
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.13, No.1 (May-23)

http://dx.doi.org/10.12785/ijcds/1301116

A New Spell-Checking Approach Based on the User Profile
Ahmed AbdAlrhman Saty1, Si Lhoussain Aouragh2 and Karim Bouzoubaa3

1College of CS and IT, Sudan University of Science and Technology, Sudan.
2High National School for Computer Science and Systems Analysis, Mohammed V University in Robat, Morocco.

3Mohammadia School of Engineers, Mohammed V University in Robat, Morocco.

Received 2 Aug. 2022, Revised 2 May. 2023, Accepted 23 May. 2023, Published 30 May. 2023

Abstract: This paper presents a new approach for spell-checking based on the user profile and that can be applied for any language.
For this purpose and for the specific case of Arabic, spelling errors are studied and divided into 18 types. Then, a relationship model
between users and their errors is obtained. The proposed architecture initially gives apposite values for a current user, then corrects
misspelled words by applying the spelling rules, and the remaining words are corrected based on the probability given by an adopted
model of the profile values. To show the efficiency of our profile-based approach, we conducted an experiment with a corpus of 11,908
words containing 1,888 errors. It showed that our approach suggests the correct word in 88.43% times and ranks it in the first four
positions in 75.14% times. Moreover, using the same corpus we compared our implemented tool with two existing ones where ours
ranked better in 69.79% times than Sahehly and 77.63% times than MS word.

Keywords: Arabic linguistic, error-type, intelligent profile detection, multinomial logistic regression, spell-checking

1. INTRODUCTION
Spell-checking is based mainly on checking unaccept-

able written words in the used language and suggesting
a list of correct words that are related or similar to the
given incorrect word. The error [1] may be an isolated
error, meaning that the written word does not belong to
the language in use, or a real-word error, meaning that
the written word is correctly spelled but is not used in
the correct position [2], [3]. The importance of spell-
checking is increasing with the proliferation of computers
and smart devices in most aspects of daily life. Spell-
checking approaches and algorithms [4], [5], [6], [7] can
be adapted to any language, taking into account that a
vocabulary and a rule-based module should correspond to
the characteristics of the chosen language. In this paper, we
focus on the isolated errors in the Arabic language, noting
that we use the Buckwalter transliteration [8] convention.

Arabic has a rich morphology and a templatic derivation
that makes it possible to form many lemmas and words
from a given root. Also, it has affixes (prefixes and suffixes)
that can be added to a word [9], [10]. Some letters are
spelled differently depending on their position in words.
For instance, the hamza (“Z”) is written in five different

forms depending on its position such as “È@ ñ�” (“sWAl”),

“È

A�” (“sOl”), and “ �éÊJ�

@”(“Os}lp”). Moreover, many Ara-

bic letters are similar in their shapes, such as “¨” (“E”)

and “
	
¨” (“g”), or in pronunciation, such as “ 	

�” (“D”)

and “X” (“d”). Besides, the process of abbreviation in some

words, such as the words “ AÓ 	áÓ” (“mn mA”) is abbreviated

to “ AÜØ” (“mmA”). All these factors and various levels of
users make it important to study spell-checking based on a
deep understanding of the specificity of the composition of
Arabic.

As mentioned earlier, Arabic digital content is con-
stantly increasing in the Arab and Islamic digital world,
and the widespread use of electronic services and social
multimedia services such as Facebook and WhatsApp have
also contributed to the increase in the number of users.
Consequently, with the rapid growth of Arabic digital con-
tent and users, as well as the specificity of many linguistic
phenomena as explained above, user spelling errors are
increasing.

Accordingly, it is appropriate to find a new approach for
the Arabic Spelling checkers which satisfies and handles all
user types, starting with detecting the user profile from the
categories, and then choosing the suitable error corrections
of the current user.

This paper presents a new technique that improves
Arabic spell-checking by developing an approach based
on the user’s profile. The rest of the paper is organized
as follows. Section 2 reviews the related works. Section

E-mail address: wdsaty@hotmail.com, l.aouragh@um5r.ac.ma, karim.bouzoubaa@emi.ac.ma http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/1301116
mailto:wdsaty@hotmail.com
mailto:l.aouragh@um5r.ac.ma
mailto:karim.bouzoubaa@emi.ac.ma
http://journals.uob.edu.bh

1438 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

3 explains the proposed architecture. Section 4 discusses
the rules, as well as which ones are handled and those
that are not taken into consideration. Section 5 shows our
collected vocabulary used in this study. Section 6 describes
each aspect of the user profile and its relationship to the
error types. Section 7 presents the statistics and our results
that confirm the importance of this study. Section 8 displays
the prototype system implementing the architecture. Finally,
we conclude the paper and make a proposition for future
works.

2. RELATED WORK:
Although it still requires many improvements, there has

not been much research and work on the Arabic spell-
checking in the last five years (2022 to 2018) compared
to the previous years. Moreover, many of the existing
Arabic spell checker works are not available. The recent
works can be summarized in several aspects. The aspect of
techniques used; many studies generally focused on spell
checking using different techniques, such as the rule-based
approaches [11], [12], the distance similarity techniques, the
exploitation of morphological analysis[13], [14], techniques
based on phonetics, and finally hybrid ones [15]–[16].
Despite these efforts, no particular existing system has
advantages and overcomes the entire spelling problem.

The second aspect is the vocabulary used. Some authors
made efforts to solve an insufficient Arabic vocabulary,
such as the author of [13], who developed a prototype
checker that provides limited access to all dictionary data.
Surface patterns and morphological processing are used to
identify the sub-dictionaries with the highest probability
and only the suggested words closest to the error word are
considered. Also, other authors collect the vocabulary from
many resources such as [2] with a vocabulary of 41,170,678
words from Al-Riyadh newspaper articles, and [17] who
created QALB corpus (Qatar Arabic Language Bank), a
large manual from native and non-native articles and ma-
chine translation output. However, due to the peculiarities
of the language and the spread of dialects, there is still no
composition of the vocabulary that contains or generates all
Arabic words.

The third aspect is the user particularity. Some existing
works deal with errors arising from special user classifica-
tion. Authors of [18] captured errors for Egyptian dialects,
the author of [2], [19] propose particular checkers for the
Iraqi dialect, the authors of [12], [20] design checkers
specially helping the non-native learners, and the author
of [21] addresses text written by dyslexic writers using a
specific dyslexic corpus. Although they work well, each
checker is intended for a specific type of users and therefore
may not produce the desired results when used by a different
type of user.

The last aspect is the types of errors. Although the
author of [21] addresses only dyslexic writers, it treats
split words, spaces, and repeated characters. The author of
[22] proposed a system that handles space deletion error,

insert error, delete error, and transpose or replace errors. It
depends on a set of predefined common prefixes and rules.
Also, the work of [23] deals with space, insert and delete
errors by applying A* lattice search and n-gram. As well,
the author of [24] proposes an adapted Levenshtein distance
for correcting space and deletion errors. The authors of
[25] address hamza, taa marbuta “ �è”, yaa “ø

” errors and

confusion between dah “X” and zah “ 	X” by applying regular
expressions and a word substitution list. Furthermore, the
checker created by the author of [15] consists of a hybrid
pipeline that combines five approaches to handle differ-
ent types of errors (space errors, hamza and yaa errors,
transposition errors). However, it is better to perform the
correction process based on the user type and then select
the appropriate vocabulary and error type.

In summary, we note that despite the efforts that have
been made in the field of spell checking, they are scattered
and have limitations in some aspects. Table I shows the
recent Arabic spellchecking works.

3. THE PROPOSED ARCHITECTURE:
The proposed architecture is shown in Figure 1. Briefly,

the user starts typing a text; then, the system initially cor-
rects some mistakes based on the common errors module.
To do this, the first module checks whether the typed word
respects one of the rules stored in the Common error rules
file. The system automatically corrects these errors without
performing any similarity calculation. The next module
concerns the detection of the remaining errors by comparing
the typed words with the vocabulary. Then, in Module 3, the
system reads a user profile and ranks the suggested words
based on the selected user profile.

Let us recall that this architecture is implementing a
new approach to overcome the existing spellcheckers by
defining a relationship between the types of errors and the
user profile. Consequently, the details of the four modules
of our approach are:

• Module 1. The common errors module: a common
error is defined as a spelling or grammatical error
made by a group of users due to their non-awareness
of certain language rules [26], [27] or ignoring some
errors that most people agree on. For instance, the
hamza error in the first position of the word is
considered a common error since some users tend
to type “É¿ @” (“Akl”) instead of “É¿

@” (“Okl”). Also,

changing the pronunciation of some letters [10] due
to local dialects are considered common errors, such
as “I. Ë

@” (“olb”) instead of “I. Ê

�
¯” (“qlb”). It is noted

that dealing with the common errors separately has
many advantages, such as better correction results
and higher speed of the checker since the similarity
distance is not processed.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1439

TABLE I. SUMMARY OF THE RECENT WORKS

Work approach vocabulary user classification types of errors
[11] -Rule-based approach (tri-gram -

finite-state automaton - noisy chan-
nel model)

-Morphological analysis
(9 million words)

- Substituting letters

[12] -Rule-based approach -Bulk-walter’s Arabic
-morphological analyzer

Non-native learners Editing errors, phonetic errors,
vowel errors, tanween errors,
shadda errors and semantic errors

[13] -Adapted Levenshtein algorithm -Surface patterns and
morphological processing
(sub-dictionaries manage-
ment)

[14] -Adopted Levenshtein algorithm by
Surface patterns

-Dictionaries

[6] -adopted Levenshtein algorithm by
Surface patterns

-Dictionaries

[15] -Hybrid approaches:(rule-based
linguistic techniques statistical
methods using language machine
translation error-tolerant finite-
state automata method.)

-QALB corpus Wordlist (9
million)
-Monolingual Arabic cor-
pus

Split, add before, delete, edit,
merge, add after, move, common
mistakes (hamza and yaa), and
punctuation

[16] -Hybrid approaches:
rule-Based Corrector
Probabilistic-Based
Damerau-Levenshtein
Punctuation Recovery

-QALB corpus
-KSU corpus
-Arabic Corpora (OSAC)
-Al-Sulaiti Corpus
-KACST Arabic Corpus
-madamira corrector
-Ghaltawi

edit, add, split, merge, punctua-
tion, phonological, common mis-
takes (Alif, yaa), and repeated let-
ters

[17] -tested and evaluated 9 Arabic cor-
rection systems

-QALB corpus

[18] -Rule-based approach -morphological analysis Egyptian dialect reading errors (similar characters)
-hearing errors -touch-typing er-
rors -morphological errors -editing
errors-

[20] -Ngram algorithm -dictionary lookup Iraqi dialect
[12] -Levenshtein distance -dictionary lookup non-native learners phonemic contrasts visually similar

inflected error heard Arabic key-
boards typographical errors

[21] -Tri-gram -dyslexic corpus dyslexic writers split words, spaces, and repeated
characters dyslexic error

[22] -Confusion matrix
-Noisy Channel model

-predefined common pre-
fixes and rules

space deletion error, insert error,
delete error, and transpose or re-
place errors

[23] -Damerau–Levenshtein
-A* lattice search
-N-gram probability

- space, insert and delete errors

[24] -adapted Levenshtein distance -corpus (Al-watane news-
paper)

space and deletion errors

[25] -Rule-based approach -word list hamza, taa marbuta “ �è”, yaa “ø

”
errors and confusion between dah
“X” and zah “ 	X”

• Module 2. The detection module scans the remaining
words, compares them with the vocabulary, and then
generates a list of incorrect words.

• Module 3. The user profile module determines the
user profile according to his(er) typed errors by ap-
plying statistical rules from the profile-based mapping
detailed below. This process keeps repeating until
the current user profile is determined. Once done, its
value is saved in order to be used for manipulating
the remaining errors.

• Module 4. The ranking module filters the erroneous
words based on the vocabulary and the measured
distances. Then, the suggested words are ranked
based on the user profile. Consequently, the suitable
proposed words are used to correct the erroneous
words. In addition, this module has a cash file to
keep the previously erroneous words alongside their
corrections directly for the same next errors without
having to recalculate the distances.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1440 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

Figure 1. The proposed architecture.

load vocabulary;
input text;
common errors (text);
error words= detect error(text);
calculate profile values(userProfile);
foreach word:error words
foreach cashword: cash file

if word.equal(cashword.error word)
return cashword

else
cashword= profile based correct(word,profile values);
cash file.add(cashword);
return cashword;

end if
end foreach

end foreach

Figure 2. Algorithm of the proposed approach.

The Figure 2 briefly shows an algorithm that can be
used to implement the proposed architecture.

4. IMPLEMENTED RULES:
Numerous studies have been conducted to manipulate

the common errors. Some of them used the predefined
confusion sets [3], [28] by defining a list of the common
errors and their correction, such as the set of “I. Ë

@” (“olb”)

and “I. Ê
�
¯” (“qlb”). However, the manipulation by this

approach does not provide the desired results because it
has two main drawbacks. First, it fails in handling errors
related to some letters that have their own specificity in
writing. For instance, the hamza letter has many forms
depending on its position in a word and its diacritical mark,
as well as the diacritical mark of the previous and the next
letter. Second, the approach necessitates a huge corpus to
cover whole expected On the other hand, the rule-based
approach has been used by some authors. The authors of
[25] designed rules using regular expressions and word
substitution lists to correct common errors, such as dealing
with hamza errors, the confusion between the “ 	

�” (“D”)

and “ 	
 ” (“Z”), and the omission dots with taa-marbuta “ �è”

and yaa “ø

”. Moreover, the works of [16], [23], [29], [30]
also captured various kinds of common errors. The rule-
based approach is better than the previous one but requires
more effort to cover them all. The main reason for this
shortfall is the complexities of the Arabic language, such
as derivation and ignoring diacritics in texts.

The most comprehensive list of common error rules
can be found in [31]. It consists of 104 rules divided into
10 categories. For example, the category “taa-mabsouta”
and “taa-marbuta” contains six rules. Of the 104 rules,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1441

we were able to implement 24 of them. Analysis of the
remaining rules shows that additional work is required, such
as diacritization of the corresponding word or invoking a
morphological tool. For instance, when a hamza is preceded
by a broken letter, it should be written on “alif magsora”
such as “ øP

�
AK.” (“bAr}”), and this cannot be processed

without diacritizing the text.

Since diacritizing and morphological analysis extra
works are outside the scope of the present work, we decided
to limit ourselves to the 24 rules. These were created in an
XML file, and each set of rules was then classified with a
category tag, as is the case [31].

<?xml version=“1. 0” encoding=“UTF-8” standalone=“yes”?>
<Common Error Rulesxmlns:xsi=“http://www.w3.org/2001/ XML
Schema-instance”>
<Rule category id=“1” value=“ �é¢�ñ�JÖÏ @ �

è 	QÒêË @”>
. . . .
</Rule category>
. . . .

<Rule category id=“5” value=“(Õæ� @) �
éÒÊ¿ 	áÓ

	
Ë

B@

	
¬

	
Yg”>

<Rule id=“5.1”
description= “(Õæ

kQË@ 	áÔgQË@ é<Ë @ Õæ��.)

�
éÊÓA¾Ë@

�
éÊÒ��. Ë @ ú

	
¯

	
¬

	
Ym�

�
'

(é<Ë @ Õæ�AK.)
�
éÊÓA¾Ë@ Q�

	
« ú

	
¯ ù

�
®J.
�
Kð

words=“Õæ�AK.”

next word= “Õæ

kQË@ 	áÔgQË@ é<Ë @”

convert to=“Õæ��.”

error example=“Õæ

kQË@ 	áÔgQË@ é<Ë @ Õæ�AK.”

example correction=“Õæ

kQË@ 	áÔgQË@ é<Ë @ Õæ��.”/>

. . .
</Rule category>
. . .

. . .
</Common Error Rules>

Figure 3. Xml file of the common error rules.

As an example, Figure 3 shows the fifth category named
deletion of the alif letter from the word “Õæ� @” (“Asm”). This

category has rule 1 manipulates alif in “Õæ�AK.” (“bAsm”). If

this word comes before “Õæ

kQË@ 	áÔgQË@ é<Ë @” (“Allh AlrHmn

AlrHym”), the alif is omitted “Õæ��.” (“bsm”). For sharing
with the research community, this XML file can be freely
downloaded [32].

5. THE VOCABULARY:
The vocabulary is one of the most important components

in the proposed architecture as it is used to detect errors
and rank candidate words. Therefore, it must be as large as
possible, containing all possible vocabulary of the Arabic
language in order to provide proper responses.

The vocabulary was collected from many corpora to
ensure an extensive coverage of correct Arabic words. The
corpora were Khaleej corpus [33], Nemlar corpus [34],
Tashkeela corpus [35], Watan corpus [36], Arabic Learner

corpus [37], Abu El-Khair Corpus[38], and some files
collected from Aljazeera and Al-Arabiya newspapers. The
whole collection contained 58,298 text files with 79,687,338
words equaled 2,281,655 unique words. Then, a filtering
process was performed to eliminate incorrect words by
getting the stem of each word of the collected vocabulary
and verifying its existence in the Calem lexicon [39]. This
latter is one of the SAFAR [39] framework resources and is
considered as one of the largest stem vocabularies [40] in
the ANLP community, reaching more than 7 million stems.
The process allowed us to detect a list of 77,791 incorrect
words where part of them were corrected and the others
were deleted. For instance, the word “ �

�K
Y
�
�Ë@” (“Al$dyq”)

was corrected to “ �
�K
Y�Ë@” (“AlSdyq”) while the incorrect

word “ðñ�” (“sww”) was deleted.

6. THE USER PROFILE:
By a user profile, we mean knowing the characteristics

of a group of people who have a common thread in
making a particular mistake. For example, a group of people
with a low level of education has the tendency to make
similar mistakes. For instance, those who have attended
less than elementary school make most mistakes in lam-
shamsia “�Ë @” to write “�ÖÞ

�
� @” (“A$ms”) instead of “�Ò

�
�Ë@”

(“Al$ms”). Consequently, having more accurate information
about users’ features help the spellchecker be more accurate
and adapt to the correct user profile.

The profile-based module is the most important compo-
nent of the proposed architecture and requires knowing the
nature of the user while typing and then selecting the right
spell-checking parameters that best suit him(er). To achieve
this, we had to perform an analytical study of the users
and the mistakes they often make and find a relationship
between them. Since there is no benchmark corpus that
contains user profiles and matches with their errors, we
compiled a specific corpus that was given to a sample
of users, then provided observations and views about the
relationship between users and their errors.

A. The corpus:
To compile the aforementioned corpus, a group of

people edited different files (at least one page). Next, we
conducted a survey to gather information about all the
individuals participating in the study. A comprehensive
representation of the profile of these individuals were con-
sidered: gender (male, female), age (old-aged, middle-aged,
young-aged), computer usage (high, low), etc.

After receiving all the documents, we corrected the
spelling errors separately in each document. Then, a file was
created containing the following sheets: people -documents
-types of possible errors -errors they made.

In the end, we converted this work into a corpus file
using TEI format [41] which is a standard form using
the XML language to represent texts in digital form for

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1442 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

online research, teaching, and preservation, where it can be
used and shared among those interested. The corpus file
contains the following sections (tags): people, documents
they printed, types of possible errors, and mistakes they
made. Each section (tag) contains some data explaining its
details and content. The “people” section contains basic
information about each person and their relationship to com-
puter use, while the “documents” section contains all the
sentences in each document, with each sentence numbered
for use in the errors section. We also add the “type of
errors” section in which we list all possible errors with their
description in Arabic and provide an illustrative.

<TEI>
<teiHeader>
. . .
</teiHeader>
<persons xml:id=“persInfo”>
. . .
</persons>
<documents xml:id=“docInfo”>
<document>
. . .

</documents>
<errorTypes xml:id=“errorInfo”>
. . . .
<errorType xml:id=“err9”>
<causeDesc>forget press on space</causeDesc>
<causeArabicDes> �é 	¯A�ÖÏ @

	
¬

	
Yg</causeArabicDes>

<example>
<errorWord>ù

	
®�Ò

	
ª
	
JK
</errorWord>

<correctWord>ú

	
¯ �Ò

	
ª
	
JK
</correctWord>

</example>
</errorType>

</errorTypes>
<errors xml:id=“errorsInfo”>
. . .
<error>
<errorId>117</errorId>
<personId>per17</personId>
<docId>doc17</docId>
<statementId>22</statementId>
<errorWord>ðAêªÒ��

�</errorWord>

<correctWord>ð AªÒ�
�
�</correctWord>

<causes>
<errorTypeId>err9</errorTypeId>
</causes>
</error>
. . .
</errors>
</TEI>

Figure 4. Example of the error type element

Figure 4 shows a sample of the errors-types named “for-
get press on space” and its Arabic name “ �é 	¯A�ÖÏ @

	
¬

	
Yg” as

well as an illustrative example of the error word “ù

	
®�Ò

	
ª
	
JK
”

(“yngmsfy”) and its corrected word “ú

	
¯ �Ò

	
ª
	
JK
” (“yngms

fy”).

B. The mapping between errors and user profile
1) Classification of errors:

Based on the compiled corpus, we find that a group of
users with similar attributes make similar errors. Therefore,
we strive to discover the relationship between their profiles
and the type of errors they make. To achieve this, it is
necessary to study these categories of errors.

There are many existing classifications of errors. The
simplest is to classify an error as either isolated or context-
sensitive. Some researchers [15], [21], [42] mentioned that
most typos are as follows: inserting letters, deleting letters,
substituting letters, and interchanging two adjacent letters.
Others [43] studied the spelling errors to classify them into
three categories based on user knowledge: typographical
errors, cognitive errors, and phonetic errors. According to
the analysis of our corpus, it is necessary to extend the
existing classifications and consider all what the users have
misspelled.

Indeed, some of them have been taken as they are,
such as the “adjacent letters” error. Other types have been
divided into newly created ones. For example, the “letter
substitution” type is divided into four types; exchange letter,
replace error, shift keyboard error, and shape error. At last,
we have considered 18 different types. Table II lists all of
them where the second column describes each type, the
third column gives an example, and the last one provides
the correct word.

2) The relationship between profile and errors:
The compiled corpus contains 31 user profiles. Each

attribute representing the profile has been used to classify
the error by matching them with the users’ errors. Then, we
conducted a set of analyzes to find a relationship between
the error type and the user profile.

After identifying the error types and collecting the user
profile data alongside their errors, we divided the mapping
into two parts. The first one is the statistical test, which we
use only once to measure the mapping relationship. The
second is the calling of the functions that are executed for
each new user profile to obtain his(er) probability mapping
values.

Firstly, we implemented a function named error-
determination, which determines the error types by com-
paring the misspelled word with the suggested words. For
example, if the misspelled word is “H.

�
èQë” (“hrpb”), the

function then returns “insertion error” for “ �èQë” (“hrp”) and

“adjacent letter” for “H. ðQë” (“hrwb”).

Second, to find the relationship between the profile and
the errors, these data were statistically analyzed with each
other. The chi-square test was first applied to evaluate

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1443

TABLE II. TYPES OF ERRORS.

No Error type Description Error example Correction
1 add space A user adds space ¡J
¢

	
j
�
JË @ ð ¡J
¢

	
j
�
JË @ð

2 adjacent letter Pressing the letter whose location on the keyboard is
close to the required letter

	P @
	Q��K
B

@ð 	P@
	Q��K. B

@ð

3 dialect error Substitution of letters due to local dialects øQ» 	P øQ» 	P

4 deletion error A letter is omitted from the word ÕÎÒÊË ÕÎªÒÊË

5 double letter Repeating one letter of the word more than once I. �.��
�
�K
 I. �.�

�
�K

6 double word Repeating a word more than once 	
�A

	
®
	
m�
	
' A

	
�A

	
®
	
m�
	
' @

	
�A

	
®
	
m�
	
' @

7 exchange latter Preceding a letter over another letter �
HAJ. Ê

�
J¢Ó

�
HAJ. Ê¢

�
JÓ

8 forget press on space Deleting a space between two words É¾
�
��. KQm.

�
�
' É¾

�
��. ø

Qm.
�
�
'

9 hamza error Not writing the correct hamza in a word ©K. PB@ ©K. P

B@

10 insertion error Adding a supernumerary letter ú

«AÒ

�
Jm.
Ì'@ ú

«AÒm.

Ì'@

11 lam-shamsiya The lam-shamsiya is written but not pronounced 	
�Qª

�
K@

	
�Qª

�
JË @

12 press adjacent letters
at the same time

Pressing at the same time on two adjacent letters 	PA
�
Jêm.
Ì'@ 	PAêm.

Ì'@

13 replace error Writing a letter that is not the desired letter pñê
�
¯

�
èñê

�
¯

14 shift keyboard On the keyboard, there are letters at the top of the
buttons; when you type them, you should press the Shift
button with the desired letter.

Z @Qj.
	
« Z@Qk. @

15 speed error With speed in writing, a mistake may occur AÒ
	
J�
J

	
¯ AÒ

	
J�
J.

	
¯

16 taa-marbutaerror There is confusion between taa-marbuta and the haa
(without double dot) at the end of the words

éJ
»
	
YË@

�
éJ
»

	
YË@

17 shape error Some letters are similar in writing. Therefore, a user
may make a mistake in choosing the required letter

�
é
�
®
	
¢
	
JÓ

�
é
�
®¢

	
JÓ

18 alif magsura and Yaa
confusion

There is confusion in writing alif and yaa at the end of
the words

ú
�
æË@ ú

�
æË @

the correlation of the profile variables with the types of
errors. This test allowed us to exclude two independent
variables whose p-value was below the alpha-level [44]
table, namely the sex and document variables. The other
variables were kept because they were correlated with the
errors. Moreover, Multinomial Logistic Regression [45] is
a classification model that can be used when the dependent
variable is nominal. The model was applied to obtain error
probabilities, as detailed in the next section.

Thirdly, we created a function named error-type prob-
ability that uses these results, receives the profile of the
current user, and then computes the appropriate probability
values for each error type. This function is called whenever
we process a new profile.

Finally, the Levenshtein distance is used to candidate
the suggested words for each error. Also, the error-type
determination and error-type probability functions are called
to obtain a probability value for each error. Then, a new
measure is calculated by passing these values for the current
profile by applying equation 1. Subsequently, the suggested
words are reordered based on these measures.

Pro f ile measure = dis ∗ f req/error value (1)

Where:

dis= represents Levenshtein distance
error value = represents values of error type for
the current profile
freq = represents frequencies of a word in the
vocabulary

To illustrate the mapping, let us consider the following
example. Table III contains a user profile who is mistaken in
“ �éJ 	JÒ¢Ó” (“mTmn}p”) instead of “ �é 	JJÒ¢Ó” (“mTm}np”). The
system starts by calculating the profile value for each error
type, as shown in Table IV. Then, the above-mentioned
operations are executed to order the suggested words based
on the given profile. Table V compares the suggested words
ordering by Levenshtein distance alongside ordering by the
profile.

TABLE III. THE USER PROFILE

Gender male
Age middle-aged
Educational level High school
Occupation not yet
Specialization not yet
Print documents no
Computer usage low

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1444 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

TABLE V. COMPARING THE RANKING OF THE SUGGESTED WORDS

Based on Levenshtein Based on the profile
No Suggested word Value No Suggested word Error type Value
1 �

éJ

	
JÒ
�
JÓ 2 1 �

é
	
J

JÒ¢Ó exchange latter 0. 015050487

2 �
é

J£

A¢Ó 2 2 �

éJ

	
JÒ
�
JÓ permanent error 0. 01058635

3 �
èPñÒ¢Ó 2 3 �

èPñÒ¢Ó adjacent letter 0. 004541111

4 �
é�ñÒ¢Ó 2 4 �

éÒ
	
JÒ
	
JÓ permanent error 0. 001085779

5 �
éÓñÒ¢Ó 2 5 �

é�ñÒ¢Ó adjacent letter 0. 000454111

6 �
é
	
J

JÒ¢Ó 2 6 �

é

J£

A¢Ó permanent error 0. 000271445

7 �
éÒ
	
JÒ
	
JÓ 2 7 �

éÓñÒ¢Ó adjacent letter 0. 000181644

TABLE IV. THE ERROR VALUES OF THE GIVEN PROFILE.

Error type Its value Error type Its value
add space 0.000132089 insertion error 0.00023304
adjacent letter 4.22523E-05 lam shmsia 0.994998864
dialect error 5.86621E-05 permanent er-

ror
0.00011803

deletion error 8.42015E-05 press adjacent
letters at same
time

0.000822038

double letter 5.90891E-05 shift
keyboard

0.000600016

double word 1.74498E-05 speed error 0.002525368
exchange lat-
ter

5.76059E-05 taa marbota
error

2.62772E-05

for press on
space

9.86843E-05 alef magsora
and Yaa con-
fusion

5.17917E-05

Hamza error 7.13821E-05 shape error 3.15812E-06

When comparing the wrong word “ �éJ 	JÒ¢Ó” (“mTmn}p”)
with the suggested words, the error type is determined then
the probability values (Table IV) are used in equation 1, as
we see on the right side in Table V (based on the profile). It
is noticeable that (Table V) the desired word is in the first
order when the profile is used.

3) Calculation of error probabilities:
To evaluate our approach, we used the multinomial

logistic regression to model the probabilities of a nominal
random variable Y = y1; y2, ..., yK as a function of a number
of explanatory variables X = X1; X2, ..., Xn. In our case, Y
represents the types of errors made in Arabic, and X the
set of variables that define the profile of a user.

Thus, this model estimates the probability of an erro-
neous word belonging to a class and consequently allows
for correcting based on the most probable error type. To
do so, taking the Kth modality as a reference error type, the
approach is to define the following K-1 regression equations
and keep only the most probable equations:

ln

 P
(
Y = y j/X

)
P
(
Y = yK/X

) = β j
0 + β

j
1x1 + · · · β

j
nxn,

for j ∈ {1, 2, . . .K − 1}

(2)

With
K∑

j=1

P
(
Y = y j/X

)
= 1

if we use the exponential value and add the terms from
1 to K-1, we get:

P
(
Y = y j/X

)
=

eβ
j
0+β

j
1 x1+···β

j
n xn

1 +
∑K−1

j=1 eβ
j
0+β

j
1 x1+···β

j
n xn

(3)

The model is, therefore, completely defined by the
estimation of (K−1)× (n+1) parameters (β j

i) 0 ≤ i ≤ n,
1 ≤ j ≤ K − 1

,

The model is estimated using the maximum likelihood
method given by the following formula:

L(Y, β) =
∏

1≤ j≤K−1

P
(
Y = y j/X

)1{Y=y j }

where 1{Y=y j} =

{
1 if Y = y j

0 if Y , y j

(4)

The following table shows the obtained results:

TABLE VI. LIKELIHOOD RATIO TESTS (AN EXCERPT FROM
THE RESULTS)

Effect Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood of Re-
duced Model

Chi-
Square

df Sig.

Intercept 1039.222 81.028 17 2.52E-10
ageGroup 1052.341 94.146 17 1.07E-12
eduLevel 1020.966 62.772 17 3.64E-07
jobTitle 1017.782 59.588 17 1.23E-06
printDoc 1055.575 97.381 17 2.71E-13
year 1033.868 75.674 17 2.23E-09
compDeal 1043.082 84.888 17 5.13E-11

For the tests of the model parameters, the Wald test [46]
was used to test the influence of each user profile Xi with
the following hypotheses:H0 : β1

i = β
2
i = ... = β

(K−1)
i = 0

H1∃ j ∈ {1, ...,K − 1}/β j
i , 0

(5)

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1445

TABLE VII. TEST THE HYPOTHESES FOR AGE GROUP VARIABLE

No Error types Estimate parameters Std. Error Wald p.value
1 add space -2.089 1.049 3.964 0.046
2 adjacent letter -1.13 0.635 3.164 0.075
3 dialect error 0.126 0.847 0.022 0.882
4 deletion error 0.784 0.474 2.73 0.099
5 double letter -12.622 1181.56 0 0.991
6 double word -12.905 3958.682 0 0.997
7 exchange latter -14.6 1114.419 0 0.99
8 forget press on space 0.807 0.39 4.274 0.039
9 hamza error 0.397 0.231 2.947 0.086

10 insertion error 1.506 0.577 6.814 0.009
11 lam shmsia -1.799 0 0.0
12 press adjacent letters at same time 2.837 1.374 4.264 0.039
13 permanent error 1.019 0.949 1.152 0.283
14 shift keyboard -11.404 1874.656 0 0.995
15 speed error 10.457 2095.928 0 0.996
16 taa marbota error 1.785 0.298 35.923 0.0
17 shape error 3.787 1.254 9.118 0.003

TABLE VIII. EXAMPLE OF COMPARING THE SORTING DESIRED WORDS BY LEVENSHTEIN ALONGSIDE THE PROFILE

Error word Desired word Frequencies Sort by Levenshtein Error type Sort by profile
H.

	Qk. H.

	
Yg. 552 8 dialect error 3

©Ò
�
Jj. J. Ë @ ©Ò

�
Jj. ÖÏ @ 6775 1 permanent error 1

ú

	
æ»Bð ú

	
æºËð 880 6 press adjacent letters at same time 1

@ððQ
	
m�� @ðQ

	
m�� 23 1 double letter 2

øQ
�
®
	
®Ë @ ø

Q
�
®
	
®Ë @ 113 9 alef magsora and Yaa confusion 5

YJ
K
Y
�
� YK
Y

�
� 2074 1 double letter 1

@ðQËA� @ðPA� 587 4 press adjacent letters at same time 1

é�A
	
mÌ'@ð

�
é�A

	
mÌ'@ð 9 2 taa marbota error 4

Table VII shows the results testing the age group
variable with 7 error types having a p-value less than 0.05
leading us to accept the H1 hypothesis. These tests were
also applied to the other variables (Xi).

7. EXPERIMENTS AND RESULTS
To test the proposed architecture, we studied and an-

alyzed all the users. We found a total of 1888 errors,
including 149 spacing errors (adding and deleting a space).
These spacing errors were excluded from the study as they
are outside the scope of the current approach and can
be handled with existing works such as [23], [24]. The
remaining 1739 errors contain repetitions and are reduced
to 1052 unique errors.

As mentioned earlier, the proposed system initially
applies the rules before using the profile. Six errors are
handled by applying them, and the remaining 1046 ones are
then handled using the profile. The experiments are then
evaluated using four approaches. In the first two experi-
ments, the profile approach is compared to the Levenshtein
distance, while in the second two experiments, our tool
called “Safar Spell Checker” is compared to the Sahehly
[47] and MS-Word tools to see which tool gets the better
desired words. Sahehly is one of the latest websites that
specializes in Arabic content and provides spelling and

grammar correction. For instance, it has been used for
testing in the work of [21]. Also, MS-Word was chosen
because it is considered one of the most widely used word
processors.

The first one compares the position of the correct word
between the value returned using the profile and the value
using the Levenshtein distance, as shown in Table VIII. For
instance, for the word error “H. 	Qk. ” (“jzb”), the correct word

is “H.
	
Yg. ” (“j*b”) taken from the corpus (see Table VIII).

In this case, the profile returns the correct word at position
3, while the Levenshtein makes it at position 8.

As shown in Table IX, the first evaluation shows that in
866 cases, the profile position is better than the Levenshtein
one; in 59 times, they are equal, and in 121 cases, the
profile ranks lower than Levenshtein. In total, out of 1046
errors, the profile position ranks better or equal in 925 times
representing a percentage of 88. 43% times.

TABLE IX. SUMMARY OF STATISTICS EXPERIMENTS

No The Comparing Results Times %
1 the profile position ranks better or equal 925 88.43
2 the Levenshtein ranks better 121 11. 57

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1446 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

TABLE X. COMPARING THE PROFILE APPROACH ALONGSIDE WITH SAHEHLY AND MS WORD CHECKERS

Error types Error types % Sahehly alongside with the profile-based MS Word alongside with the profile-based
Sahehly profile MS Word profile

adjacent letter 4.49% 0.67% 3.82% 0.48% 4.02%
alef magsora and yaa
confusion

8.89% 2.77% 6.12% 5.07% 3.82%

deletion error 4.02% 0.38% 3.63% 0.48% 3.54%
dialect error 0.48% 0.00% 0.48% 0.29% 0.19%
double letter 0.38% 0.10% 0.29% 0.10% 0.29%
exchange latter 0.19% 0.00% 0.19% 0.10% 0.10%
hamza error 58.22% 19.79% 38.43% 7.46% 50.76%
insertion error 2.01% 0.00% 2.01% 0.10% 1.91%
multiple error 10.42% 2.39% 8.03% 2.77% 7.65%
permanent error 1.24% 0.10% 1.15% 0.19% 1.05%
press adjacent letters
at same time

0.48% 0.00% 0.48% 0.00% 0.48%

shape error 0.10% 0.00% 0.10% 0.10% 0.00%
shift keyboard 0.10% 0.00% 0.10% 0.00% 0.10%
taa marbota error 8.99% 4.02% 4.97% 5.26% 3.73%

100.00% 30.21% 69.79% 22.37% 77.63%

TABLE XI. COMPARING THE SPELLING CORRECTIONS FOR A USER WHO HAS A CERTAIN PRIVACY

Error types Error types % Sahehly alongside with the profile-based MS Word alongside with the profile-based
Sahehly profile MS Word profile

Hamza error 88.89% 24.44% 64.44% 4.44% 84.44%
multiple error 6.67% 0.00% 6.67% 0.00% 6.67%
taa marbota error 4.44% 2.22% 2.22% 0.00% 4.44%

100.00% 26.67% 73.33% 4.44% 95.56%

The second approach does not take into consideration
the Levenshtein distance but checks whether the position
of the correct word is among the first top 4 positions
as it is the average number of proposed words given in
most spellcheckers. For instance, Table VIII shows that
all the desired words rank among the first four positions,
except for the desired word of the misspelled word “øQ

�
®
	
®Ë @”

(“AlfqrY”). The experiment in the entire corpus shows that
the profile ranks the desired word as part of the 4 candidates
in 625 times representing a percentage of 75.14%.

In the third approach, the 1046 errors in the compiled
corpus were corrected with Sahehly and then compared
with our tool. In the third approach, the 1046 errors in
the compiled corpus were corrected with Sahehly and then
compared with our tool. ours ranked better in 69.79%
times than Sahehly. In the last approach, the errors were
also tested with MS-Word and then compared with our
tool. The result of the tool was also 77.63% times better
than MS-Word (30.21%). Table X shows the details of
the comparison of the tools. It shows the percentage share
of each type of error in the total errors. In addition, the
percentage of correction of each type of error is compared
between the profile and the other tools.

We also find that the profile approach gives better results
in terms of privacy of a particular user. For example, Table
XI shows the results for a 19-year-old user who has no

experience in using computer. The profile achieved 73%
times of the results compared to 27% for Sahehly and 96%
times compared to 4% for MS-Word.

Experiments have shown that the proposed approach
closely candidates the desired words associated with the
current user profile. This relationship has not been clearly
demonstrated in previous studies.

8. SAFAR SPELL CHECKER UI
The prototype is implemented to execute the proposed

architecture (Figure 5). It contains, firstly, the profile vari-
ables that a current user fills in. Then, h(sh)e types a text.
When the ‘spell-check’ button is clicked, the correction
steps are displayed in the result area.

Figure 5 shows all the details of the results frame
after filling the following profile (age=between 21
and 40, education=above university, job title=employee,
print document=yes, year=11 to 15 years, computer
dealing=a lot of dealing) and then typing the text
“ �
HñÊÒªK

	
àñ

J
�
�Ë@ ø

@ ú

	
¯ð Ðñ

�
®Ë@ �Yj

�
JK
 AÓ 	á«” (“En mA

ytHdS Alqwm wfy Oy Al$}wn yEmlwt”). When the “Spell
check” button is clicked, the text is displayed and the
incorrect words are highlighted. Also, by right-clicking on
an incorrect word, the suggested words are displayed in a
pop-up menu to choose the appropriate word. Moreover, the
“Details” button shows details of the execution (Figure 6).

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1447

Figure 5. The prototype system

Phase1: starting rules checking ...
word= AÓ 	á«, changed to = AÔ«

done rules checking
Downloading vocabulary . . . done
Phase 2: starting detect incorrect words using corpus ...

incorrect word 1: �Yj
�
JK

incorrect word 2: �
HñÒÊªK

done detect incorrect words
Phase 3: calculating user profile values ...

add space = 4.6659044698932746E-4 adjacent letter= 1.8664970289697708E-4
dialect error = 2.596726687609965E-4 deletion error= 4.012277868077643E-4
double letter = 2.893543704800627E-4 double word= 6.535650324000482E-5
exchange latter = 2.533926383925373E-4 forget press on space= 4.7206997381166253E-4
Hamza error = 3.336859260315717E-4 insertion error= 0.0011437190422881882
lam shmsia = 0.9798471514101957 permanent error= 5.44910393917437E-4
press adjcnet letters at same time = 0.004066840022306117 shift keboard= 0.002971319899758517
speed error = 0.008351261170125326 taa marbota error= 1.0998743666360168E-4
alef magsora and Yaa confusion = 2.3158953823509702E-4 shape error= 5.2210690990595054E-6

done calculating user profile values
Phase 4: ranking suggested words...

incorrect word 1: �Yj
�
JK

/ Leventesion(1-�Aj
�
JK
, 2- Yj

�
JK
, 3- @Yj

�
JK
, 4- �

HYj
�
JK
, 5- �

HYj
�
JK
)

/ User profile (1- �
HYj

�
JK
, 2- XYj

�
JK
, 3- øYj

�
JK
, 4- Yj

�
JK
, 5- PYj

�
JK
)

incorrect word 2: �
HñÒÊªK

/ Leventesion(1- ñÒÊªK
, 2- @ñÒÊªK
, 3- �
�ñÒÊªK
, 4- ¼ñÒÊªK
, 5- 	

àñÒÊªK
)

/ User profile (1- 	
àñÒÊªK
, 2- éÒÊªK
, 3- @ñÒÊªK
, 4- èñÒÊªK
, 5- ¼ñÒÊªK
)

done.

Figure 6. Example of output

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1448 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

In phase 1, the execution of the spelling rules is
checked, allowing the “ AÓ 	á«” (“En mA”) error to be

directly corrected to “ AÔ«” (“EmA”) without processing the
similarity. In phase 2, the execution of the remaining words
is processed using the vocabulary, allowing us to recognize
that“�Yj

�
JK
” (“ytHdS”) and “ �

HñÊÒªK
” (“yEmlwt”) as mis-
spelled words. Based on the filled profile variables, the user
profile execution for each error type is calculated in phase
3. In the last fourth phase, the execution of the misspelled
words is processed, and then the suggested words for each
of them are ranked by Levenshtein alongside the profile
distance. For the misspelled word “�Yj

�
JK
” (“ytHdS”),

our tool ranks the desired word “ �
HYj

�
JK
” (“ytHdv”) in

the fourth position when using Levenshtein. While using
the profile, it ranks in the second position. For the second
misspelled word, “ �

HñÊÒªK
” (“yEmlwt”), our tool ranks the

desired word “ 	
àñÊÒªK
” (“yEmlwn”) in the third position

with Levenshtein while the profile ranks it in the first
position.

CONCLUSION
The paper presented a new spell-checking approach

based on the user profile and that can be customized for
any language. For this purpose, we analyzed the collected
users’ files and then obtained 18 error types and statistical
values for each of them.

This approach determines a current user profile to give
h(im/er) appropriate statistical values. Then, spelling errors
are initially corrected by applying the rules. Next, the re-
maining words are identified based on their error types and
then corrected using their profile values. In the experimental
results, the profile position ranked better 88.43% times
compared with the Levenshtein rank.

Based on our implemented approach experiments, the
next generation spell checker should rely on the profile
instead of relying directly on the similarity distances. It will
suggest the nearest words based on a current user profile and
provide accurate results for confusing words. In addition,
this checker will interact with users, especially those whose
native language is not Arabic or who are unfamiliar with
Arabic rules.

The key contribution of our work opens the space for
researchers to create a platform that can be applied for any
language, that accommodates all users with their different
levels and provides them with satisfactory results.

In the future, we plan to extend the work in order to
address the following issues:

• Consider and directly process other kinds of errors
without calling the distances.

• Take into consideration the space and double-word
errors.

• Dynamically detect a current user profile instead of
requesting to fill the profile form as is the case today.

• We were able to consider some of the user profile
variables and there are certainly other variables that
need further investigation such as those based on
psychological studies.

• Since the composed vocabulary is large, we load it
first, but we aspire to study the time complexity in
the future to improve this limitation.

References
[1] D. A. H. F. Altamimi, R. Ab Rashid, and Y. M. M. Elhassan, “A

Review of Spelling Errors in Arabic and Non-Arabic Contexts,”
English Language Teaching, vol. 11, no. 10, pp. 88–94, 2018.

[2] M. M. Al-Jefri and S. A. Mahmoud, “Context-Sensitive Arabic Spell
Checker Using Context Words and N-Gram Language Models,” in
2013 Taibah University International Conference on Advances in
Information Technology for the Holy Quran and Its Sciences. IEEE,
2013, pp. 258–263.

[3] A. M. Azmi, M. N. Almutery, and H. A. Aboalsamh, “Real-
Word Errors in Arabic Texts: A Better Algorithm for Detection
and Correction,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 27, no. 8, pp. 1308–1320, 2019.

[4] A. Protopapas, A. Fakou, S. Drakopoulou, C. Skaloumbakas, and
A. Mouzaki, “What do spelling errors tell us? Classification and
analysis of errors made by Greek schoolchildren with and without
dyslexia,” Reading and Writing, vol. 26, no. 5, pp. 615–646, 2013.

[5] J. Atserias, M. Fuentes, R. Nazar, and I. Renau, “Spell-checking in
Spanish: The case of diacritic accents,” in Proceedings of the Eighth
International Conference on Language Resources and Evaluation
(LREC’12), 2012, pp. 737–742.

[6] A. Kaur, P. Singh, and S. Rani, “Spell checking and error correcting
system for text paragraphs written in Punjabi language using hybrid
approach,” International Journal Of Engineering And Computer
Science, vol. 3, no. 9, pp. 8030–8032, 2014.

[7] D. Hládek, J. Staš, and M. Pleva, “Survey of automatic spelling
correction,” Electronics (Switzerland), vol. 9, no. 10, pp. 1–29, 2020.

[8] “Buckwalter transliteration.” [Online]. Available: https://en.
wikipedia.org/wiki/Buckwalter transliteration

[9] T. Zerrouki and A. Balla, “Implementation of infixes and circum-
fixes in the spellcheckers,” in Proceedings of the Second Interna-
tional Conference on Arabic Language Resources and Tools, 2009.

[10] S. Awwad, “Arabic Word stemming Based on Pattern Affixes
Removal,” in 2019 10th International Conference on Information
and Communication Systems (ICICS). IEEE, 2019, pp. 1–6.

[11] K. Shaalan, M. Attia, P. Pecina, Y. Samih, and J. van Genabith,
“Arabic Word Generation and Modelling for Spell Checking,” in
LREC, 2012, pp. 719–725.

[12] K. Shaalan, R. Aref, and A. Fahmy, “An approach for analyzing
and correcting spelling errors for non-native Arabic learners,” in
2010 The 7th international conference on informatics and systems
(INFOS). IEEE, 2010, pp. 1–7.

[13] N. Mohammed and Y. Abdellah, “The vocabulary and the morphol-
ogy in spell checker,” Procedia Computer Science, vol. 127, pp.
76–81, 2018.

[14] M. Nejja and A. Yousfi, “A lightweight system for correction
of Arabic derived words,” in Proceedings of the Mediterranean
Conference on Information & Communication Technologies 2015.
Springer, 2016, pp. 131–138.

http:// journals.uob.edu.bh

https://en.wikipedia.org/wiki/Buckwalter_transliteration
https://en.wikipedia.org/wiki/Buckwalter_transliteration
http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1437-1450 (May-23) 1449

[15] H. Bouamor, H. Sajjad, N. Durrani, and K. Oflazer,
“QCMUQ@QALB-2015 Shared Task: Combining Character
level MT and Error-tolerant Finite-State Recognition for Arabic
Spelling Correction,” in Proceedings of the Second Workshop on
Arabic Natural Language Processing, 2015, pp. 144–149.

[16] N. AlShenaifi, R. AlNefie, M. Al-Yahya, and H. Al-Khalifa, “Arib
@ QALB-2015 Shared Task: A Hybrid Cascade Model for Arabic
Spelling Error Detection and Correction,” in Proceedings of the
Second Workshop on Arabic Natural Language Processing, 2015,
pp. 127–132.

[17] B. Mohit, A. Rozovskaya, N. Habash, W. Zaghouani, and O. Obeid,
“The First QALB Shared Task on Automatic Text Correction for
Arabic,” in Proceedings of the EMNLP 2014 Workshop on Arabic
Natural Language Processing (ANLP), 2014, pp. 39–47.

[18] K. Shaalan, A. Allam, and A. Gomah, “Towards automatic spell
checking for Arabic,” in Proceedings of the 4th Conference on
Language Engineering, Egyptian Society of Language Engineering
(ELSE), Cairo, Egypt, 2003, pp. 21–22.

[19] H. F. Alshahad, “Arabic Spelling Checker Algorithm for Speech
Recognition,” International Journal of Computer Science and In-
formation Security (IJCSIS), vol. 15, no. 12, pp. 228–235, 2018.

[20] S. C. Wayland, C. A. Rytting, D. Zajic, T. Buckwalter, J. White,
C. Miller, J. Carnes, N. Lynn, P. Rodrigues, M. Maxwell et al.,
“Finding Entries in an On-line Arabic Dictionary,” in Human-
Computer Interaction Lab 27th Annual Symposium. Citeseer, 2010,
pp. 1–2.

[21] M. M. Alamri and W. J. Teahan, “Automatic correction of Arabic
dyslexic text,” Computers, vol. 8, no. 1, p. 19, 2019.

[22] H. M. Noaman, S. S. Sarhan, and M. Rashwan, “Automatic Arabic
Spelling Errors Detection and Correction Based on Confusion
Matrix- Noisy Channel Hybrid System,” Egypt Comput Sci J,
vol. 40, no. 2, pp. 54–64, 2016.

[23] M. I. Alkanhal, M. A. Al-Badrashiny, M. M. Alghamdi, and A. O.
Al-Qabbany, “Automatic stochastic arabic spelling correction with
emphasis on space insertions and deletions,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 7, pp. 2111–
2122, 2012.

[24] Y. Abdellah, A. S. Lhoussain, G. Hicham, and N. Mohamed,
“Spelling correction for the Arabic language-space deletion errors,”
Procedia Computer Science, vol. 177, pp. 568–574, 2020.

[25] T. Zerrouki, K. Alhawiti, and A. Balla, “Autocorrection Of Arabic
Common Errors For Large Text Corpus QALB-2014 Shared Task,”
in Proceedings of the EMNLP 2014 workshop on arabic natural
language processing (ANLP), 2014, pp. 127–131.

[26] N. Sharma, “Automatic Question Generation from Punjabi Text:
A Review,” International Journal of Computer Engineering &
Application, pp. 7–19, 2015.

[27] K. Shaalan, “Rule-based Approach in Arabic Natural Rule-based
Approach in Arabic Natural Language Processing,” The Interna-
tional Journal on Information and Communication Technologies
(IJICT), vol. 3, no. 3, pp. 11–19, 2010.

[28] A. A. Saty, K. B. Bouzoubaa, and A. S. Lhoussain, “Survey of
Arabic Checker Techniques,” Journal of Engineering and Computer
Science (JECS), vol. 21, no. 1, pp. 34–41, 2020.

[29] Y. Hassan, M. Aly, and A. Atiya, “Arabic Spelling Correction using
Supervised Learning,” in the EMNLP 2014 Workshop on Arabic
Natural Language Processing (ANLP), 2014, pp. 121–126.

[30] M. Attia, M. Al-Badrashiny, and M. Diab, “Priming Spelling Candi-
dates with Probability,” in Proceedings of the Second Workshop on
Arabic Natural Language Processing, vol. 10, 2015, p. 138–143s.

[31] F. Al-Najjar, “Spelling rules in ten easy lessons,” Al Kawthar
Library, vol. Fourth Edi, 2008.

[32] “Resources – alelm.” [Online]. Available: http://arabic.emi.ac.ma/
alelm/?page id=273/#Corpus

[33] “Arabic Corpus.” [Online]. Available: https:
//sourceforge.net/projects/arabiccorpus/files/khaleej-2004corpus%
28windows-1256%29/

[34] “NEMLAR Written Corpus.” [Online]. Available:
http://metashare.elda.org/repository/browse/nemlar-written-corpus/
baf9e9a0de6711e2b1e400259011f6eaa11bfe7fefd041b9b094afac6a99ab58/

[35] T. Zerrouki and A. Balla, “Tashkeela: Novel corpus of Arabic
vocalized texts, data for auto-diacritization systems,” Data in brief,
vol. 11, pp. 147–151, 2017.

[36] “Arabic Corpus.” [Online]. Available: https://sourceforge.net/
projects/arabiccorpus/files/

[37] “arabiclearnercorpus.” [Online]. Available: https://www.
arabiclearnercorpus.com/

[38] “Abu El-Khair Corpus.” [Online]. Available: http://www.abuelkhair.
net/index.php/en/arabic/abu-el-khair-corpus

[39] “Software Architecture For Arabic.” [Online]. Available: http:
//arabic.emi.ac.ma/safar

[40] K. Bouzoubaa, Y. Jaafar, D. Namly, R. Tachicart, R. Tajmout,
H. Khamar, H. Jaafar, L. Aouragh, and A. Yousfi, “A description
and demonstration of SAFAR framework,” in Proceedings of the
16th Conference of the European Chapter of the Association for
Computational Linguistics: System Demonstrations, 2021, pp. 127–
134.

[41] “TEI (Text Encoding Initiative).” [Online]. Available: https:
//tei-c.org/

[42] V. V. Bhaire, A. A. Jadhav, P. A. Pashte, and P. Magdum, “Spell
checker,” International Journal of Scientific and Research Publica-
tions, vol. 5, no. 4, pp. 5–7, 2015.

[43] B. Haddad and M. Yaseen, “Detection and Correction of Non-Words
in Arabic: A Hybrid Approach,” International Journal of Computer
Processing of Oriental Languages, vol. 20, no. 04, pp. 237–257,
2007.

[44] “Alpha Level (Significance Level): What is
it? - Statistics How To.” [Online]. Avail-
able: https://www.statisticshowto.com/probability-and-statistics/
statistics-definitions/what-is-an-alpha-level

[45] C. Kwak and A. Clayton-Matthews, “Multinomial logistic regres-
sion,” Nursing research, vol. 51, no. 6, pp. 404–410, 2002.

[46] “Wald test.” [Online]. Available: https://www.statisticshowto.com/
wald-test/

[47] “Sahehly.” [Online]. Available: https://sahehly.com

Ahmed Abdalrhman Saty is currently a
research fellow in computer science at the
Sudan University of Science and Technol-
ogy. He worked as a teacher at Alzaeem
Azhary University for two years. He works
in the Ministry of Finance of Sudan in the
IT department. He is a developer (Java and
Dotnet Framework)

http:// journals.uob.edu.bh

http://arabic.emi.ac.ma/alelm/?page_id=273/#Corpus
http://arabic.emi.ac.ma/alelm/?page_id=273/#Corpus
https://sourceforge.net/projects/arabiccorpus/files/khaleej-2004corpus %28windows-1256%29/
https://sourceforge.net/projects/arabiccorpus/files/khaleej-2004corpus %28windows-1256%29/
https://sourceforge.net/projects/arabiccorpus/files/khaleej-2004corpus %28windows-1256%29/
http://metashare.elda.org/repository/browse/nemlar-written-corpus/baf9e9a0de6711e2b1e400259011f6eaa11bfe7fefd041b9b094afac6a99ab58/
http://metashare.elda.org/repository/browse/nemlar-written-corpus/baf9e9a0de6711e2b1e400259011f6eaa11bfe7fefd041b9b094afac6a99ab58/
https://sourceforge.net/projects/arabiccorpus/files/
https://sourceforge.net/projects/arabiccorpus/files/
https://www.arabiclearnercorpus.com/
https://www.arabiclearnercorpus.com/
http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus
http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus
http://arabic.emi.ac.ma/safar
http://arabic.emi.ac.ma/safar
https://tei-c.org/
https://tei-c.org/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/what-is-an-alpha-level
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/what-is-an-alpha-level
https://www.statisticshowto.com/wald-test/
https://www.statisticshowto.com/wald-test/
https://sahehly.com
http://journals.uob.edu.bh

1450 Ahmed AbdAlrhman Saty, et. al.: A New Spell-Checking Approach Based on the User Profile

Si Lhoussain Aouragh is a full
professor at the National High School of
Computer Science and Systems Analysis
(ENSIAS) at Mohamed V University in Ra-
bat. He is a member of the information, com-
munication, embedded systems and natural
language processing team at ENSIAS. He
is a member of the Arabic language engi-
neering and learning modeling (ALELM) re-
search group at the Mohammadia School of
Engineers. He is president of the association
of Arabic language engineering in Morocco.

His main research interests include computational linguistics, arti-
ficial intelligence, machine learning, natural language processing,
and data science.

Karim Bouzoubaa is a full professor at
the Mohammadia School of Engineers at the
Mohammed V University in Rabat. He is
the founder and leader of the Arabic Lan-
guage Engineering and Learning Modeling
(ALELM) research group. He is also the
co-founder and past president of the Arabic
Language Engineering Society in Morocco.
His main research interests include Artificial
Intelligence, Multi-Agent Systems, Machine
and Deep Learning, Natural Language Pro-
cessing, Data Science and Computational

Linguistics.

http:// journals.uob.edu.bh

https://orcid.org/0000-0002-1901-6796
https://scholar.google.com/citations?user=egUyh7QAAAAJ&hl=en&authuser=1
https://www.webofscience.com/wos/author/record/3707635
https://www.scopus.com/authid/detail.uri?authorId=57193029385
http://journals.uob.edu.bh

	INTRODUCTION
	RELATED WORK:
	THE PROPOSED ARCHITECTURE:
	IMPLEMENTED RULES:
	THE VOCABULARY:
	THE USER PROFILE:
	The corpus:
	The mapping between errors and user profile
	Classification of errors:
	The relationship between profile and errors:
	Calculation of error probabilities:

	EXPERIMENTS AND RESULTS
	SAFAR SPELL CHECKER UI
	References
	Biographies
	Ahmed Abdalrhman Saty
	Si Lhoussain Aouragh
	Karim Bouzoubaa

