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Abstract: Analyzing the intricate nature of an audio signal often requires the extraction of relevant features, which serve as informative
descriptors of the signal. It entails studying the signal and determining how signals are related to one another. As a result, the
performance of audio spoofing detection in Automatic Speaker Verification (ASV) systems is strongly reliant on front-end feature
extraction. In this paper, three types of successively integrated features have been proposed. First, Acoustic Ternary Pattern (ATP)
image features are sequentially fused with different audio features such as MFCC, CQCC, GTCC, BFCC and PLP, individually.
Second, LBP image features are combined with all these audio features similarly. Then, the sequential integration of ATP-LBP
features is combined individually with MFCC, CQCC, GTCC, BFCC and PLP features. Finally, these front-end hybrid feature
sets are classified using different ML and deep learning algorithms based acoustic models at the back-end. The state-of-the-art
ASVspoof 2019 dataset has been used to implement various front-end and back-end combinations. The research outcomes reveal that
the proposed approach achieved the best results with ATP-LBP-GTCC at the front end with LSTM-based acoustic model at the back-end.
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1. INTRODUCTION
Various physiological properties of humans, such as the

retina, fingerprints, and voice, can be utilized to identify
a person individually. Compared to other features, voice is
the most common and easy way to recognise a person. Due
to recent technological improvements, speech authentication
systems, such as ASV systems, have become common and
prominent alternatives to conventional security systems.
These systems, unlike others, do not cause discomfort or
pose any health hazards to the user because there is no
direct touch with the machine. According to studies, ninety
percent of respondents are enthusiastic about employing
audio signal-based biometrics instead of traditional ones
[1]. An ASV system evaluates the speech injected through a
microphone or any other recording device and approves or
rejects the stated identity. The goal of speaker verification
is whether a claimant’s applied speech is authentic or fake.
The front-end and back-end are the two main components
of such systems for attaining the required functionality.
As shown in Figure 1, The front end of the ASV system
processes the input speech signal. In contrast, the back-
end half of the system undertakes a validity check and
speaker verification (by comparing stated identity with the
labelled speech database) to approve or reject the stated
identification.

Figure 1. Components of Automatic Speech Verification System

The front-end of the system retrieves information about
the speaker’s uniqueness and signals authenticity, which is
present in the input voice signal in the form of its character-
istics [2], [3]. Feature extraction is performed in the front-
end utilizing traditional approaches such as MFCC and PLP
[4]. The Mel scale is utilized in MFCC, and the filter used
is triangular. However, the conventional features suffer from
two major limitations: additive noise and channel mismatch
vulnerability. CQCC is the other popular method that is
being used nowadays for feature extraction [5]. CQCC uses
uniform resampling to convert the octave power spectrum
into the Linear Power Spectrum (LPS). After converting into
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LPS, Discrete Cosine Transform(DCT) is applied on LPS
to obtain CQCC [6]. Also, CQCC features don’t perform
well in noisy environment [7]. Hence, researchers tried to
modify these techniques to make these noise robust. The
other approach to handle the noise during feature extraction
is to use features that are already noise robust such as GTCC
[8], [9] and BFCC [10], [11]. GTCC employs a non-linear
gammatone filter bank[12]. Its non-linear behaviour is a key
aspect in the filter’s robustness in noisy environments, as it
allows it to produce superior results over a wide dynamic
range. BFCC uses gammachirp filter bank, which is derived
from gammatone filter bank for high frequency selectivity.
Another approach used by researchers to handle noise is
use of hybrid feature extraction methods. A hybrid feature
technique has been proposed to extract information from an
audio signal by integrating different audio feature extraction
techniques [11]. Recently, to make ASV system noise robust
audio feature have been combined with the image features
[13], [14]. The proposed work in this paper also sequentially
integrates image features LBP and ATP with various audio
features and tries to find the best possible combination
for extraction features. The back-ends’ classification model
separates the processable artefacts from the applied speech
features. HMM has been used as the main approach for
classification at the back-end of a statistically built ASR
system for many years [15], [14]. A finite state Markov
chain is defined as an HMM. A probability distribution
relates to each state to compute the likelihood of audi-
tory features. However, HMM-based acoustic models are
acknowledged to have various limitations such as its state
contains less observation due to small training dataset which
affects the robustness of ASV system and HMM has high
computational cost. To overcome these problem researchers
in [16], [17] suggests solutions. As speaker verification falls
within the category of classification problems, ML (ML)
techniques are known to be more suitable for drawing con-
clusions from the observed data [18]. GMM[19] and SVM
Classifiers have also been used to study various modelling
strategies. Acoustic observations are represented as a series
of GMM vectors with discriminative SVM classification
[20]. These models have been regularly employed for
various ASV-related operations and are suited for process-
ing speech-related data. However, these are ineffective for
nonlinear or almost nonlinear data spread. In[21], authors
used the ECOC [22] in their proposed acoustic model
to create a multi-class classifier by merging three binary
classifiers to distinguish genuine, first-order, and second-
order replay samples in their suggested approach. The work
used different ML algorithms such as KNN, NB, SVM
and Ensemble Bagged Trees and bi-layered Neural network
used for classification purpose. Also, due to advancements
ML algorithms, in recent years, the research community
has switched to deep learning models that can analyse a
large dataset with complicated interactions [23].The work in
this paper also exploits various ML methods based acoustic
models, and LSTM based acoustic model to implement the
proposed system. The rest of the paper is organized as
follows. The next sub-section, 1.1 presents the related work.

Section 2 briefly explains the preliminaries of the tech-
niques used in building the proposed system, and Section
3 illustrates the proposed architecture. Section 4 gives the
details of the experimental setup and results. The discussion
and comparative analysis is given in Section 5, and the
conclusion is described in Section 6 of the paper.

A. Related Work
With the advancement of technology, various types of

attacks have been introduced by the adversary, which can
violate human privacy [24].As discussed above, traditional
features produce good outcomes in clean atmosphere, how-
ever, their performance degrades in the noisy acoustics
environment. Hence, authors try to improve the performance
of front end of ASV systems in noisy environment either
by modifying MFCC or by using noise robust features or
by using hybrid feature extraction techniques. In [25] ,
authors modified MFCC to improve the noise sensitivity.
The logarithmic transformation in the traditional MFCC
is replaced by a combination function of power, and log
function. In their proposed work, Spectral Subtraction and
Median-Filter also combined with the combination function
to minimize the noise sensitivity. In [26], MFCC, Inverted
Mel frequency cepstral coefficient (IMFCC), and Linear
Prediction Cepstral Coefficients(LPCC) have been used to
represent audio features. GMM with a diagonal covariance
matrix is used to design a classification model. However, it
did not produce a good result, so to improve the results,
Deep learning models have been used such as LSTM,
Convolutional Neural Networks (CNN). Chettri et al. [27]
employed MFCC, IMFCC, CQCC, and Sub-band Centroid
Magnitude Coefficients (SCMC) to represent audio data,
and then these features have been used to train deep learning
models including CNN, CRNN, 1D-Convolutional Neural
Network, and Wave-U-Net, as well as ML techniques like
SVM and Ensemble models also used for performance
analysis. Todisco et al. [28] used CQCC feature extraction
technique with two GMM, a binary classifier which was
used to classify audios as genuine or spoof. Mittal et al. used
CQCC with CNN, LSTM, and a combination of the static-
dynamic features of CQCC with LSTM-CNN ensemble
in their proposed works of [3], [29]and [30], respectively.
However, the issue of noise remains open with MFCC and
CQCC features. In [31], authors used GTCC feature and
pitch at front-end for feature extraction, and passed these
features to GMM and KNN to improve the performance of
ASV system. Kaun et al. [10] applied auditory based BFCC
features with AURORA 2 dataset, and compared these
features’ performance with MFCC using HMM model.

Noroozi et al., [32] suggested a methodology for emo-
tion recognition using audio. They considered different
features such as MFCC, pitch, variance, intensity, and filter-
bank energies. In total, 88 features have been used to train
the K-means and 3D CNN based classifiers at the back-
end. In [33], [34] , authors suggested Local discriminant
bases(LDB) and MFCC combination for information ex
traction from audios. The extracted features have been fed
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into a three-level hierarchical categorization of audio signals
using a Linear Discriminant Analysis (LDA) based classi-
fier. In this paper, first, the performance evaluation of both
features is done individually, and then combining both the
feature extraction techniques. Malik et.al. [21], represented
replay attacks as a nonlinear process and proposed the ATP-
GTCC[35] combination to detect the harmonic distortions.
The suggested ATP-GTCC feature space is used to train
a multi-class SVM classifier, and tested for audio replay
attack detection using the ECOC model.

Motivated by the works of [20], [13] and [3], [29], [30],
the proposed work in this paper suggests a novel integrated
approach for front end feature extraction. The proposed
approach uses combination of audio and image feature
extraction techniques. Different types of features (image and
audio) have been integrated sequentially, and a total of 15
distinct sets of integrated features have been created in the
proposed work. The combinations have been created using
ATP, LBP image features and MFCC, PLP, CQCC, GTCC,
and BFCC audio features. The novel contributions of the
proposed work can be outlined as:

• Firstly, the image feature ATP has been combined
with audio FE techniques such as MFCC, PLP,
CQCC, GTCC, and BFCC, individually.

• Similarly, the image feature LBP has been integrated
with audio FE techniques such as MFCC, PLP,
CQCC, GTCC, and BFCC individually.

• Above two steps created 10 distinct feature set. Then,
these feature sets are fed to four different ML-based
acoustic models such as NB, SVM, DT, K-NN and
LSTM based acoustic for performance evaluation.

• After observing the result of above said dual feature
combinations, we decided to create the feature set by
combining both image feature techniques with all the
audio feature extraction techniques. This step made 5
trio features set.

• The proposed trio features sets have been input to
LSTM-based acoustic and four ML based acoustic
models for classification.

• Extensive performance analysis has been done by
comparing proposed models’ performances using the
evaluation parameters such as Precision, Accuracy,
Recall, F1-score, and Equal Error Rate (EER).

2. Preliminaries
The current section discusses the front end and back-end

strategies that have been used to implement the proposed
work. The proposed approach uses various strategies for
front end feature extraction and various different ML based
algorithms for building acoustic models. The first part of
this section discusses basics of visual features, the second
part covers audio elements, and the third part describes the

acoustic models used.

A. Image Features
Two types of image features LBP and ATP have been

used for audio feature extraction at the front end of the
proposed ASV system.

1) Local binary pattern (LBP)
Local binary pattern (LBP): LBP was first time in-

troduced by Ojala et al. [36]. In these features, a local
pattern is created by encoding the grey level difference
between the centre pixel and its neighbours. LBP generates
a M bit binary number that concatenates with the decimal
numbers[37]. Unlike an image signal, where the neighbour-
hood is a circle covering an angle of 360o, the audio signal
has only two neighbourhood angles: 0o and 180o . LBP
allows to define an audio texture as a joint distribution of
the pixel. Given a center pixel pc with grey level gpc , the
LBP of the pixel is computed as follows:

y1 = S n[y[ j + s − N/2] − y[ j]]2i (1)

y2 = S [y[ j + s + 1] − y[ j]] (2)

LBPN(y[ j]) =
N/2−1∑

n=1

{[[y1 + y2] − y[ j]]2i+n/2} (3)

2) Acoustic Ternary Pattern (ATP)
ATP technique is used to represent 1-D audio signals

as the acoustic signal to detect replay attacks[38], [39].
This technique was inspired by the application of 2D-local
ternary patterns in image processing[40].

The difference between the magnitudes of central sam-
ple c and nearby audio samples z j is used to calculate the
local ATP response. A threshold td value is used to get the
most optimized features [37].

To calculate the features, firstly, signal S(x) with Ns
samples is divided into non-overlapping frame Fn of length
l. Secondly, sample values in Fn is quantized around the
central sample C, while values above and below C ± th are
quantized to 1 and -1, respectively. As a result, we have a
three-valued function:

P(yi,C, td) =


−1, y j − (C − td) ≤ 0
0, (C + th) < y j < (C − td)
1, y j − (C − td) ≥ 0

 (4)

where (y j,C, td) represents acoustic signal locally using a
3-valued ternary pattern. Now, all the patterns quantized to
-1 are retained in Plow, patterns quantized to +1 are retained
in Pup, and other patterns are replaced as zero.

Plow(y j,C, td) =
{

1 i f P
(
z j, c, td

)
= −1

0 otherwise

}
(5)

Pup(y j,C, td) =
{

1 i f P
(
z j, c, td

)
= +1

0 otherwise

}
(6)
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Equations (7) and (8) are used to compute the upper
class AT Pup and lower class AT Plw patterns. These patterns
are calculated into decimal form using following equations.

AT Pup
u (y j, C, td) =

{ ∑ j=7
j=0 Pup

(
y j,C, td

)
∗ 2 j

}
(7)

AT Plw
u (y j,C, td) =

{ ∑ j=7
j=0 Plow

(
y j,C, td

)
∗ 2 j

}
(8)

Then, In the next step, histogram is calculated for
AT Pup

u and AT Plw
u . One bin of histograms is assigned for

each uniform pattern and a non-uniform pattern in the bin.
Functions used to calculate histogram are given as:

Hs
up (AT Pup, b) =

{ ∑K
k=1 ρ

(
AT Pup

k , b
) }

(9)

Hs
lw

(
AT Plw, b

)
=

{ ∑K
k=1 ρ

(
AT Plw

k , b
) }

(10)

where b represents the bin of histogram and ρ repre-
sents Kronecker delta function. Finally, ATP feature vector
are generated by concatenating both Hs

up and Hs
lw using

equation (11).

AT P =
{

[Hs
up||Hs

lw]
}

(11)

B. Audio Features
Audio features are the audio signal descriptions that can

be used as input into statistical or ML models. The proposed
work uses Conventional features such as MFCC and PLP,
and noise robust features GTCC and BFCC.

1) MFCC
The ideas of speech generation and perception are

used by MFCC to extract acoustic information from a
spoken stream. In MFCC, first, pre-emphasis operation is
performed on the voice signal to increase the energy at
high frequencies, followed by Hamming window function
to eliminate inconsistencies and information loss. After
windowing, to get high frequency feature, Discrete Fourier
Transform (DFT) using equation (12) is performed on the
sample.

fr,i,0 =
{ {

1
n

∑N−1
l=1

(
e−J2π li

n

)
fl
} }

(12)

where, i varies from 0 to (n/2) − 1, and n denotes a
sample point within a time frame f . Then, filtering is carried
out using different kind of filters on the output spectrum
obtained from DFT to measure the power spectrum as:

fr,l,1 =
{ ∑ N

2 −1
i=0 cl,i fr,i,0

}
(13)

where, variable cl denote the amplitude of band pass
filter and l varies from 0 to n. The output of equation (13)
is passed through the logarithmic Mel- scaled filter bank to
obtain Mel filter passed spectrum fr,l,2

MFB
(
fr,l,2

)
=

{
2597 ∗ log10(1 + fr,l,1/700)

}
(14)

Discrete Cosine Transform (DCT) performed on equation
(14) to get 13 coefficients of MFCC for each frame as:

fr,l,3 =
{ ∑Nd

k=1

(
cos

[
i(2l−1)π

2Nd

])
( f r,l,2)

}
(15)

where k varies from 0 to Nc>Nd and Nc, number of
cepstral features used for further calculation.MFCC extracts
13 features in total out of which 12 are coefficients and
1 is energy feature. First delta △ and double delta △ △
feature also added to capture non−uniform behaviour of
audio signal.We use the first 13 coefficients for our system,
as the lower order coefficients provide more information
about the source’s overall spectral

structure[41].

2) PLP
PLP uses windowing and FFT, which are identical to

MFCC and GTCC’s first two phases. The Bark Filter Bank
technique is then applied to the calculated frequency value.
A filter bank with 27 highly sharp bandpass filters is
included in Bark Filter. The Bark frequency with respect
to a speech signal is given as:

fr,l,2 =
{

6ln
[

fr,l,1
1200π +

[ ( fr,l,1
1200π

)2
+ 1

]0.5
] }

(16)

The Bark frequency component obtained is employed in
the equal loudness emphasis step’s pre-emphasis procedure.
The following is the relationship between the discrete input
power spectrum fr,k,1 (k) and the LP model power spectrum
fr,l,2 (k). {

1
n
∑K−1

k=1

([ fr,l,2(k)
ŷr,l,2(k)

]) }
= 1 (17)

After the Linear prediction, recursive cepstrum computation
is applied to get the Perceptual Linear Prediction (PLP)
coefficients. The first 13 coefficients are obtained, and then
by using delta () and double delta () features, PLP feature
vector is obtained.

3) CQCC
CQCC features are based on Constant Q Transform

(CQT). In recent years, CQT has been used widely to
analyse and classification of the audio signal. For extraction
of CQCC, firstly, CQT is computed using equation (18) for
discrete time-domain signal x (i).

CQ,T (K,N) =
{ ∑N+⌊Ni/2⌋

i=N−⌊Ni/2⌋
x (i) fK

∗ (i − N + Ni/2)
}

(18)

where, K is the frequency bin index, fK the complex
conjugate of FK (N) and Ni is window length. In the second
step, the cepstrum in a time sequence x (i) is derived in
spectrum logarithm using inverse transformation. However,
cepstral features cannot be used directly because K bins of
CQ,T are on a different scale than the cosine function of the
DCT. To resolve this problem uniform resampling is done
on cepstral features. In the final step, equation (19) is used
to compute CQCC features.

CQCC (ρ) =
{ ∑R

r=1 log
∣∣∣CQ,T (r)

∣∣∣2 cos
[
ρ(r− 1

2 )π/2
R

] }
(19)
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where ρ= 0, 1, ..., L-1 and l are the newly resampled
frequency bins.

4) GTCC
The only difference between MFCC and GTCC is

that GTCC is more robust to noise[42]. The GTCC uses
Gammatone filters with equivalent rectangular bandwidth
(ERB) bands. To perform GTCC feature calculation, first
FFT applied to the audio signal to generate a spectrum. To
compute the energy En of each signal, gammatone filter
bank applied to FFT audio signal. Then, the logarithm of
each energy EN is computed, and DCT is applied on signal
to generate GTCC features. The function to compute GTCC
feature is given as:

GTCCL =

{ √
2
g
∑G

g=1 logEgcos
[
πg
G

(
l − 1

2

)] }
(20)

where 1 ≤ l ≤ L .

The signal energy for the nth spectral band is repre-
sented by Eg, the number of gammatone filters G, and the
number of GTCC are represented by L. The 13-dimensional
GTCC coefficients are returned by the GTCC computing
method.

5) BFCC
For addressing noisy speech signals, BFCC is thought

to be a more powerful parameterization technique. Instead
of utilizing Fourier transform-based Gammatone and Mel-
scale filter-banks, BFCC employs auditory transform-based
Gammachirp filter-bank. It employs basilar membrane func-
tions and is more robust to additive noise than MFCC
and GTCC. BFCC uses Equivalent Rectangular Band-
width (ERB) function to calculate bandwidth and Cochlear
Wavelet Transformation to form an auditory spectrogram.
The equation to calculate gammachirp filter is defined as:

X =
{

xT N−1e−2πBT
}

(21)

gch (F,T ) =
{

X ∗ cos(2πFT + chlogT + φ)
}

(22)

where, ch is gammachirp function, and is the only difference
between GTCC and BFCC. In last step, logarithmic and
DCT operation applied to obtain BFCC features.

C. Acoustic Models
Some traditional ML methods are generative, while

others are discriminative. These methods are suited for im-
poster detection in applicable datasets from ASV systems’
initial research[43]. The proposed work applies multiple
classification algorithms such as SVM, NB, DT and KNN.
Also, deep learning algorithm such as LSTM based acoustic
model has also been used to implement the acoustic model
in the proposed work.

1) SVM
SVM uses 2-D hyperplane to classify data into two

classes, each of which is located on opposite sides of the
plane[44], [45]. It has been effectively utilized for both

speaker verification and spoof detection. However, due to
the complex feature distribution, the different classes may
be overlapped or intertwined, so the audio classes cannot
be separated linearly [46]. A kernel-based SVM, on the
other hand, is ideally adapted to handle such circumstances.
Although, choosing a suitable kernel is critical for SVM
classification accuracy. The following equation represents
the ultimate optimal hyperplane classifier:

F (v) =
{ ∑L

l=1 c̄l wiviv + C̄
}

(23)

where, c, v represents classifier and support vector for
solution, respectively. The equation (21) is updated for
kernel SVM as:

F (v) =
{ ∑L

l=1 c̄l wiviv + C̄
}

(24)

The works proposed in [47], [48] show that SVM is highly
good at handling noisy and high-dimensional data, and also,
it achieves excellent accuracy with a small data set.

2) KNN
KNN is a supervised learning algorithm in which a new

instance is classified based on the feature space’s closest
training samples[49]. The Euclidean distance between the
new instance and each previously-stored training audio clip
is calculated to categorize a new one. A new audio clip is
assigned to the most popular class among the K-training
audio clips nearby [50]. For identifying the unlabelled
data majority voting technique is employed [51]. It means
that each occurrence of a class (category) in a set of K
neighbourhood samples receives one vote. The fresh data
sample is then classified into the class having the most
votes. Because it is less susceptible to outliers, majority
voting is more widely utilized. However, KNN classifier
takes more computation time than SVM.

3) Naı̈ve Bayes(NB)
NB uses Bayes theorem to calculate to the probability of

audio features with respect to class. Once trained, the NB
classifier can predict emotions that aren’t in the dataset [52].
In the proposed approach, two variations of NB have been
used, Gaussian NB and Kernel NB. Following equation is
used to calculate probability concerning class for Gaussian
and Kernel NB.

P ((Xi|Y)) =
 1√

2πσY
2
e

(
−

(Xi−µY )2

2σY 2

)  (25)

4) Decision Tree (DT)
Decision Tree (DT): Classifiers that describe their classi-

fication information in the form of a tree are known as DT.
A DTs’ interior nodes represent a test on an attribute. If
the test is passed, the instance being categorized will take
one of the node’s branches; if the test is not passed, the
instance will take the other branch. Starting at the root node
of the decision tree, an instance is classified by following
a path given by attribute tests until it reaches a leaf node.
A categorization or conclusion is represented by each leaf
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node in a decision tree. In [53], SVM has been proven to
be less resilient against label noise than decision tree. In
the proposed approach multiple DT have been considered
with distinct splitting node.

5) LSTM
LSTM has the ability to learn long-term dependencies

in data. Its architecture consists of a cell state and three
gates that enable it to selectively learn, forget or retain
information from each unit. By allowing only a few linear
interactions, the cell state can carry information across the
units without modifying it. Each unit has an input gate, an
output gate, and a forget gate that adds or removes data
from the cell state. LSTM uses following equation :

MT =
{

bF + α (WF ∗ [hT−1, xT ])
}

(26)

IT =
{

bI + α (WI ∗ [hT−1, xT ])
}

(27)

CT =
{

bC + tanh(WC ∗ [hT−1, xT ])
}

(28)

CT =
{

CT ∗ MT ∗CT−1 + iT
}

(29)

OT =
{

bO + α (wO [hT−1, xT ])
}

(30)

hT =
{

tanh() ∗ OT
}

(31)

where MF , hT−1, xT and bF represents weighted matrix,
previously hidden state, input to the current state and weight
associated with the information, respectively. In equation
(25) MI represents weight matrix associated with hidden
state and bI weight matrix of input. CT in equation (27)
represents a function of long-term memory and CT−1 is
the cell state at current time. Equation (29) uses OT and
tanh to calculate current hidden state HT . Kons et al. [54]
used LSTM for Urban Sound classification and proved that
LSTM works better than ML traditional algorithm.

3. Proposed Approach
As described earlier, front-end FE and back-end acoustic

modelling are the two key components of the suggested
ASV system. Figure 2 shows the proposed ASV system is
implemented in two steps. Firstly, sequential integration of
audio features with image features is carried out, and in
secondly, LSTM and different ML algorithm-based acous-
tic models use these integrated features at back-end for
classification. Ten pair and five trio feature sets have been
generated using two image features LBP, ATP and five audio
feature MFCC, PLP, CQCC, GTCC, and BFCC. Extracted
features, along with the labels from the dataset, are then
applied to the classification models i.e. Deep learning based
model (LSTM), and ML based models (SVM, KNN, NB,
and DT) used for assessing their performance. Table 1
shows the list of abbreviations used in this paper.

1) Sequential Integration of Audio and Image Features
A total of fifteen feature sets have been created by

gradually integrating two image features with five audio
features. For instance, when ATP is sequentially integrated

Figure 2. Proposed System Architecture

with MFCC, a set of ATP-MFCC feature vectors is created.
Similarly, fifteen different combinations (ten pairs features
and five trio features) are created such as ATP-MFCC, ATP-
PLP, ATP-CQCC, ATP-BFCC, ATP-GTCC, LBP-MFCC,
LBP-PLP, LBP-CQCC, LBP-BFCC, LBP-GTCC, ATP-
LBP-MFCC, ATP-LBP-PLP, ATP-LBP-CQCC, ATP-LBP-
BFCC, and ATP-LBP-GTCC. Algorithm 1 describes this
process of sequential integration.

• ATP and Audio Feature Integration: : Figure 3
shows the process of creating pair of features by
integrating image feature ATP with audio feature
extraction. For feature extraction, audio signal from
the dataset has been applied.By merging 20 ATP co-
efficients and 13 MFCC features, an integrated ATP-
MFCC feature vector with 33 features is generated.
Figure 3(a) shows steps involved in calculating ATP-
MFCC features. Figure 3(b) shows the steps involved
in calculating ATP-PLP features. An integrated ATP-
PLP feature vector with 34 features is created by com-
bining 20 ATP coefficients and 14 PLP features. As a
result of this sequential combination of features, there
are a total of 34 features. An integrated ATP-CQCC
feature vector with 1565 features is constructed by
combining 20 ATP features and 1545 CQCC coeffi-
cients. The procedure involved in calculating ATP-
CQCC characteristics is depicted in Figure 3(c).
Figure 3(d) shows steps involved in the process of
sequentially combined ATP-GTCC feature. A feature
vector of 33 features is constructed by combining
20 ATP features, and 13 GTCC coefficients. A 33-
feature integrated ATP-BFCC feature vector is created
by sequentially combining 20 ATP features and 13
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TABLE I. Abbreviation

Abbreviation Meaning
ASV Automatic Speaker Verification
ATP Acoustic Ternary Pattern
BFCC Basilar-membrane Frequency-band Cepstral Coefficients
CRNN Convolutional Recurrent Neural Network
CQCC Constant Q Cepstral Coefficients
CNN Convolutional Neural Network
DT Decision Tree
ECOC Error-Correcting Output Codes
FE Feature Extraction
GMM Gaussian Mixture Model
GTCC Gammatone Cepstral Coefficients
HMM Hidden Markov Model
IMFCC Inverted Mel frequency cepstral coefficient
KNN K- Nearest Neighbour
LBP Local Binary Pattern
LSTM Long Short-Term Memory
LDA Linear Discriminant Analysis
LPCC Linear Prediction Cepstral Coefficients
MFCC Mel Frequency Cepstral Coefficients
ML Machine Learning
NB Naı̈ve Bayes
NN Neural Network
PLP Perceptual Linear Prediction
SVM Support Vector Machine

BFCC coefficients. Figure 3(e) shows steps involved
in combining ATP-BFCC features.

• LBP and Audio Feature Integration: Figure 4
shows the process model of creating feature sets by
combining LBP and Audio features. A Sequentially
integrated LBP-MFCC feature vector of 61 features
are produced by combining 13 MFCC coefficients
and 48 LBP features. The procedure in calculating
LBP-MFCC characteristics is depicted in Figure 4(a).
Figure 4(b) shows steps involved in calculating LBP-
PLP features,14 features from PLP and 48 features
taken from LBP to create a sequentially combined
feature set of 62. By sequentially merging 1545
CQCC coefficients and 48 LBP features, an integrated
LBP-CQCC feature vector with 1593 elements is gen-
erated. Figure (c) shows, steps involved in calculating
LBP-CQCC features. Figure 4(d) shows the process
of integration. 13 features from GTCC and 48 features
from LBP combined sequentially to create 61 feature
set. A 61D feature set is created by sequentially
combining 13 features from BFCC and 48 elements
from LBP. The procedures done in calculating LBP-
BFCC characteristics are depicted in Figure 4(e).

• ATP-LBP and Audio Feature Integration: Figure
5 shows the process of creating different feature set
by combining ATP-LBP and audio features.An aggre-
gated ATP-LBP-MFCC feature vector of 81 features

is constructed by combining 20 ATP, 48 LBP features
with13 MFCC coefficients. The procedures involved
in calculating feature set are depicted in Figure 5(a).
By merging 20 ATP, 48 LBP features and 14 PLP
coefficients, an integrated ATP-LBP-PLP feature vec-
tor with 82 features is generated. Figure 5(b) shows
the steps involved in calculating LBP-PLP charac-
teristics. By merging 20 ATP, 48 LBP features and
1545 CQCC coefficients and, an integrated ATP-LBP-
CQCC feature vector with 1613 features is generated.
Figure 5(c) shows the steps involved in calculating
feature set. By merging 20 ATP, 48 LBP feature with
13 GTCC coefficients, an integrated ATP-LBP-GTCC
feature vector with 81 features is generated. Figure
5(d) shows, steps involved in calculating respective
features set. An integrated ATP-LBP-BFCC feature
vector of 81 features is constructed by integrating 20
ATP, 48 LBP features, and 13 BFCC coefficients. As a
result of this sequential combination of features, there
are a total of 33 features. The procedures needed in
calculating feature set are shown in Figure

2) Back-end Classification Models
In the proposed approach, five different classification

models are designed using four different ML algorithms,
that are, NB, SVM, DT and KNN, and one deep learning
algorithm i.e. LSTM. ASV Spoof 2019 LA training partition
has been used to train the model and for testing purpose
ASV Spoof 2019 evaluation partition has been used. Figure
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Algorithm 1 Classifying audio into Spoofed or bonafide
Input: Audio wave file in FLAC form
Begin:
Feature Extraction Computation

Select type of image feature extraction technique.
If ( f eature == AT P ∥ f eature == LBP)

A ← ATP 2D [ ]
Else
B← LBP 48[]
End if
Select audio feature extraction technique

If( f eature == MFCC∥ f eature == BFCC∥ f eature == PLP∥ f eature == GTCC∥ f eature ==
CQCC)

M← MFCC 13D []
P← PLP 14D []
C← CQCC 1545D []
G← GTCC 13D[]
B← BFCC 13D[]
End if

Sequential Integration of feature:
AM = Concatenate(A,M)
AP = Concatenate(A, P)
AB = Concatenate(A, B)
AG = Concatenate(A,G)
AC = Concatenate(A,C)
LM = Concatenate(L,M)
LP = Concatination(LP)
LB = Concatenate(L, B)
LG = Concatenate(L,G)
LC = Concatenate(L,C)
ALM = Concatenate(A, L,M)
ALP = Concatenate(A, L, P)
ALB = Concatenate(A, L, B)
ALG = Concatenate(A, L,G)
ALC = Concatenate(A, L,C)

Classification :
If ( f eature set = AM ∥ f eature set = AP∥ f eature set = AB ∥ f eature set = AG ∥ f eature set =
AC ∥ f eature set = LM ∥ f eature set = LP ∥ f eature set = LB ∥ f eature set = LG ∥ f eature set =
LC ∥ f eature set = ALM ∥ f eature set = ALP ∥ f eature set = ALB ∥ f eature set =
ALG ∥ f eature set = ALC)

LSTM (feature set)
NN (feature set)
SVM (feature set)
KNN (feature set)

NB (featureset)
DT (featureset)
End if

End

6 shows Process of Training and Evaluation of Proposed
Work.

• Neural Network:In our proposed approach, five dif-
ferent NN has been built by changing the number
of layers. The first NN, called Narrow Neural Net-
work(N), has been designed with one fully connected
layer containing one layer with ten neurons, and as

an activation function, relu has been used. Medium
NN(M), designed with one fully connected layer and
include one layer with 1025 neurons second. The
third NN, called Wide Neural Network(W), has been
created, which contains one fully connected and the
first layers built using 100 neurons. The fourth NN,
called Bi- Neural Network(B), has been developed,
which includes two fully connected layer and the
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TABLE II. Performance of Integrated ATP and Audio Features using NN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+MFCC

N NN 95.8 81 75 78 21
M NN 95.7 78 79 78 25
W NN 96.1 96 96 95.8 12
B NN 96 95 94 94.9 13
T NN 95 78 75 76 23

ATP+PLP

N NN 90.2 55 18 27 46
M NN 85.5 31 26 29 47
W NN 84.9 26 26 26 48
b NN 89.5 46 20 28 47
T NN 89.2 43 21 28 45

ATP+CQCC

N NN 87.8 43.5 43.5 43.5 44
M NN 88.4 45.8 40.7 43.1 41
W NN 89 48.9 43.5 46 45
B NN 87.9 43 38.4 40.5 42
T NN 88.5 46.5 43.5 44.9 46

ATP+GTCC

N NN 96.1 96 96 96 10
M NN 95.6 78 77 78 34
W NN 95 78 77 78.9 37
b NN 95.6 95 94 94 12.5
T NN 95.6 80 76 78 35

ATP+BFCC

N NN 95.7 80 75 78 29
M NN 95.3 77 77.1 77.2 33
W NN 95.6 78.5 77 78 34
W NN 96.2 82 79 81 28
T NN 96.7 79 77 78 30

TABLE III. Performance of Integrated LBP and Audio Features using NN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

LBP+MFCC

N NN 91.1 54.4 55.5 55 41
M NN 92 60 51 55 39
W NN 92.4 62.5 56 59 36
B NN 91.8 59 53 57 44
T NN 91.3 61.2 52.2 56.4 41

LBP+PLP

N NN 92.9 63.9 62 63.2 39
M NN 93.1 66.2 59.5 62.7 37
W NN 93.3 68.6 57.5 62.6 36
b NN 91.9 54.8 51.5 53.1 46
T NN 90.6 52 52.5 52.2 43

LBP+CQCC

N NN 88.8 41.2 33 36 47
M NN 90.0 48.6 36.3 41.6 45
W NN 90.7 53.1 42.4 47.1 46
B NN 89.6 46.5 41.4 43.8 42
T NN 91.1 56.5 39.3 46.4 40

LBP+GTCC

N NN 91.5 56.4 57.5 57 48
M NN 92.9 64.5 60.6 62.5 36
W NN 91.9 58.5 58.5 58.5 45
b NN 92.2 61.1 55.5 58.2 41
T NN 92.5 63.5 54.5 58.6 40

LBP+BFCC

N NN 93.1 66.6 58.5 62.3 40
M NN 93.6 69.3 61.6 65.2 37
W NN 93.7 71.6 58.5 64.4 35
b NN 91.3 55.9 52.5 54.1 45
T NN 92.2 60.4 58.5 59.4 42
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TABLE IV. Performance of Integrated ATP, LBP and Audio Features using NN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+LBP+MFCC

N NN 91.8 90.5 90.5 91.6 27
M NN 90.3 50.6 42.4 46.5 45
W NN 91.8 59 52.5 55.6 41
B NN 97.7 96.8 96.4 74.4 15
T NN 89.1 44.3 43.4 43.8 43

ATP+LBP+PLP

N NN 90.9 53.9 48.4 51 45
M NN 91.6 57.4 54.5 55.9 44
W NN 92.7 64.7 55.5 59.7 36
b NN 89.6 46.2 37.3 41.3 47
T NN 90.9 54.1 46.4 50 43

ATP+LBP+CQCC

N NN 86.6 47 40 43 41
M NN 89.7 47 43 45 45
W NN 89.5 46 41 44 43
B NN 88.2 40 38 39 44
T NN 88.1 40 41 40 40

ATP+LBP+GTCC

N NN 92.6 64 57 60 35
M NN 91.4 56 56 56 48
W NN 92.4 63 56 59 36
b NN 91.8 91 91 91.6 12
T NN 90.8 53 54 53 42

ATP+LBP+BFCC

N NN 91.8 50.5 50.5 54.6 37
M NN 92.3 60.3 62 61 40
W NN 92.3 60 62 61 44
b NN 91.6 59 48 53 47
T NN 90.6 52 43 48 43

∗N NN : NarrowNeuralNetwork, ∗M NN : MediumNeuralNetwork, ∗W NN : WideNeuralNetwork,
∗B NN : Bi − NeuralNetwork, ∗T NN : Tri − NeuralNetwork

first layers made using ten neurons, and the second
layer also contains10 neurons. Fifth, NN called Tri-
Neural Network(T), has been designed using three
fully connected and its first layers, second layers, and
third layer contains10 neurons each.

• Naı̈ve Bayes: In our approach, two variations of
NB have been used to classify the dataset. Gaussian
NB uses a Gaussian normal distribution that works
on a continuous feature dataset. The kernel-based
NB(K) algorithm gives good accuracy when data is
not linearly separable.

• Support Vector Machine: SVM is a Supervised clas-
sification algorithm. The SVM algorithms’ purpose
is to find the optimum line or decision boundary
for categorizing n-dimensional space into classes so
that additional data points can be readily placed in
the correct category in the future. A hyperplane is
the optimal choice boundary. When data is linearly
separable, it’s easy to classify the new data point,
but when information is not linearly separable, there
need to modify SVM. Different kernel function has
been used for this process. In the proposed approach,
four kernel functions have been used: Linear(L),
Quadratic(Q), Cubic(C), and Gaussian(G) function.

• Decision tree: Decision Trees are a type of Super-
vised ML algorithm. In DT, the data is continually
split according to some parameter. Two entities, de-
cision nodes and leaves, can be used to explain the
tree. The leaves represent the decisions or outcomes.
The decision tree created at different levels by setting
the number of splits. Gini index has been used to
calculate the probability of a specific feature classified
incorrectly when selected randomly. The result of
these experiments is explained in the next section.
In proposed approach, Decision trees created at three
levels for evaluation: Coarse-level(Coa), with only a
few decision nodes (maximum number of splits is
four); Medium-level(Me), with more decision nodes
(maximum number of splits is twenty); and Fine-
level(F), with a large number of decision nodes (max-
imum number of splits is one hundred). Fine trees
have greater depth in their structure, while coarse
trees have the least.

• K- Nearest Neighbour: For audio classification,
the KNN model has been used. KNN trained on a
dataset obtained from the audio signal at the front
end. KNN finds the nearest neighbour by calculating
the distance between data points. In our proposed
approach, three parameters have been used to tune
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TABLE V. Performance of Integrated ATP and Audio Features using SVM

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+MFCC

L SVM 89.7 50 10 19 50
Q SVM 90.1 81 65 72 18
C SVM 86.7 83 79 81 11.2
G SVM 90.9 89 48 62 49.9

ATP+PLP

L SVM 89.8 38 18 24 50
Q SVM 89.8 35 17 23 50
C SVM 89 42 21 28 41
G SVM 89.8 40 21 20 50

ATP+CQCC

L SVM 89.2 45 18 13 50
Q SVM 89.2 55 17 53 37.8
C SVM 80.8 52 21 51 50
G SVM 89.2 50 40 55 48.2

ATP+GTCC

L SVM 94.5 94 94 94.4 2.3
Q SVM 94.5 91.5 92.9 94.4 2.1
C SVM 98.3 98 98.5 98.7 1.4
G SVM 93.9 88.3 85.5 88.1 27.5

ATP+BFCC

L SVM 89.8 75.3 70.5 75.7 50
Q SVM 90.6 80.5 62.4 70 19.6
C SVM 95.3 79.3 72.5 75.7 14.6
G SVM 84.6 90 46 61 26.9

KNN experiments: the number of neighbours (KN),
the distance metric used to determine the nearest
neighbours, and the distance weights. For the first
three tests, different values of neighbours and set the
distance metric to Euclidean and distance weight to
equal; initially KN=1,fine KNN(F KK), then KN
=10,medium KNN(Me KNN), and finally KN =100,
Coarse KNN(Co KNN). In the second experiment,
the number of neighbours (KN=10) and distance
weight are equal while altering the distance metric to
cosine(Cos KNN) and cubic(Cu KNN). Each NN
is given a weight based on the squared inverse mech-
anism, assigning higher weights to closer neighbours
and lower weights to farther neighbours.

• LSTM: The proposed LSTM network is made up
of 50 LSTM layers, each with a relu activation
function. Audio and other time-varying data frames
are particularly well suited to LSTM layers. The
suggested LSTM model has 50, 50, and 50 units in
the LSTM layers, and one dense output layer in this
configuration. The effect of some randomly chosen
neurons is then turned off using a 20 per cent dropout.
The addition of a dropout layer prevents overfitting
in the model. After that, the dropout outcome is
transmitted to a dense layer with a sigmoid activation
function. LSTM trained by feature matrix, which has
been produced at the front end separately.

4. Experimental Setup and Result
This section covers experimental details of the proposed

ASV system. Feature extraction implemented on MATLAB
R2021 and Windows10 Operating System with intel core

i5 processor has been used for processing. The inbuilt
m f cc () and gtcc () in MATLAB have been used to extract
MFCC and GTCC spectrogram, respectively. Anaconda has
been used to implement the back-end model written in
Python 3.7. Back-end model implemented on Anaconda
using python 3.7. All audios and labels acquired from
the ASVspoof2019 training, evaluation datasets. For ML
approaches, MATLAB inbuilt classification application has
been used. Different parameters have been used to measure
the performance of the proposed ASV system such as
Accuracy , Precision , Recall , F1-score , and EER .

1) Performance of different Feature Integrations with
Neural Network-based Acoustic Model
This section presents the results obtained using vari-

ous proposed front end feature combinations with Neural
Network-based acoustic model at the back-end. As de-
scribed earlier, five different NN has been built by changing
the number of layers such as Narrow NN, Medium NN,
Wide NN, Bi-layered NN and Tri-layered NN.

• Performance of Integrated ATP and Audio Fea-
tures: Table 2 gives the results for the proposed
ASV system that uses ATP features integrated with
audio features at front end and different types of
Neural Network based acoustic model at back-end. It
can clearly be observed from the results that ATP-
MFCC feature set produces best EER 12% using
Wide NN compared to Narrow, Medium, Bi-layered,
and Tri-layered NN. ATP-PLP achieved the best EER
45 % with Tri-layered NN compared to other NN.
ATP-CQCC achieved 44% EER with Narrow NN,
ATP-GTCC and ATP-BFCC gained 27%, 28% using
Narrow NN and Wide NN, respectively. Hence, it can
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TABLE VI. Performance of Integrated ATP and Audio Features using SVM

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

LBP+MFCC

L SVM 90.2 50 1 1 50
Q SVM 93.7 81 45 58 27.8
C SVM 92.9 65 56 60 23.3
G SVM 90.8 1 4 7.7 48

LBP+PLP

L SVM 90.9 50 1 1 50
Q SVM 93.4 82 41 55 29.8
C SVM 92.8 67 51 58 25.6
G SVM 90.9 1 7 1.3 46.4

LBP+CQCC

L SVM 90.2 50 1 1 50
Q SVM 90.5 49 25.2 33.3 38
C SVM 88.4 50 37.3 42.7 33.4
G SVM 90.2 66.6 20 39 40

LBP+GTCC

L SVM 90.2 50 1 1.9 50
Q SVM 93.8 70 33 45 26.08
C SVM 92.6 60 48.4 53.9 22.5
G SVM 91.2 50 1 1.9 44.9

LBP+BFCC

L SVM 90 50 1 1 50
Q SVM 94.5 84 55 66 23.05
C SVM 94 68 75 71.4 14
G SVM 90.5 1 7 1.3 47.5

TABLE VII. Performance of Integrated ATP and Audio Features using SVM

Feature set Algorithm(SVM) Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+LBP+MFCC

L SVM 92.2 50 1 1 50
Q SVM 92.5 72 37 49.3 32.4
C SVM 91.4 57 45 50.8 29.05
G SVM 90.2 50 1 19 50

ATP+LBP+PLP

L SVM 92.2 50 1 1 50
Q SVM 92 66 37 47 32.3
C SVM 91.9 61 46.4 52.8 28.3
G SVM 90.2 50 1 19 50

ATP+LBP+CQCC

L SVM 90.2 50 1 1 50
Q SVM 90.1 49 25.2 33.3 38.8
C SVM 90.2 50 37.3 42.7 33.3
G SVM 90.4 66.6 20 39 49

ATP+LBP+GTCC

L SVM 96 96 96 96 2.6
Q SVM 95.5 95.5 92.9 95.4 2
C SVM 99.3 99 98.5 98.7 1
G SVM 98.9 98.3 95.5 98.1 2.5

ATP+LBP+BFCC

L SVM 90.2 50 1 19 50
Q SVM 93.2 75 44.4 56 28.5
C SVM 93.2 75 44.4 56 28.5
G SVM 90.2 50 1 1 50

∗L S V M : LinearS upportVectorMachine, ∗Q S V M : QuadraticS upportVectorMachine,
∗C S V M : CubicS upportVectorMachine, ∗G S V M : GaussianS upportVectorMachine
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TABLE VIII. Performance of Integrated ATP and Audio Features using KNN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+MFCC

F K 93.3 93 93 92 6.9
Me K 92.8 81 37 56.9 31.9
Co K 90 91 18 33 49.1
Cos K 92.1 80 28 42 35.6
Cu K 92.9 82 37 51 31.1
We K 92.8 87 33 48 33.2

ATP+PLP

F K 84 50 55 54 41.9
Me K 90.1 58 8 14 45.9
Co K 89.8 50 4 11 50
Cos K 89.9 51 6 11 46.9
Cu K 90.2 63 8 15 45.7
W K 90.3 67 7 14 46.1

ATP+CQCC

F K 87.7 42 36 39 31.6
Me K 89 46 13 20 43.3
Co K 89.2 50 46 50 42
Cos K 89.4 51 18 27 40.5
Cu K 89.1 47 11 18 44.2
We K 89.2 49 11 18 44

ATP+GTCC

F K 94.9 94 94 94 6.8
Me K 92.3 77 34 47 32.8
Co K 90 90 13 27 49.3
Cos K 92.1 84 27 41 36.3
Cu K 92.4 78 35 48 32.4
We K 92.4 83 30 45 34.5

ATP+BFCC

F K 91 56.1 50 52 27.15
M K 92.4 78 34 48 33.1
Co K 90.1 95 31 60 48.4
Cos K 91.9 82 25 39 37.2
Cu K 92.6 80 35 49 32.1
We K 92.3 82 31 45 34.5

be concluded that ATP-GTCC outperforms all other
feature set combinations with NN based acoustic
model at back-end.

• Performance of Integrated LBP and Audio Fea-
tures: Table 3 gives the results for the proposed
ASV system that uses LBP features integrated with
audio features at front end and different types of
Neural Network based acoustic model at back-end.
In is clearly observed from table that LBP-MFCC
feature set produces best EER 36% using Wide
Neural network. LBP-PLP achieved the best EER
36% result with Wide NN. LBP-CQCC and LBP-
GTCC achieved 40% and 36% using Medium NN
and Tri-layered NN, LBP-BFCC achieved 35% EER
with Wide NN. Hence, it can be concluded that LBP-
BFCC outperforms all other feature set combinations
with NN based acoustic model at back-end.

• Performance of Integrated ATP, LBP, and Audio
Features: Table 4 gives the result for the proposed
ASV system that uses ATP-LBP features integrated
with audio features at front end and different types

of Neural Network based acoustic model at back-
end. It is clearly observed from table that ATP-LBP-
MFCC feature set produces best EER 15% using
bi-layered Neural network. ATP-LBP-PLP achieved
the best EER 36% result with Wide NN. ATP-LBP-
CQCC gained 41% using Narrow NN, ATP-LBP-
GTCC gained 1.5% with bi-layered NN, ATP-LBP-
BFCC achieved 37% EER with Narrow NN. Hence,
it is concluded that ATP-LBP-GTCC outperforms
all other feature set combinations with NN based
acoustic model at back-end.

2) Performance of different Feature Integrations with
SVM-based Acoustic Model
This section presents the results obtained using various

proposed front end feature combinations with SVM acoustic
model at the back-end. As described earlier, four different
SVM model has been built by changing their kernel func-
tion such as Linear, Quadratic, Cubic kernel function, and
Gaussian kernel function.

• Performance of Integrated ATP and Audio Fea-
ture: Table 5 gives the results for the proposed ASV
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TABLE IX. Performance of Integrated LBP and Audio Features using KNN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

LBP+MFCC

F K 91.2 57 38 46 30.8
Me K 91.4 83 15 25 42.4
Co K 90.2 50 30 35 47.5
Cos K 90.8 80 28 46 47
Cu K 90.9 76 20 27 45
We K 91.3 92 22 24 43

LBP+PLP

F K 90.6 56 37 45 30
Me K 91.4 84 25 35 42.4
Co K 90.2 51 35 55 50
Cos K 90.4 82 38 56 48
Cu K 91 78 30 37 44
We K 91 92 32 54 45

LBP+CQCC

F K 89.3 44 33 37 33.2
Me K 91 66 36 46 41
Co K 90.2 50 31 39 50
Cos K 89.8 44 36 43 40
Cu K 90.4 53 45 53 42
We K 91.1 71 45 55 39

LBP+GTCC

F K 89.7 46 37 41 31.3
Me K 90.9 65 35 44 42.4
Co K 90.2 50 37 39 50
Cos K 90.5 83 50 55 47
Cu K 90.8 66 42 50 43
We K 91.3 78 25 35 42.4

LBP+BFCC

F K 90.6 52 43 47 30.5
Me K 90.6 60 12 20 43.7
Co K 90.2 50 10 19 50
Cos K 90.6 83 50 60 45
Cu K 90.6 62 55 67 46
We K 90.8 68 51 59 44

system that uses ATP features integrated with audio
features at front end and different types of SVM based
acoustic model at back-end. In is clearly observed
from table that ATP-MFCC, ATP-PLP, ATP-CQCC,
ATP-GTCC, and ATP-BFCC integrated feature pro-
duces 11.2%, 41%, 37.85%, 1.4%, 14.6% EER using
Cubic SVM, Quadratic SVM respectively. Hence, it is
concluded that ATP-GTCC outperforms all the other
feature set.

• Performance of Integrated LBP and Audio Fea-
ture: The performance of each feature set used at
back-end is shown in Table 6. It is clearly observed
from the table that LBP-MFCC, LBP-PLP, LBP-
CQCC, LBP-GTCC, and LBP-BFCC integrated fea-
ture gives 23.3%, 25.6%, 33.4%, 22.5%, 14% EER
respectively using cubic SVM. Hence, it is concluded
that LBP-BFCC outperforms all the other feature set.

• Performance of Integrated ATP, LBP, and Audio
Feature: Table 7 gives the results for the proposed
ASV system that uses ATP-LBP features integrated
with audio features at front end and different types of

SVM based acoustic model at back-end. It is observed
from table that using cubic SVM, the integrated
features of ATP-LBP-MFCC, ATP-LBP-PLP, ATP-
LBP-CQCC, ATP-LBP-GTCC, and ATP-LBP-BFCC,
yield 29.05%, 28.3%, 33.3%, 27.4%, 1%, and 33.3%
EER, respectively. Hence it is concluded that ATP-
LBP-GTCC outperforms all the other feature set.

3) Performance of different Feature Integrations with
KNN-based Acoustic Model
This section presents the results obtained using various

proposed front end feature combinations with KNN acoustic
model at the back-end. As described earlier, six different
KNN model has been built by changing distance function
and value of K such as Fine, Medium, Coarse, Cosine,
Cubic, Weighted KNN.

• Performance of Integrated ATP and Audio Fea-
ture: Table 8 gives the results for the proposed
ASV system that uses ATP features integrated with
audio features at front end and different types of
KNN based acoustic model at back-end. In is clearly
observed from table that ATP-MFCC, ATP-PLP, ATP-
CQCC, ATP-GTCC, ATP-BFCC integrated feature
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TABLE X. Performance of Integrated ATP,LBP and Audio Features using KNN

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+LBP+MFCC

F K 94.3 93 92 93.5 6.7
Me K 90.9 73 31 39 44.3
Co K 90.2 50 31 39 50
Cos K 90.5 75 38 35 44
Cu K 90.7 72 70 74 45
We K 90.8 80 65 68 45.5

ATP+LBP+PLP

F K 89.7 46 29 35 35
Me K 90.3 57 40 59 48
Co K 90.2 50 25 20 50
Cos K 90.2 50 30 35 48
Cu K 89.9 28 20 27 48
We K 90.1 50 20 30 50

ATP+LBP+CQCC

F K 87.9 36 31 33 34
Me K 89.7 41 33 42 43
Co K 90.2 50 10 19 50
Cos K 89.9 45 17 25 41
Cu K 89.8 41 20 16 45
We K 90.2 50 12 19 43

ATP+LBP+GTCC

F K 95.8 94 95 94 6.1
Me K 90.9 76 20 27 45
Co K 90.2 50 10 19 50
Cos K 90.4 75 30 58 97
Cu K 91.4 87 14 24 42
We K 91 76 10 17 49

ATP+LBP+BFCC

F K 89.5 44 29 35 35
Me K 90.7 64 11 18 44
Co K 90.2 50 10 19 50
Cos K 90.3 66 20 39 49
Cu K 90.6 64 39 35 45
We K 90.9 76 30 37 44

∗F K : FineK − nearestNeighbour, ∗Me K : MediumK − nearestNeighbour, ∗Co K : CoarseK − nearestNeighbour,
∗Cos K : CosineK − nearestNeighbour, ∗Cu K : CubicK − nearestNeighbour,∗We K : WeightedK − nearestNeighbour

TABLE XI. Performance of Integrated ATP and Audio Features using NB

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
ATP+MFCC K NB 85.8 85 85.5 86 26
ATP+PLP K NB 81.4 79 49 53 33.5
ATP+CQCC K NB 87.1 87 88 87.7 22
ATP+GTCC K NB 77.4 78 80 79 24
ATP+BFCC K NB 77.3 52 44 57 35

TABLE XII. Performance of Integrated LBP and Audio Features using NB

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
LBP+MFCC K NB 78.3 66 61 73 39.5
LBP+PLP K NB 80.5 82 65 79 27
LBP+CQCC K NB 89.9 82 63 79 30
LBP+GTCC K NB 74.3 72 67 54 35
LBP+BFCC K NB 75 63 65 69 33.1
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TABLE XIII. Performance of Integrated ATP,LBP and Audio Features using NB

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
ATP+LBP+MFCC K NB 87 86 86 83 23.1
ATP+LBP+PLP K NB 79 63 45 53 37
ATP+LBP+CQCC K NB 90 87 88 87.5 20
ATP+LBP+GTCC K NB 77.1 65 49 59 32.1
ATP+LBP+BFCC K NB 75.2 60 43 58 44.2

∗K NB : KernalNaiveBayes

TABLE XIV. Performance of Integrated ATP and Audio Features using DT

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+MFCC

F DT 91.9 90 90.3 90 160
Me DT 90.9 89 89 88 25
Coa DT 89.8 60 55 59 39

ATP+PLP

F DT 88.1 25 9 13 45
Me DT 89.8 44 30 45 40
Coa DT 89.8 50 29 53 50

ATP+CQCC

F DT 86.1 34 31 32 34
Me DT 87.1 36 26 30 37
Coa DT 87.6 40 29 30 35

ATP+GTCC

F DT 90.8 90 90 89 15
Me DT 90.1 89 86 90 19
Coa DT 89.8 89 87 84.5 22

ATP+BFCC

F DT 90.2 52 44 48 27
Me DT 89.8 50 15 20 50
Coa DT 89.8 50 15 20 50

produces 6.9, 41.9%, 31.6%, 6.8%, 27.1% EER using
Fine KNN. Hence it is concluded that ATP-GTCC
outperforms other features.

• Performance of Integrated LBP and Audio Fea-
ture: Table 9 gives the results for the proposed ASV
system that uses LBP features integrated with audio
features at front end and different types of KNN based
acoustic model at back-end. In is clearly observed
from table that LBP-MFCC, LBP-PLP, LBP-CQCC,
LBP-GTCC, LBP-BFCC and provides 30.8, 30, 33.2,
31.3, 30.5 % EER using fine KNN. Hence it is
concluded that LBP-PLP outperforms other feature
set.

• Performance of Integrated ATP, LBP and Audio
Feature: Table 10 gives the results for the proposed
ASV system that uses ATP-LBP features integrated
with audio features at front end and different types
of SVM based acoustic model at back-end. In is
clearly observed from table that ATP-LBP-MFCC,
ATP-LBP-PLP, ATP-LBP-CQCC, ATP-LBP-GTCC,
and ATP-LBP-BFCC provides 6.7, 35, 34, 6.1, 35%
EER respectively. Hence, it is concluded that ATP-
LBP-GTCC surpass other feature sets.

4) Performance of different Feature Integrations with
NB-based Acoustic Model
This section presents the results obtained using various

proposed front end feature combinations with NB acoustic
model at the back-end. As described earlier, two different
NB models have been built such as Gaussian NB and Kernel
NB.

• Performance of Integrated ATP and Audio Fea-
ture: Table 11 gives the results for the proposed
ASV system that uses ATP features integrated with
audio features at front end and different types of
NB based acoustic model at back-end. In is clearly
observed from table that the kernel produced better
accuracy with all fifteen-feature sets. Hence, it is
concluded that ATP and MFCC integrated feature sets
outperforms another feature sets.

• Performance of Integrated LBP and Audio Fea-
ture: Table 12 gives the results for the proposed
ASV system that uses LBP features integrated with
audio features at front end and different types of
NB based acoustic model at back-end. In is clearly
observed from table that LBP-PLP integrated feature
set surpass other feature sets.

• Performance of Integrated ATP, LBP, and Audio
Feature: Table 13 gives the results for the proposed
ASV system that uses ATP-LBP features integrated
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TABLE XV. Performance of Integrated LBP and Audio Features using DT

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

LBP+MFCC

F DT 89.9 88 84 86 25
Me DT 90.5 51 42 46 27
Coa DT 90 47 16 24 41

LBP+PLP

F DT 89.4 45 40 42 28
Me DT 88.8 40 29 33 35
Coa DT 89.3 28 6 10 43

LBP+CQCC

F DT 86.7 35 42 38 32.5
Me DT 86.7 38 40 39 33.4
Coa DT 89 43 39 41 33

LBP+GTCC

F DT 88.4 40 37 38 34
Me DT 90.3 50 37 43 31
Coa DT 89.7 39 20 14 45

LBP+BFCC

F DT 88.7 43 47 45 26
Me DT 89.5 46 44 45 24
Coa DT 90.3 51 18 26 40

TABLE XVI. Performance of Integrated ATP,LBP and Audio Features using DT

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)

ATP+LBP+MFCC

F DT 92.5 92 92.3 92 16
Me DT 91 90 89 90 24
Coa DT 89 60 59 58 35

ATP+LBP+PLP

F DT 88.8 42 42 42.6 31.9
Me DT 89.7 42 34 38 32.7
Coa DT 88.9 33 13 18 44.9

ATP+LBP+CQCC

F DT 86.6 32 34 33 36.7
Me DT 87.9 37 33 35 36.4
Coa DT 90.8 55 29 38 36.6

ATP+LBP+GTCC

F DT 93.8 93 92.5 92 13
Me DT 91 89 26 30 27
Coa DT 88.8 65 64 64.5 38

ATP+LBP+BFCC

F DT 86.2 30 32 31 37.8
Me DT 87.2 35 38 37 34.5
Coa DT 89.2 38 17 23 42.9

∗F DT : FineDecisionTree, ∗Me DT : MediumDecisionTree, ∗Coa DT : CoarseDecisionTree

TABLE XVII. Performance of Integrated ATP and Audio Features using LSTM

Feature set Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
ATP+MFCC 98.5 98 97 98 2
ATP+PLP 95 91 98 95 1.2
ATP+CQCC 96.8 98.5 97.9 98.2 2
ATP+GTCC 98.5 97 98 97 1.1
ATP+BFCC 96 98 97 97 2.4

TABLE XVIII. Performance of Integrated LBP and Audio Features using LSTM

Feature set Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
LBP+MFCC 91 94 96 89 3.3
LBP+PLP 91 91 98 95 2.2
LBP+CQCC 92 94 97 90 2
LBP+GTCC 94 94 98 88 1.1
LBP+BFCC 91 93 96 89.1 3.9
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TABLE XIX. Performance of Integrated ATP,LBP and Audio Features using LSTM

Feature set Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
ATP+LBP+MFCC 96 94 96 84 3
ATP+LBP+PLP 89 89 81 94 10
ATP+LBP+CQCC 89 89 82 84 10
ATP+LBP+GTCC 99.5 99 99.2 98 0.5
ATP+LBP+BFCC 90 91 98 94 9

TABLE XX. Performance of the Proposed ASV Systems

Feature set Algorithm Accuracy (%) Precision (%) Recall (%) F1score (%) EER (%)
ATP+MFCC B NN 96 95 94 94.9 13

ATP+GTCC

C SVM 98.3 98 98.5 98.7 1.4
F K 94.9 94 94 94 6.8

F DT 90.8 90 90 89 15
LSTM 90 91 98 94 1.1

ATP+CQCC K NB 87.1 87 88 87.7 22
LBP+PLP F K 90.6 56 37 45 30

LBP+GTCC C SVM 94 68 75 71.4 14
LSTM 94 94 98 88 1.1

LBP+BFCC W NN 93.7 71.6 58.5 64.4 35
Me DT 89.5 46 44 45 24

ATP+LBP+CQCC K NB 90 87 88 87.5 20

ATP+LBP+GTCC

B NN 91.8 91 91 91.6 12
C SVM 99.3 99 98.5 98.7 1
F KNN 95.8 94 95 94 6.1
F DT 93.8 93 92.5 92 13
LSTM 96 98 97 98 0.5

ATP+LBP+BFCC C SVM 93.2 71 50 59 25.9

with audio features at front end and different types of
NB based acoustic model at back-end. It is concluded
that from table that ATP-LBP integrated with CQCC
feature set outperforms all other feature set.

5) Performance of different Feature Integrations with DT-
based Acoustic Model
This section presents the results obtained using various

proposed front end feature combinations with DT acoustic
model at the back-end. As described earlier, three different
DT model has been built by changing number of splits such
as Fine, Medium, Coarse DT.

• Performance of Integrated ATP and Audio Fea-
ture: Table 14 gives the results for the proposed
ASV system that uses ATP features integrated with
audio features at front end and different types of
DT based acoustic model at back-end. In is clearly
observed from table that ATP-MFCC, ATP-PLP, ATP-
CQCC, ATP-GTCC, and ATP-BFCC integrated fea-
ture produces 16, 40,34, 15, 27% EER using Fine DT,
Medium DT, Fine DT, Fine DT, Fine DT, respectively.
Hence, it is concluded that ATP-GTCC outperforms
other feature set.

• Performance of Integrated LBP and Audio Fea-
ture: Table 15 gives the results for the proposed ASV

system that uses LBP features integrated with audio
features at front end and different types of DT based
acoustic model at back-end. In is clearly observed that
using Fine DT, Fine DT, Medium DT, Medium DT,
Fine DT, the LBP-MFCC, LBP-PLP, LBP-CQCC,
LBP-GTCC, LBP-BFCC integrated feature produces
25, 28, 32.5, 31, 24 per cent EER, accordingly. Hence,
ATP-BFCC surpass other feature set.

• Performance of Integrated ATP, LBP, and Audio
Feature: Table 16 gives the results for the proposed
ASV system that uses ATP-LBP features integrated
with audio features at front end and different types of
NB based acoustic model at back-end. In is clearly
observed that using Fine DT, Medium DT, Fine DT,
Medium DT, ATP-LBP-MFCC, ATP-LBP-PLP, ATP-
LBP-CQCC, ATP-LBP-GTCC, ATP-LBP-BFCC, in-
tegrated feature produces 16, 31.9, 36.4, 13, 34.5 per
cent EER, accordingly. Hence, it is concluded that
ATP-LBP-GTCC feature outperforms all other feature
set.

6) Performance of different Feature Integrations with
LSTM-based Acoustic Model
This section presents the results obtained using various

proposed front end feature combinations with LSTM based
acoustic model at the back-end.
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TABLE XXI. Comparison with Existing Methods

Work Feature Classifier Replay Parameters
Extraction Attack Accuracy Precision Recall F1-score EER

% % % %
Chettri
et
al.[22]

CQCC CNN, GMM No NA NA NA NA 2.64
IMFCC Ensemble Model 1 9.57
MFCC Ensemble Model 2 9.57
SDA Ensemble Model 3
SCMC

Todisco
et al.
[5]

CQCC Gaussian Yes NA NA NA NA 2.2
Mixture Model

Malik
et al.
[18]

GTCC SVM(ECOC) Yes 99.1 99 99 99 1
ATP

Mittel
et al.
[26]

Static-
Dynamic

System 1: LSTM with Yes 97.1 NA NA NA 2.9

Hybrid
CQCC

time distributed 0.9

wrapper
System 2: LSTM

2DCNN
Proposed
Approach

ATP+LBP 96 94 96 84 3
+MFCC
ATP+LBP 89 89 81 94 10
+PLP
ATP+LBP LSTM Yes 89 89 82 84 10
+CQCC
ATP+LBP 99.5 99 99.2 98 0.5
+GTCC
ATP+LBP 90 91 98 94 9
+BFCC

• Performance of Integrated ATP and Audio Fea-
tures: Table 17 gives the results for the proposed
ASV system that uses ATP features integrated with
audio features at front end and different types of
LSTM based acoustic model at back-end. In is clearly
observed that ATP-MFCC, ATP-PLP, ATP-CQCC,
ATP-GTCC, ATP-BFCC achieved EER 1.1%, 1.2%,
2.0%, 2.0%, 2.4%. Hence, it is concluded that ATP-
MFCC outperforms other feature set.

• Performance of Integrated LBP and Audio Fea-
tures: Table 18 gives the results for the proposed
ASV system that uses LBP features integrated with
audio features at front end and different types of
LSTM based acoustic model at back-end. In is clearly
observed that LBP-MFCC, LBP -PLP, LBP-CQCC,
LBP-GTCC, LBP-BFCC achieved EER 3.3, 2.2, 1,
2, 3.9%. Hence, it is concluded that LBP-CQCC
outperforms other feature set.

• Performance of Integrated ATP, LBP, and Audio
Features: Table 19 gives the results for the proposed
ASV system that uses ATP-LBP features integrated

with audio features at front end and different types
of LSTM based acoustic model at back-end. In is
clearly observed that ATP-LBP-MFCC, ATP-LBP-
PLP, ATP-LBP-CQCC, ATP-LBP-GTCC, ATP-LBP-
BFCC achieved EER of 3, 10, 10, 0.5, 9%. Hence, it
is concluded that ATP-LBP-GTCC outperforms other
feature set.

5. Discussion and Comparative Analysis
For enhancing the performance of the ASV systems, the

hybrid feature extraction technique provides an improved
way of extracting features from audio signals. The proposed
work is an extension of some of the earlier proposed state-
of-the-art works that have used hybrid features. Table 20
summarizes the results for the proposed ASV system that
uses different feature combinations at front end and different
types of acoustic models at back-end. It can be observed
that ATP-LBP-GTCC over LSTM outperforms other feature
sets. In our proposed work, five feature sets are created by
combining ATP features with audio features. Similarly, five
more feature sets are created by combining LBP image and
audio features. These features are fed to LSTM and ML
algorithms based acoustic models for classification. After
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(a) ATP-MFCC Integration

(b) ATP-PLP Integration

(c) ATP-CQCC Integration

(d) ATP-GTCC Integration

(e) ATP-BFCC Integration

Figure 3. Integration of ATP with different Audio Feature Extraction
Technique

(a) LBP-MFCC Integration

(b) LBP-PLP Integration

(c) LBP-CQCC Integration

(d) LBP-GTCC Integration

(e) LBP-BFCC Integration

Figure 4. Integration of LBP with different Audio Feature Extraction
Technique
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(a) ATP-LBP-MFCC Integration

(b) ATP-LBP-PLP Integration

(c) ATP-LBP-CQCC Integration

(d) ATP-LBP-GTCC Integration

(e) ATP-LBP-BFCC Integration

Figure 5. Integration of ATP-LBP with different Audio Feature
Extraction Technique

Figure 6. Process of training and evaluation of proposed model using
classification models

comparing the result produced from these feature sets, it is
observed that both ATP with GTCC and LBP with GTCC
outperformed other models. Motivated by this, in the next
experiment, both ATP-LBP features are combined with all
audio features and again created five feature sets. From
the result of the last investigation, it can be observed that
ATP- LBP performed best with GTCC features. In the last
decade, researchers have proposed various enhancements in
front-end feature extraction methods and back-end acoustic
models. As a result, significant improvements have been
seen in various parameters used to measure the performance
of ASV systems. Table 21 compares existing techniques
with proposed work in terms of feature extraction method,
back-end model and evaluation parameters used.

6. Conclusion and FutureWork
In the contemplated work, The performance of the ASV

system has been improved through the implementation of a
hybrid FE method that integrates LSTM, thereby enhancing
the system’s ability to accurately recognize and verify the
speaker’s identity. Two image features, LBP and ATP, have
been combined with various audio feature extraction tech-
niques to form fifteen different feature combinations. Also,
four different ML techniques such as NB, SVM, DT, and
KNN have been used at the back end. Using the ASVspoof
2019 dataset, the suggested hybrid feature approach demon-
strated excellent versatility and robustness. The feature set
combination of ATP-LBP-GTCC with LSTM achieved the
best performance with an EER of 0.5%. The proposed work
can be extended by integrating some more image feature
extraction techniques with already settled audio feature
extraction techniques. More advanced attacks can be inves-
tigated, including mimicking, twin, deepfake, and spoofing
attacks. Additionally, the use of augmentation techniques
can be used to address the issue of uneven classification.
Furthermore, to improve the performance of the proposed
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ASV system, future work could involve the integration of
diverse, cutting-edge datasets using advanced techniques,
thereby potentially augmenting the system’s accuracy and
reliability.
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