPLINE
approach,” Int. J. Softw. Eng. Knowl. Eng., vol. 24, no. 10, pp.
1413–1438, 2014.

[32] M. R. Hacene, M. Huchard, A. Napoli, and P. Valtchev, “Using
formal concept analysis for discovering knowledge patterns,” in
Proceedings of the 7th International Conference on Concept
Lattices and Their Applications, Sevilla, Spain, October 19-21,
2010, ser. CEUR Workshop Proceedings, M. Kryszkiewicz and
S. A. Obiedkov, Eds., vol. 672. CEUR-WS.org, 2010, pp.
223–234.

[33] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,
“Reverse engineering feature models from software configurations
using formal concept analysis,” in Proceedings of the Eleventh
International Conference on Concept Lattices and Their Applica-
tions, Košice, Slovakia, October 7-10, 2014, ser. CEUR Workshop
Proceedings, K. Bertet and S. Rudolph, Eds., vol. 1252. CEUR-
WS.org, 2014, pp. 95–106.

[34] F. Can, “Information retrieval data structures & algorithms, by
william b. frakes and ricardo baeza-yates (book review),” SIGIR
Forum, vol. 27, no. 3, pp. 24–25, 1993. [Online]. Available:
https://doi.org/10.1145/182119.1096164

[35] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[36] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M. Kawakami,
and K. Yoshimura, “Recovering traceability links between require-
ments and source code using the configuration management log,”
IEICE Trans. Inf. Syst., vol. 98-D, no. 4, pp. 852–862, 2015.

[37] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in IEEE 27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, Septem-
ber 25-30, 2011. IEEE Computer Society, 2011, pp. 133–142.

[38] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,” in
Proceedings of the 25th International Conference on Software
Engineering, May 3-10, 2003, Portland, Oregon, USA, L. A.
Clarke, L. Dillon, and W. F. Tichy, Eds. IEEE Computer Society,
2003, pp. 125–137.

[39] N. Ali, Y. Guéhéneuc, and G. Antoniol, “Requirements traceability
for object oriented systems by partitioning source code,” in

18th Working Conference on Reverse Engineering, WCRE 2011,
Limerick, Ireland, October 17-20, 2011, M. Pinzger, D. Poshyvanyk,
and J. Buckley, Eds. IEEE Computer Society, 2011, pp. 45–54.

[40] B. Dagenais and M. P. Robillard, “Recovering traceability links
between an API and its learning resources,” in 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, M. Glinz, G. C. Murphy, and M. Pezzè, Eds.
IEEE Computer Society, 2012, pp. 47–57.

[41] H. Kaiya, A. Osada, K. Hara, and K. Kaijiri, “Design, implementa-
tion and evaluation of a system for finding change impacts on source
codes caused by requirements changes,” IEICE TRANSACTIONS on
Information and Systems (Japanese Edition), vol. J93-D, no. 10, pp.
1822–1835, 2010.

[42] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya,
G. Bedford, B. Berenbach, O. B. Khadra, C. Duan, and
X. Zou, “Poirot: A distributed tool supporting enterprise-wide
automated traceability,” in 14th IEEE International Conference
on Requirements Engineering (RE 2006), 11-15 September 2006,
Minneapolis/St.Paul, Minnesota, USA. IEEE Computer Society,
2006, pp. 356–357.

[43] E. B. Charrada, A. Koziolek, and M. Glinz, “Identifying outdated
requirements based on source code changes,” in 2012 20th IEEE
International Requirements Engineering Conference (RE), Chicago,
IL, USA, September 24-28, 2012, M. P. E. Heimdahl and P. Sawyer,
Eds. IEEE Computer Society, 2012, pp. 61–70.

[44] S. Yadla, J. H. Hayes, and A. Dekhtyar, “Tracing requirements to
defect reports: an application of information retrieval techniques,”
Innov. Syst. Softw. Eng., vol. 1, no. 2, pp. 116–124, 2005. [Online].
Available: https://doi.org/10.1007/s11334-005-0011-3

[45] M. Eaddy, A. V. Aho, G. Antoniol, and Y. Guéhéneuc,
“CERBERUS: tracing requirements to source code using
information retrieval, dynamic analysis, and program analysis,”
in The 16th IEEE International Conference on Program
Comprehension, ICPC 2008, Amsterdam, The Netherlands, June
10-13, 2008, R. L. Krikhaar, R. Lämmel, and C. Verhoef, Eds.
IEEE Computer Society, 2008, pp. 53–62.

[46] P. N. Khetade and V. V.Nayyar, “Establishing a traceability links
between the source code and requirement analysis, a survey on
traceability,” IOSR Journal of Computer Science (IOSR-JCE), vol. 3,
no. ICAET-2014, pp. 66–70, 2014.

[47] H. E. Salman, A. Seriai, C. Dony, and R. Al-Msie’deen,
“Recovering traceability links between feature models and source
code of product variants,” in Proceedings of the VARiability for
You Workshop - Variability Modeling Made Useful for Everyone,
VARY ’12, Innsbruck, Austria, September 30, 2012, Ø. Haugen,
J. Jézéquel, A. Wasowski, B. Møller-Pedersen, and K. Czarnecki,
Eds. ACM, 2012, pp. 21–25.

[48] X. Chen, J. G. Hosking, and J. Grundy, “Visualizing traceability
links between source code and documentation,” in 2012 IEEE
Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2012, Innsbruck, Austria, September 30 - October 4,
2012, M. Erwig, G. Stapleton, and G. Costagliola, Eds. IEEE,
2012, pp. 119–126.

[49] X. Chen, J. G. Hosking, J. C. Grundy, and R. Amor,
“Dctracvis: a system retrieving and visualizing traceability
links between source code and documentation,” Autom. Softw.
Eng., vol. 25, no. 4, pp. 703–741, 2018. [Online]. Available:
https://doi.org/10.1007/s10515-018-0243-8

http:// journals.uob.edu.bh

https://doi.org/10.1145/182119.1096164
https://doi.org/10.1007/s11334-005-0011-3
https://doi.org/10.1007/s10515-018-0243-8
http://journals.uob.edu.bh


294 Ra’Fat Al-Msie’deen: Recovering and Visualizing Traceability Links Between Requirements and Code...

[50] R. Al-Msie’deen, Object-oriented Software Documentation. Lap
Lambert Academic Publishing, 2019.

[51] R. A. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and
S. Vauttier, “Mining features from the object-oriented source code
of software variants by combining lexical and structural similarity,”
in IEEE 14th International Conference on Information Reuse &
Integration, IRI 2013, San Francisco, CA, USA, August 14-16,
2013. IEEE Computer Society, 2013, pp. 586–593.

[52] R. Al-Msie’deen, H. E. Salman, A. H. Blasi, and M. A. Alsuwaiket,
“Naming the identified feature implementation blocks from software
source code,” Journal of Communications Software and Systems,
vol. 18, no. 2, pp. 101–110, 2022.

[53] R. Al-Msie’deen. (2018) Drawing shapes software. [Online].
Available: https://sites.google.com/site/ralmsideen/tools

[54] R. A. Al-Msie’deen, “Automatic labeling of the object-oriented
source code: The lotus approach,” Science International-Lahore,
vol. 30, no. 1, pp. 45–48, 2018.

[55] R. Al-Msie’deen and A. Blasi, “The impact of the object-oriented
software evolution on software metrics: The iris approach,” Indian
Journal of Science and Technology, vol. 11, no. 8, pp. 1–8, 2018.

[56] A. Nayak, H. Timmapathini, V. Murali, K. Ponnalagu, V. G.
Venkoparao, and A. Post, “Req2spec: Transforming software
requirements into formal specifications using natural language
processing,” in Requirements Engineering: Foundation for Software
Quality - 28th International Working Conference, REFSQ 2022,
Birmingham, UK, March 21-24, 2022, Proceedings, ser. Lecture
Notes in Computer Science, V. Gervasi and A. Vogelsang, Eds.,
vol. 13216. Springer, 2022, pp. 87–95.

[57] R. Al-Msie’deen, “Reverse engineering feature models from
software variants to build software product lines: REVPLINE ap-
proach,” Ph.D. dissertation, Montpellier 2 University, France, 2014.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-01015102

[58] R. A. Al-Msie’deen and A. Blasi, “Supporting software documen-
tation with source code summarization,” International Journal of
Advanced and Applied Sciences, vol. 6, no. 1, pp. 59–67, 2019.

[59] R. A. A. Al-Msie’deen. (2023) YamenTrace ap-
proach. [Online]. Available: https://drive.google.com/drive/folders/
16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy

[60] V. Bauer, T. Volke, and S. Eder, “Combining clone detection and
latent semantic indexing to detect re-implementations,” in 10th
International Workshop on Software Clones, IWSC@SANER 2016,
Osaka, Japan, March 15, 2016. IEEE Computer Society, 2016,
pp. 23–29.

[61] R. A. Al-Msie’deen, “Softcloud: A tool for visualizing software
artifacts as tag clouds,” Mutah Lil-Buhuth wad-Dirasat - Natural
and Applied Sciences Series, vol. 37, no. 2, pp. 93–116, 2022.

[62] R. Al-Msie’deen, “Tag clouds for object-oriented source code
visualization,” Engineering, Technology & Applied Science
Research, vol. 9, no. 3, pp. 4243–4248, 2019. [Online].
Available: https://doi.org/10.48084/etasr.2706

[63] R. A. Al-Msie’deen, “Tag clouds for software documents visual-
ization,” International Journal on Informatics Visualization, vol. 3,
no. 4, pp. 361–364, 2019.

[64] G. A. Miller, “Wordnet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

[65] D. A. Grossman and O. Frieder, Information Retrieval - Algorithms
and Heuristics, Second Edition, ser. The Kluwer International Series
on Information Retrieval. Kluwer, 2004, vol. 15.

[66] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,
“Documenting the mined feature implementations from the object-
oriented source code of a collection of software product variants,”
in The 26th International Conference on Software Engineering and
Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada,
July 1-3, 2013, M. Reformat, Ed. Knowledge Systems Institute
Graduate School, 2014, pp. 138–143.

[67] A. Delater, “Tracing requirements and source code during software
development,” Ph.D. dissertation, Heidelberg University, 2013.
[Online]. Available: https://d-nb.info/1047691701

[68] K. Porter, “Approximate string matching and filesystem metadata
carving: A study of improving precision and recall for assisting the
digital forensics backlog,” Ph.D. dissertation, Norwegian University
of Science and Technology, Trondheim, Norway, 2022. [Online].
Available: https://hdl.handle.net/11250/2976608

[69] A. Marcus, X. Xie, and D. Poshyvanyk, “When and how to
visualize traceability links?” in The 3rd International Workshop
on Traceability in Emerging Forms of Software Engineering,
co-located with the ASE 2005 Conference, TEFSE@ASE 2005,
Long Beach, CA, USA, November 88, 2005, J. I. Maletic,
J. Cleland-Huang, J. H. Hayes, and G. Antoniol, Eds. ACM,
2005, pp. 56–61.

[70] E. Figueiredo. (2008) Mobile media java implementation. [Online].
Available: https://homepages.dcc.ufmg.br/∼figueiredo/spl/icse08/

[71] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. C. Ferrari, S. S. Khan, F. C. Filho, and
F. Dantas, “Evolving software product lines with aspects: an empir-
ical study on design stability,” in 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds. ACM, 2008,
pp. 261–270.

[72] Iowa-State-University. (2022) Health watcher - java code. [Online].
Available: https://ptolemy.cs.iastate.edu/design-study/

[73] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M. Dósea, A. F.
Garcia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza,
and A. Rashid, “On the impact of aspectual decompositions
on design stability: An empirical study,” in ECOOP 2007 -
Object-Oriented Programming, 21st European Conference, Berlin,
Germany, July 30 - August 3, 2007, Proceedings, ser. Lecture
Notes in Computer Science, E. Ernst, Ed., vol. 4609. Springer,
2007, pp. 176–200.

[74] S. Soares, E. Laureano, and P. Borba, “Implementing distribution
and persistence aspects with aspectJ,” in Proceedings of the
2002 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2002, Seattle,
Washington, USA, November 4-8, 2002, M. Ibrahim and
S. Matsuoka, Eds. ACM, 2002, pp. 174–190.

[75] S. Soares. (2022) Requirements document - health-watcher (version
1.0). [Online]. Available: https://drive.google.com/drive/folders/
16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy

http:// journals.uob.edu.bh

https://sites.google.com/site/ralmsideen/tools
https://tel.archives-ouvertes.fr/tel-01015102
https://drive.google.com/drive/folders/16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy
https://drive.google.com/drive/folders/16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy
https://doi.org/10.48084/etasr.2706
http://doi.acm.org/10.1145/219717.219748
https://d-nb.info/1047691701
https://hdl.handle.net/11250/2976608
https://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
https://ptolemy.cs.iastate.edu/design-study/
https://drive.google.com/drive/folders/16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy
https://drive.google.com/drive/folders/16XbIgKQu1LylADtWfPQNSrNEaSKEQiqy
http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 279-295 (Jul-23) 295

[76] R. Al-Msie’deen. (2023) Mobile media code -
xml file. [Online]. Available: https://drive.google.com/file/d/
14zt2A9hWPfQlK-52Nv5iG59EGx349U25/view?usp=share link

[77] L. P. Tizzei, M. Dias, C. M. Rubira, A. Garcia, and J. Lee.
(2011) Mobile media test bed. [Online]. Available: https://www.ic.
unicamp.br/∼tizzei/mobilemedia/index.html#scenarios-table

[78] G. Fischer, J. Lusiardi, and J. W. von Gudenberg, “Abstract syntax
trees - and their role in model driven software development,” in
Proceedings of the Second International Conference on Software
Engineering Advances (ICSEA 2007), August 25-31, 2007, Cap
Esterel, French Riviera, France. IEEE Computer Society, 2007,
p. 38.

[79] J.-R. Falleri and X. Dolques. (2010) Erca tool. [Online]. Available:
http://code.google.com/p/erca/

[80] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and
G. Woodhull, “Graphviz and dynagraph - static and dynamic
graph drawing tools,” in Graph Drawing Software, M. Jünger and
P. Mutzel, Eds. Springer, 2004, pp. 127–148. [Online]. Available:
https://doi.org/10.1007/978-3-642-18638-7 6

[81] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier,
and H. E. Salman, “Feature location in a collection of software
product variants using formal concept analysis,” in Safe and Secure
Software Reuse - 13th International Conference on Software Reuse,
ICSR 2013, Pisa, Italy, June 18-20. Proceedings, ser. Lecture Notes
in Computer Science, J. M. Favaro and M. Morisio, Eds., vol. 7925.

Springer, 2013, pp. 302–307.

[82] R. Al-Msie’deen, A. Seriai, and M. Huchard, Reengineering Soft-
ware Product Variants Into Software Product Line: REVPLINE
Approach. LAP LAMBERT Academic Publishing, 2014.

[83] G. Deshpande, “Requirements dependency extraction: Advanced
machine learning approaches and their ROI analysis,” Ph.D.
dissertation, University of Calgary, Alberta, Canada, 2022.
[Online]. Available: http://hdl.handle.net/1880/114394

Ra’Fat Al-Msie’Deen is an Associate Pro-
fessor in the Software Engineering depart-
ment at Mutah University since 2014. He
received his PhD in Software Engineer-
ing from the Université de Montpellier,
Montpellier - France, in 2014. He received
his MSc in Information Technology from
the University Utara Malaysia, Kedah -
Malaysia, in 2009. He got his BSc in Com-
puter Science from Al-Hussein Bin Talal

University, Ma’an - Jordan, in 2007. His research interests include
software engineering, requirements engineering, software product
line engineering, feature identification, word clouds, and formal
concept analysis.

http:// journals.uob.edu.bh

https://drive.google.com/file/d/14zt2A9hWPfQlK-52Nv5iG59EGx349U25/view?usp=share_link
https://drive.google.com/file/d/14zt2A9hWPfQlK-52Nv5iG59EGx349U25/view?usp=share_link
https://www.ic.unicamp.br/~tizzei/mobilemedia/index.html#scenarios-table
https://www.ic.unicamp.br/~tizzei/mobilemedia/index.html#scenarios-table
http://code.google.com/p/erca/
https://doi.org/10.1007/978-3-642-18638-7_6
http://hdl.handle.net/1880/114394
http://journals.uob.edu.bh

	INTRODUCTION
	A LITERATURE REVIEW OF RT RECOVERY: A MINI SYSTEMATIC SURVEY
	YAMENTRACE APPROACH
	Extracting software source code
	Generating class documents
	Measuring requirement and class documents similarity by using LSI
	Constructing LSI corpus
	Preprocessing of corpus documents
	Constructing TDM and TQM for corpus documents
	Constructing the similarity matrix

	Identifying TLs using FCA

	EXPERIMENTATION
	CONCLUSION AND PERSPECTIVES
	References
	Biographies
	Ra'Fat Al-Msie'Deen


