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Abstract: Robustness of terrestrial cellular wireless networks becomes challenging in times of disasters such as earthquakes. This paper
studies the deployment of multiple Unmanned Aerial Vehicles (UAVs) above the earth’s surface to provide ubiquitous connectivity to
under-laid users on earth. We provide an analytical framework using tools from stochastic geometry to model the UAV-user equipment
(UE) network. We specifically model the UAVs in a finite three dimensional (3-D) space with their associated UEs as the marks on a
two dimensional (2-D) earth surface. Tractable expressions for the UE’s received signal strength and signal-to-interference plus noise
ratio (SINR) are derived in Nakagami fading environments. A new paradigm in the study of UAV cellular communication is also
developed in this work with a multi-agent learning technique. With this technique, the UAVs learn from each other by communicating,
as well as interacting with their environment to provide optimal coverage. Our numerical results show that our method drastically
reduces the interference from adjacent UAVs leading to improved coverage in terms of SINR values. Also, the results show that, UAV
deployed wireless network provides better coverage compared to conventional terrestrial base station (BS) deployment.

Keywords: Unmanned Aerial Vehicle, Stochastic Geometry, Marked Point Process, Multi-agent learning, Q-learning, Reward,
Equilibrium, Coverage, Altitude, SINR.

1. Introduction
Ubiquitous wireless connectivity has become imperative

in the wake of proliferation of billions of internet-of-things
(IoT) devices. One effective way of achieving this global
connectivity is by the use of flying base stations installed
on unmanned aerial vehicles (UAVs). The use of UAVs
for providing wireless communications is also advantageous
especially in search and rescue operations or when massive
connectivity is required at public places during events.

UAV deployment has been studied in [1]-[10] to provide
wireless connectivity for users on the surface of the earth.
A trajectory optimization scheme was proposed [1] for
the deployment of a single UAV to provide coverage for
ground-based users. Mohammed et al [2] presented the use
of mobile UAVs for energy efficient IoT communications
with minimum transmit power. One advantage pointed out
is the existence of dominant line-of-sight as compared to
terrestrial base stations due to the high altitude at which
the UAVs are positioned [2]. However, continuous move-
ment of the UAVs leads to high power consumption. The
authors of [3] applied evolutionary algorithms to find the
optimal placement of low altitude platforms (LAPs) where
overlapping LAPs coverage areas were allowed by using

inter-cell interference coordination (ICIC). ICIC however
incurs further communication overhead. The optimization
of UAVs altitude to maximize coverage for ground users
was proposed in [4]. In [5] and [6] the problem of optimal
placement of UAVs with slightly different objectives was
studied. The opportunities and challenges associated with
the usage of UAVs to provide wireless connectivity were
analyzed in [7]. Chetlar in [8] analyzed 3-D finite deploy-
ment of UAVs as a Binomial point process (BPP). The
authors of [9] and [10] similarly studied the optimization
of ground-to-air uplink communication for a single UAV.
In [11], the authors studied the performance of WiMax
systems deployed through high altitude platforms where the
performance was shown to depend on some parameters such
as the elevation angle and user traffic type. No mechanism
for multi-UAV learning was implemented in any of the
aforementioned studies.

An effective mathematical analysis of cellular wireless
networks and for that matter BSs and UEs at random
locations is by the use of tools from spatial stochastic
processes. This approach has been extensively studied in
literature [12]-[15]. It has generally been shown that the
Poisson point process (PPP) is efficient in modeling various
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forms of network configurations such as femto cells [16]-
[17] or ad hoc networks [18] or both [19]. In practical
networks, the spatial deployment is normally different from
being regular [19]. To address this problem, a suitable
model was proposed in [20]-[21], in which the locations
of BS and UE were modeled as homogeneous PPPs [22]-
[23]. All the above-mentioned studies considered terrestrial
networks with the exception of [8] which analyzed the UAV
BS deployment as a BPP.

Multi-agent learning has been used in various appli-
cations for solving problems of a distributed nature [23]-
[30]. Its usage in terrestrial based wireless communications
has also been vast. For example, in [25], multi-agent
reinforcement learning (MARL) was used to model inter-
cell interference where inter-cell interference coordination
mechanisms were proposed. In the area of cognitive radio,
MARL has been widely used for competitive and coopera-
tive spectrum access [26]-[27]. MARL applications in UAV
cellular communication has received relatively less atten-
tion. A multi-agent path planning for UAV threat avoidance
was studied in [29] where a path planner searches for the
path; this was however, not for the purpose of wireless
communication. In [30], a distributed cooperative UAV
network for small drones was proposed and implemented to
provide wireless coverage. However in [30] the analysis was
done qualitatively as no mathematical model was developed
for the UAVs cooperation.

There are national rules and regulations on owning and
flying UAVs. The China’s Civil Aviation Administration
(CCAA) and Federal Aviation Administration (FAA) of
the United States recommend that the UAV remains in the
visual line-of-sight (VLOS) of the remote pilot [29]. The
pilot must hold a certification to fly the drone too. With
this backdrop, this work develops a multi-UAV learning
technique for cellular communication. The novelty and
contributions of this work are:

• By modeling the system as a Marked Point Process,
we leverage tools from Stochastic Geometry to ana-
lyze the distribution of the UAVs in 3-D space and
the users on ground (2-D). We derive new tractable
analytical expressions to quantify the UEs received
signal power, SINR values and coverage probability.

• Secondly, in order to mitigate the problem of harmful
interference in UE’s served by the multiple UAVs,
we propose a multiagent learning technique with a
game theoretic framework where the UAVs are the
learning agents. They fully cooperate with each other
by communicating their current states, actions and
rewards with other agents in their neighborhood. This
helps in achieving the common goal of obtaining
optimal coverage.

The organization of the rest of this paper is as follows:

our system setup as a marked point process is presented in
Section II. In Section III, we present our novel learning
technique for coverage enhancement. The results of the
study are presented in Section IV while Section V concludes
the paper.

2. StochasticGeometryAnalysis ofUAVs in 3-D space and
UEs on Ground (2D)
In Fig.1, the geometry of the UAVs in 3-D space and

UEs on the ground is shown. The use of stochastic geometry
for analyzing UAVs in 3-D space was reported in [8]. In
this section, we model our system as a marked point process
(MPP) where the UAV equipped BSs are our transmitters
(points) and the ground-based UEs are the marks. By
leveraging the Matern hard core model (MHC) we optimally
position the UAVs to avert undue overlap for the marks on
ground. The received signal strength, user SINR, coverage
and capacity expressions are further derived.

A. System Analysis as a Marked Point Process
The UAVs are placed in a d dimensional space Rd, (for

our case d = 3) as the points xi (BS transmitters) and the
marks mu (UEs) on an l dimensional space Rl, ( l = 2). The
index i ranges from 1 to N number of points (UAVs) and
u ranges from 1 to K number of UEs associated with each
point. For simplicity, we assume all the marks are located on
the ground. Rl is a random vector containing the locations
of the marks (UEs) associated with each point (UAV). The
UAVs in space are analyzed as a simple Binomial Point
Process (BPP) [8] with intensity Λ. The UAVs-UEs marked
point process is then modeled as a marked point process Φ̄
having points in Rd and marks in Rl denoted as

Φ̄ =

N∑
i

K∑
u

ϵ(xi,mu), (1)

with ϵ(.) as the delta dirac function, xi as the collection of
the UAV transmitters and mi are the marks (UEs). Consider
bounded spaces S 1 and S 2 in Rd and Rl respectively
and with the assumption that the MPP is independently
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Figure 1. System Model as a Marked Point Process.
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marked, the MPP has an intensity and mean measure given
respectively as

Λ̄(S 1XS 2) =
∫

S 1

p̄(x, k)Λ(dx), (2)

E[Φ̄(S 1XS 2)] =
∫

S 1

Fx(S 2)M(dx), (3)

where p̄(x, k) =
∫

S 2
Fx(dm) is the distribution of the marks

mu in Rl and M(S 1) = E[Φ(S 1)] is the average measure of
the points (Φ) of Φ̄.
The Laplace functional of the marked point process with
intensity measure Λ̄ is derived as similarly done in [12] as

LΦ̄( f ) = e−
∫

(S 1XS 2)(1−e− f (x))Λ̄(dx)
, (4)

where f runs over a set of non-negative functions on Rd

and Rl.

B. Optimal UAV Positioning
In the usage of multiple low or high altitude platforms

(LAPs or HAPs) for providing wireless connectivity to
ground users, it is important that they are optimally po-
sitioned in space to avoid causing harmful interference
to users covered by adjacent cells. Hard core models are
generally used to ensure that points are not close to each
other less than some given range in spatial geometry. The
Matern hard core (MHC) model is applied in this study to
arrange the points (UAVs) hHCM distance apart. For equal
UAV BS transmit power and similar air-to-ground channel
characteristics, the marks (UEs) associated with UAVs are
within equal coverage radii. The UAV packing using the
MHC model ensures minimal if not zero coverage overlap.
Integrating the MHC point process with our discussion of
a MPP, the marked MHC point process is defined as

Φ̄MHC =

N∑
i

K∑
u

ϵ(xi(Ui,mu)), (5)

where Ui is interpreted as the age of point xi and its marks
mu. The volume of space occupied by each UAV is

vd =
√
πd/Γ(1 + d/2), (6)

with Γ is a gamma distribution function and d is the
dimension of the space. The MHC point process parks the
points of radius hHCM/2 with volume fraction [12]

v f =
1

vdhd
HCM

vd(hHCM/2)d =
1
2d . (7)

(7) represents the lower bound for saturated packing while
an upper bound for any hard sphere packing is provided by
[12] as:

v fu = (d + 1)2−d/2, d ≥ 1 (8)

For a given volume in space, expressions (7) and (9) can be
used to compute the lower and upper bound of the number
of UAVs to cover a given area on earth. Each UAV uses the
HCM point process to create an optimum exclusion region

around itself and therefore prevent interference to its UEs
located on the ground. The value of this exclusion region
will be used in the sequel when we introduce multi-agent
learning technique between the UAVs in Section III.

C. UE SINR analysis
The probability density function (PDF) of the distance

between a given UE and its serving UAV is derived as [31]:

fdk (D) = 4πΛD2 exp(−
4
3
πΛD3),D ≥ 0, (9)

where D is the distance between the UE and its serving
UAV calculated as D =

√
h2 + r2 using Fig.1. Likewise, the

PDF of the UE distances r in a single UAV coverage radius
(R) is given as:

fr(r) =
2r
R2 , 0 ≤ r ≤ R, (10)

We assume the signals are received by omnidirectional
antennas at the UEs. The received signal at the ith UE
located at a point yi on Earth is given as:

Pr(D) = PrΦ̄(D) =
∑

(xi,pi)∈Φ̄

pi10A/10

l′(|yi − xi|)αXσ
, yi ∈ Rl, xi ∈ Rd.

(11)

where pi is the UAV BS transmit power, α is an environ-
ment dependent path loss exponent, A denotes the antenna
gain, Xσ is the shadowing figure which is Log-normally
distributed and l′(|yi − xi|= D) is the path loss between the
UAV and UE given as [32]:

l′(D) = Pl
D(YD)αρ1 + Pn

D(YD)αρ2

=
1

1 + ξexp(τ(θ − ξ))
(YD)αρ1+(

1 −
1

1 + ξexp(τ(θ − ξ))

)
(YD)αρ2.

(12)

In (12), the values of ξ and τ are environmental and
frequency dependent, θ is the angle from the UAV to
the UE located r meters away from the origin as shown
in Fig.1. Y is a constant defined as Y = 4π fc

c with fc
and c as the carrier frequency and the speed of light
respectively. Also, α is the path loss exponent, ρ1 and ρ2
are extra path loss components for line-of-sight (LOS) and
non-LOS (NLOS) respectively. We assume the UAVs use
beamforming techniques to transmit signals to UEs. The
antenna gain in that case is given as

A(ϕ, θ) = Gmax + ABS (ϕ, θ),

ABS (ϕ, θ) =
[
− min

(
12

( ϕ

ϕ3dB

)2
, Aϕ

)
− min

(
12

( θ

θ3dB

)2
, Aθ

)]
,

(13)
where Gmax is the maximum BS antenna gain, ϕ3dB, θ3dB
are the 3dB beamdwidths, Aϕ and Aθ are the maximum
attenuations in the horizontal and vertical domains respec-
tively. Also ϕ and θ (with abuse of notation) are defined
as the angles between the directions of interest and the
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boresight of the antenna in the horizontal and vertical
domains respectively.

Expression (11) assumes the UE receives signals from
all the UAVs which is however, not the case due to
their (UAVs) optimal planning and positioning. The sig-
nals received from adjacent UAVs farther away from the
serving UAV are considered negligible using the concept of
extremal noise in [12] (11) then becomes

P′r,i(D) = P′r,iΦ̄(D) =
pi10A/10

l′(|yi − xi|)αXσ
. (14)

There is limited knowledge on air-to-ground channel models
for LAPs [8] and this actuated our choice of Nakagami
fading in the UE-to-UAV links. Nakagami models give
general view of various fading environments depending on
the parameters chosen. Incorporating the effect of fading
into (14), the received signal strength becomes,

P′r,i(D) = P′r,iΦ̄(D) = Fi
pi10A/10

l′(|yi − xi|)αXσ
, (15)

where Fi is the Nakagami fading gain which follows a
Gamma distribution with PDF given as [22]

fF( f ) =
mm f m−1

Γ(m)
exp(−m f ), (16)

where m is a parameter which determines the shape of the
distribution and Γ is the gamma distribution.

m =


1 Rayleigh fading,
2(X + 1)/(2X + 1) Rician fading,
∞ no fading,

(17)

where X is the ratio of the LOS to the NLOS components
of the signal. Thus, the Nakagami distribution can model
Rayleigh and Rician distributions, as well as more general
ones. The PDF of the UE received signal is derived as

fPr,i (D) =
∫
πR2

P′rΦ̄(D) fF( f )

=

∫
πR2

pi10A/10

l′(|yi − xi|)αXσ

mm f m−1

Γ(m)
exp(−m f )dD,

(18)

πR2 is the coverage area of a UAV with R as the radius.
We use the UE SINR value as an appropriate metric of the
system performance. It is denoted by ς and computed as

ς = Fi
pi10A/10

l′(|yi − xi|)αXσ

( ∑
j∈N\i

F j p jD−αj 10A j/10Xσ j + σ
2
)−1
.

(19)
In (19), j ∈ N\i is a set operation which indicates the
summation over all N UAVs except the ith one which in
this case is the serving UAV. F j, p j, Xσ j , A j, σ2, and D j
are the channel fading parameter, interfering UAV transmit
power, shadowing figure, interferer antenna gain, noise
power and the distance between the interfering UAV and
the UE respectively. The rest of the parameters are defined
previously in (15). Note also that

∑
j∈N\i F j p jD−αj 10A j/10Xσ j

is the aggregate interference (Iagg) on a given UE from
multiple UAVs with mean and variance given as µIagg

and σIagg respectively. The lognormal shadowing figure Xσ

introduces some randomness in to the interference which
makes the cumulative interference random. This gives rise
to theorem 1.

Theorem 1: If I1 and I2 are two independent random
interference from two UAVs, the sum Iagg = I1 + I2 is also
random.

The CDF of Iagg is similarly approximated as [33]

FIagg (z) =
1
2

(
1 + erf

( ln(z) − µIagg√
2σIagg

))
, (20)

D. Downlink Coverage Probability
We start this subsection by outlining two fundamental

necessary and sufficient conditions for the analysis of cov-
erage probability in our study.

Proposition 1: P′r,i(D) ≥ P′r,i(D)thr is a necessary condi-
tion for the UE to effectively operate.
Pr(D)thr is technically known as the receiver sensitivity
which specifies the signal level below which the UE cannot
intelligibly decode.

Proposition 2: The necessary and sufficient conditions
for optimal coverage and efficient UE operation are:
1) P′r,i(D) ≥ P′r,i(D)thr.
2) ς ≥ ςthr.
Note that ςthr is the SINR threshold for excellent UE
operation which takes into account the interference from
other transmitters and noise in the channel as well.
The second proposition defines a complete condition to
characterize coverage probability. This study therefore
resorts to proposition 2 as a more meaningful metric
in characterizing coverage probability. The interference
received at each UE from the interfering UAVs are i.i.d.
and appealing on the Central Limit Theorem [8] the
coverage probability is given in (22); Where ς̄ and σς are
the mean and standard deviation of the UE SINR values.
The mean UE SINR value is ς̄ = E(ς). See proof in
Appendix B.

σς is similarly computed by first deriving the variance
and taking the square root of it. An interested reader is
referred to [34].

Due to the non existence of a close form solution for
the integral in (22), its solution can be evaluated using the
Q-function

Q(z) =
1

2π

∫ ∞

z
exp

(
−x2

2

)
dx (21)

In our case the Q-function takes the form Q
(
ςthr−ς̄
σς

)
.
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Pc = P
((

Fi
pi10A/10

l′(|yi − xi|)αXσi

( ∑
j∈N\i

F j p jD−αj 10A j/10Xσ j + σ
2
)−1)

> ςthr

)

=

∫ ∞

ςthr

1√
2πσς

exp

−1
2


(
Fi

pi10A/10

l′(|yi−xi |)αXσi

(∑
j∈N\i F j p jD−αj 10A j/10Xσ j + σ

2
)−1)
− ς̄

σς


2 dς,

(22)

E. Capacity and System Sum Rate Computation
The performance of the UAV empowered cellular net-

work is analyzed here. Having derived expressions to quan-
tify SINR of the UEs, we can as well derive with ease,
the capacity and system sum rate expressions based on
the Shannon Hartley formula. Assuming our operational
bandwidth is denoted as W, the capacity is

C = W log2

(
1 + ς

)
, (23)

where all the parameters are the same as in (19). The system
sum rate is overall rate of all users covered by a given
UAV. By this definition, we formulate expressions (24) to
compute sum rate of the ith UAV covering UEs of intensity
λ, in a radius R.

R = 2πλW log2

(
1 + ς

)
Pc. (24)

3. Coverage Enhancement with multi-agent learning
Technique
In this section we consider a multi UAV cooperative

system where each UAV (hereafter, an agent) is a learn-
ing entity. We first present a brief description of what a
multiagent system is. According to [30] an agent is an
entity which observes, interacts as well as learn from/with
its environment in a stochastic fashion mostly described as
a Markov decision process (MDP) to earn some reward.
For a multiagent system, the agents interact with their
environment and also among themselves, take actions and
gain some rewards in the process. Agents can also teach
others in a multiagent system [30] . In both scenarios, the
main object is to get optimal reward also known as payoff.

We show in Fig.2a, a pictorial illustration of a single
and multiagent system. The single agent interacts with its
environment and make necessary adjustments in terms of
action selection to increase its rewards. In the multiagent
system shown in Fig.2b, the agents not only interact with
each other or their environment, but also share their states
as well as rewards for effective coordination.

A. Communication in a Cooperative Multiagent Learning
Environment
Communication between agents in a cooperative multi-

agent system is vital. In [35] the authors proposed a mo-
tion gesture based communication between the interacting
agents and this could be applied to a multi-UAV embedded
with cameras. This technique is however not suitable for

(a) Single Agent System

(b) Multiagent System

Figure 2. Description of Single and Multiagent Systems
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our case due to the high separations between the UAVs.
This will lead to ineffective image or video surveillance of
each others’ actions.

In our proposed learning scheme explicated in the
sequel, agents need to communicate between themselves
in order to achieve an optimal global payoff. We develop
an optimal communication mechanism in this subsection
for efficient information sharing. Agents communicate by
broadcasting messages containing their states, actions and
rewards to each other in space. Due to the general power
constraints in UAV empowered cellular communication,
we assume transmit power of these broadcast messages to
be very low (0.1% of the agent transmit power to UEs).
This assumption stems from the fact that the primary goal
of an agent is to cover users on ground and substantial
percentage of its limited transmit power needs to be used
for that purpose.

UAV multicast communication: Each agent broadcasts
signals at successive intervals to the entire network in
space. The broadcast signal contains information about their
positions (x′i , yi, hi), where hi represents the heights of the
UAVs from ground. The received signal from an ith agent to
the rest is 10−3 pil′|x|−α, with |x| as the separation between
the agents. For simplicity, we assume free space pathloss
between agent broadcast message transmission.

The successive time intervals between agents broadcast
message transmission may however lead to a delay in
communication. For example, if each agent takes 2 second
to transmit and there are 50 UAVs in the network, an agent
will take as long as 100 seconds to update the others about
its location and other important information for learning.
For optimal coverage and avoidance of coverage overlap,
the agents separation in space must be equal to or greater
than the sum of the coverage radius of adjacent agents [6].
The latter statement implies that the separation between the
agents in space will be large for high coverage radius, and
the probability distribution of guaranteed reception of each
agent’s broadcast message by the others is derived as

fX(x) =

1 x < κxmax,
1

(2x/xmax)2 x ≥ κxmax,
(25)

where κ is an arbitrary value representing the percentage of
maximum distance that will result in effective communica-
tion and xmax is the maximum radius of the entire agents in
space.

Fig.3 depicts the probability of guaranteed communica-
tion between agents with an increase in their distances apart.
It is clear from the plot that, the probability of reception
of the broadcast messages decreases with an increase in
x which implies that effective communication would be
compromised. Besides the ineffective communication asso-
ciated with large separation between agents, developing a
very effective mechanism to coordinate agents behavior in a

dynamic environment is hard as the number of agents grow
[36].

Nearest neighbor communication: Due to the
challenge of multicast inter-agent communication, this
study resorts to nearest neighbor communication in which
the agents are divided in clusters consisting of few agents
adjacent to each other.

Definition 1 : A point xi±1 is in the neighborhood
of xi if and only if

|xi − xi±1|≤ hHCM (26)

The above equation uses the hardcore point packing radius
devised in Section II as the upper bound in defining the
neighborhood of points (agents).

B. Stochastic Game Theoretic Multiagent Learning
We model the multi-agent learning process as a

stochastic game with < S , A...AN , p, r1...rN > tuple. where
N is the number of agents in the system, S is the set
of environment states, A′i is the set of agent i available
actions, p is a conditional probability function determining
the probability of transiting to the next state and ri is the
local immediate reward function of agent i.

Definition 2: In this study, we define the reward for
an agent as the percentage of its covered UEs having an
SINR greater than the predefined threshold (%ς > ςthr).

r(t) = %ς > ςthr (27)

This implies that the reward is a function of the UEs SINR
values. While each agent tries to maximize its payoff also
known as the reward, its effect on the others is kept in
mind because the prime aim is to solve a common universal
problem. The immediate global reward is therefore the
culmination of the individual rewards of the agents. It is
given as

r =
N∑

i=1

ri (28)
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Figure 3. Probability of Guaranteed Inter-agent Communication
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The rewards of an agent at times (t+1), (t+2), (t+3)...(t+V)
are denoted as r(t + 1), γr(t + 2), γ2r(t + 3) + ...γV−1r(t + V)
respectively. The time rewards constitute a time series
and applying techniques from series and sequences, the
discounted global reward is calculated as

R(t) = r(t + 1) + γr(t + 2) + γ2r(t + 3) + ...γV−1r(t + V)

=

V∑
v=0

γvr(t + v + 1),

(29)
γ is the discounted factor (0,1), V is the ending time of
an episode and r(t + 1) is the global immediate reward
received at time t + 1. The discounted factor determines
the importance given to future rewards, thus a 0 discounted
factor will make the agent consider only current rewards
and on the other hand a factor approaching 1 will make it
strive for a long-term high reward. For a stochastic game
with N > 1 agents as considered in this study, each agent
chooses an action or strategy ∆i from its action set A′i . The
set of possible actions available for an agent are to change
its position by either moving up or down (∆h), move right or
left (∆r,∆l) or move forward or backward (∆b,∆ f ). Thus,

A′i =
{
∆h,∆r,∆l,∆b,∆ f

}
(30)

In other applications of multiagent learning specifically
for cognitive radio applications, agents can take an action
by altering their transmit power [26], we could model our
stochastic game by including that as one of the actions.
However, due to the power constraints of UAV empowered
communication, we leave out power alteration but rather
focus on optimal agent orientation to provide excellent
coverage. When agent i takes an action ∆i from A′i , its state
st is transformed to the next state say st+1 and the agent
receives a payoff r(t). The agent broadcasts its selected
action and reward to other agents in its neighborhood using
definition 3. We assume the UEs communicate in the uplink
by sending signals containing their SINR values and their
channel state information (CSI) to their serving agents. The
agents are therefore able to determine the quality of the
actions they take.

This study applies the Q-learning which is a type of
reinforcement learning used in both single and multiagent
learning systems. It is applied as a Markov decision process
(MDP) in the single agent learning paradigm where the
agent learns by transiting from state to state. For a mul-
tiagent learning scheme as considered here, it is applied
as a muti MDP, where all actions transit from one state
to another while learning from each other. The Q-value
denotes how good or bad an action is. The action selection
procedure for an ith agent follows the Boltzmann [26]
exploration scheme as:

pi(t) =
eQi(t)/T∑

k∈A′i
eQk(t)/T , (31)

with pi(t) as the probability of selecting action ∆i, Qi(t)

is the Q-value of action ∆i at time t, A′i is the action set
for agent i, and T is temperature parameter controlling the
balance between exploration and exploitation. A higher T
ensures equal opportunity for all actions to be selected
whereas actions with high Q-values are favored with a
small T . The agents environments are dynamic and thus,
an optimal action at a particular time may change due to a
change in the environmental conditions. To mitigate this
challenge of remaining in the most rewarding state, the
stochastic action selection strategy given in (48) provides
an optimal solution. The Q-learning values of an agent are
computed and updated according to [28]

Vi(st+1) := Qi(st+1,∆
∗),∆∗ ∈ argmax

n∑
i=1

Qi(st+1,∆
∗)

Qi(s,∆i) := (1 − λ)Qi(s,∆i) + λ[ri + γVi(st+1)],
(32)

where 0 < λ ≤ 1 is a parameter that determines the learning
rate and γ is the discounted future reward. If λ is close
to zero, the UAV tends to consider only instant rewards
and the vice versa and ∆∗ is the action with optimal
payoff. The goal of each UAV is to get to a state with the
highest reward. If it does, it may try to remain there forever
which leads to the over exploitation of that state-action pair.

Definition 3 : An agent’s action ∆i is strictly dominant
over other agent’s if Q(∆i) > Q(∆−i). The payoffs associated
with strictly dominated actions are optimal. Since all agents
strive to maximize their utilities, this translates the learning
game into a multi objective optimization problem. Solutions
to this kind of problems are hard to find because while
maximizing the utility for one agent, the utilities on the
others deteriorate. Thanks to the coordination and learning
between the agents proposed in this work, each agent has
the best response to the strategies of the others. No two or
more adjacent UAVs move towards each other, while one
moves right, its adjacent neighbors takes any of the available
actions apart from moving left to avoid undue coverage
overlap. Also, no agent will have a strictly dominated
strategy over the others.

In competitive multiagent games, Nash equilibrium is
usually the optimal solution for all agents [28], however, the
solution for our collaborative multiagent learning game is a
Pareto optimal equilibrium, hence, no agent can improve its
reward by deviating from the rules of the game. The payoff
of agent j in response to agent i taking action ∆i is thus
given as

Q j(∆−i) ≤ Qi(∆i). (33)

In other words, when agent i takes action ∆i, agent j respond
with a joint action ∆−i which has a payoff less than or equal
to the payoff of agent i. At the equilibrium solution, the
payoff of an agent in terms of its UE SINR values in (22)
becomes

ς = Fi
piA

l′(|yi − xi|)αXσ

(
ψIagg

)−1
, (34)
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with ψ as the interference reduction factor from the mul-
tiagent learning and coordination scheme. Our multi-UAV
learning algorithm is presented below.

Multi-UAV Learning ALGORITHM

1: for each agent action ∆i ∈ A′i
2: Compute the reward from (45)
3: Broadcast the reward in step 2 to all agents in the

neighborhood of agent i
4: if %R(∆i, s) < R(∆i, s)thr is high,(i.e. most UEs SINR

values are less than the threshold),
i) Agent i changes strategy by choosing actions from
(47) using (48)
ii) Neighboring agents respond using the best response
strategy then

5: Repeat step 2 to 3
6: else
7: Agents remain in optimal positions to provide opti-

mal connectivity.
8: end if

4. Results and Analysis
We present our results in this section. For our Monte

Carlo simulation, we randomly generated UEs within a
coverage radius R for each UAV and computed their corre-
sponding distances from their serving UAVs. The efficacy
of our multiagent learning scheme is also shown.

A. Effect of Varying UAV Heights on Coverage
We analyzed the effect of varying the UAVs heights

on the UEs SINR value with fixed coverage radius of
R=1000m, m=1, N=10 UAVs and h ranging between 200m
to 500m. As shown in the plots of Fig.4, with decreasing
heights of the UAVs, we obtained improved UEs SINR
values deployed within the coverage radius R of the serving
UAVs. This correspondingly translates to better coverage
probability for a given SINR threshold. Increasing the UAVs
heights results in an increase in the interference from the
others as similarly reported in [8]. However in [8], the
SIR values are quite lower than our values because of

TABLE I. General Simulation Parameters.

Parameter Description Value

pi
UAV Transmit

Power 30 dBm

Ai
UAV Maximum
Antenna Gain 8 dB

fc Carrier Frequency 2 GHz

ξ, τ, ρ1, ρ2, α
Pathloss

Parameters [2] 11.95,0.14,3,23 &2

Xσ
Mean Shadowing

Figure 8 dB

W Bandwidth 1 MHz
σ2 Noise Power -120 dBm
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Figure 4. Coverage probability for Varying UAV Heights.

the dynamic UAV deployment with multiagent learning
technique implemented here. Also, a decrease in h results in
a decrease in the the propagation distance which gives low
path loss values. There is also a good agreement between
our Monte Carlo simulation and analytical results.

Cellular communication systems are uplink limited,
which makes these results quite desirable as a very high
UAV altitude could result in very high distance for UEs
uplink communication. To ensure an optimal bidirectional
communication, h must therefore be carefully selected.

B. Results of Multiagent Learning with Varying Coverage
Radius
We used the percentage of UEs SINR values greater

than a given threshold as our performance metric here. As
observed in Fig.5, the percentage of UEs SINR values less
than a given threshold decreases with an increase in the
value of R which is quite expected because an increase
in R results in a corresponding increase in the UAVs-to-
UEs propagation distances. For a given coverage radius,
our proposed multiagent learning approach gives better
SINR performance compared to the static UAV deployment
scheme especially at the tail end of the SINR curves (ie for
cell edge users) which proves the efficacy of our approach.
This better performance with regards to our proposed ap-
proach stems from the full cooperation and learning among
the agents, that is the interference is well managed through
the avoidance of undue coverage overlap.

C. SINR Versus Coverage Radius
We positioned the UAVs at an altitude of 400m above

the ground. By varying the coverage radius from 0 to
1000m, we compute the UE SINR values. As depicted in
Fig.6, the UE SINR values increases with an increase in R
until a point is reached where it begins to decrease. The
decrease arises as a result of the close proximity between
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the interferers and the UE. Also increasing R to some
point results in a corresponding increase in d (with high
path loss) for cell edge users. Finally, the impact of our
multiagent learning is clearly shown with improved SINR
values for any given coverage radius as compared to the
static deployment studied in [8].

D. Coverage Probability for Different Fading Environments
Here, the effect of different fading environments on

the coverage probability is shown. We fixed h=400m and
R=1000m. It can be seen from Fig.7 that the coverage
probability for a given SINR threshold improves with
increasing m. An increase in m implies a high probability
of LOS transmission which results in less signal fading. As
mentioned in (17), a high m value leads to Rician or no
fading which has high gain. This is clearly manifested in
this results.
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Figure 7. Coverage probability for Different Fading Parameter (m).

E. UE Capacity for Different Coverage Radius
In Fig.8 we show the UE down link data rate for

static UAV and multiagent learning scenarios. We assume
the UE is located at the boundary of the serving UAV
coverage area and all other parameters are the same as stated
above. As depicted in the figure, there is a performance
improvement (about 20%) in the cell edge downlink rate
with the multiagent learning technique proposed in this
work. Another insight revealed in this scenario is the slight
decrease in the downlink rate as we increase the coverage
radius. This decrement arises from the increment in the
UE-to-UAV propagation distance as the coverage radius
increases. A higher coverage radius will ensure that more
users are served but with lesser cell edge performance. An
appropriate trade-off is therefore needed to ensure optimal
performance.

F. System Sum Rate
The overall system sum rate is evaluated in this section.

We used expression (24) in our computation as similarly
done in [34]. 1000 UEs were randomly generated within
the cell coverage radius R and the corresponding SINR
values appropriately computed. The result of our static UAV
deployment is quite comparable to the sum rate as reported
in [34]. As expected, our proposed approach gives better
results (150 bps/Hz as compared to 137 bps/HZ) for the
given cell radius and number of UEs. This is shown in Fig.9.
It is worth noting that, standard sum rate analysis typically
comapares the sum rate against transmit power and or SINR,
however, the above results seeks to show the performance of
our proposed UAV MARL scheme and static deployment.
Thus, the transmit power is fixed (30dBm).

G. Comparison Between Terrestrial and UAV Deployment
with the Same Parameters
We simulate the coverage probability for terrestrial and

UAV based cellular communication with the same transmit
power and antenna gain. The simplified path loss model
[37] is employed for the terrestrial BS-to-UE link with the
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following parameters, pathloss exponent of 3.17, d0 = 10m,
fc = 2GHz and 8 dB shadowing value. The same parameters
for the UAV system as we have in previous subsections
are used. As clearly depicted in Fig.10, the UAV deployed
BS outperforms the terrestrial system in terms of coverage
probability. Besides the improvement in the coverage proba-
bility, it is easy to deploy UAV based system to compensate
for cell outage in times of disasters [38], and it could also
be used for load balancing for overloaded cells.

H. UE SINR Values for Varying Antenna Gain
By altering the values of ϕ3dB and θ3dB in (14), we

obtained the plots in Fig. 11 with Aϕ = Aθ = 20dB.
For a low ϕ3dB and θ3dB, the antenna gain approaches the
maximum value which results in improved UEs received
signal strength and SINR values. On the other hand, by
increasing the values of the above-mentioned parameters,
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the antenna gain decreases. The underlying revelation of
this results is that, antenna beamforming can be used to
directly transmit signals with high gain to UEs as similarly
mentioned in [8].

5. CONCLUSION
The deployment of multiple UAVs to provide ground-

based users with wireless connectivity is studied in this
paper. Tools from Stochastic Geometry are used to derive
tractable analytical expressions for modeling the UAV-UE
system. We also developed a multi-agent learning technique
which enables the UAVs to cooperatively learn from each
other by sharing information about their states-actions pairs
with their neighbors.

In order to evaluate the impact of interference from
other UAVs, different scenarios are analyzed considering
varying UAV heights, environments and antenna gains. The
feasibility of our proposed learning scheme is evaluated
with typical parameters of a base station and the results
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show a substantial performance improvement in terms of
coverage probability, UEs capacity and system sum rate.
Our analytical and simulation results are in agreement with
each other.

Appendix A; Proof of Theorem 1: In discrete domain

pIagg (iagg) = P(Iagg = iagg)

=
∑

i1+i2=iagg

pI1,I2 (i1, i2)

=
∑

i1

P(I1 = i1, I2 = iagg − i1)

=
∑

i1

pI1,I2 (i1, iagg − i1)

=
∑

i1

pI1 (i1)pI2 (iagg − i1).

(35)

Since I1 and I2 are independent, (27) is the simplified
probability mass function (PMF) which is the convolution
of the PMFs of I1 and I2. For the case of continuous random
variables (RVs) the proof of theorem 1 is

FIagg (iagg) = P(Iagg ≤ iagg)
= P(I1 + I2 ≤ iagg)

=

∫ ∞

−∞

( ∫ iagg−i1

−∞

fI1,I2 (i1, i2)di2
)
di1

=

∫ ∞

−∞

( ∫ iagg

−∞

fI1,I2 (i1, t − i1)dt
)
di1

=

∫ iagg

−∞

( ∫ ∞

−∞

fI1,I2 (i1, t − i1)di1
)
dt.

(36)

Since I1 and I2 are identical and independently distributed
(i.i.d.),

fIagg (iagg) =
∫ ∞

−∞

fI1,I2 (i1, iagg − i1)di1 = fI1 ∗ fI1 , (37)

which is the convolution of the pdfs of I1 and I2.
End of proof.

Appendix B; Proof of Mean SINR

ς̄ = E(ς)

=

∫ ∞

−∞

ς
1

√
2πσς

exp
(−(ς − ς̄)2

2σ2
ς

)
dς

=

∫ ∞

−∞

(ς + ς̄)
1

√
2πσς

exp
(−(ς)2

2σ2
ς

)
dς

=

∫ ∞

−∞

ς
1

√
2πσς

exp
(−ς2

2σ2
ς

)
dς︸                            ︷︷                            ︸

solving this integral

+

∫ ∞

−∞

ς̄
1

√
2πσς

exp
(−ς2

2σ2
ς

)
dς

= −

∫ −∞

0
ς

1
√

2πσς
exp

(−ς2

2σ2
ς

)
dς+

∫ ∞

0
ς

1
√

2πσς
exp

(−ς2

2σ2
ς

)
dς

=

∫ ∞

0
−ς

1
√

2πσς
exp

(
−
−ς2

2σ2
ς

)
dς+

∫ ∞

0
ς

1
√

2πσς
exp

(−ς2

2σ2
ς

)
dς

= −

∫ ∞

0
ς

1
√

2πσς
exp

(−ς2

2σ2
ς

)
dς +

∫ ∞

0
ς

1
√

2πσς
exp

(−ς2

2σ2
ς

)
dς︸                                                                        ︷︷                                                                        ︸

0

=

∫ ∞

−∞

ς̄
1

√
2πσς

exp
(−ς2

2σ2
ς

)
dς

=

∫ ∞

−∞

ς̄
1
√
π

exp
(
− ς2

)
dς multiplying byσς

√
2

= ς̄
2
√
π

∫ ∞

−∞

exp
(
− ς2

)
dς

= ς̄ lim
t→∞

2
√
π

∫ t

0
exp

(
− ς2

)
dς︸                           ︷︷                           ︸

1
= ς̄.

(38)

End of proof
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