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Abstract: Mobile Edge Computing is a state-of-art technology which is being used to provide real-time environment by 
computing and responding in shorter timelines to the IoT generated requests. The task computation requests being sent to 
these servers is called task offloading, which is a highly complex process. The decision to offload a task for remote 
computation is done with the aim of receiving responses within few instant but these server in turn gets heavily loaded 
with thousands of computation requests as each server is connected to a number of IoT devices. This may result in situations 
like imbalanced workloads and resource starvation. The occurrence of this situation is caused due to adoption of full task 
offloading policy targeted IoT environment. Many works have already been observed in order to improve this offloading 
approach but it remains a complex issue. In this research study it is being tried to propose a latency minimizing procedure 
with optimal task splitting method. This will not only prevent resource starvation but also reduce total incurring latency 
and lead to quick responses. The proposed work will facilitate parallel remote and local computation of task and thus 
reducing the total computation time with optimal set of resources. The proposed model has been validated using hypothesis 
testing including Shapiro-wilk, One-way ANOVA Test, F-Test two-sample Z-test, Multiple Linear Regression Test and 
was successfully found to be efficient in minimizing latency with the use of partial offloading policy and have resulted in 
optimal resource allocation when compared to other traditionally existing offloading policies. 

Keywords: Mobile Edge Computing, Internet of Things, Task Offloading, Latency, Task Splitting, Resource Allocation 

 

1. INTRODUCTION  

The rapid advancement in the usage of mobile 
networks and IoT technology, has resulted in a lot of 
improvement seen in computation-intensive and time-
critical applications such as augmented reality, speech-
recognition, speech-to-text translation and gaming. Along 
with this IoT technology has revolutionized all global 
sectors from agriculture to industrial growth and from 
education to travelling, everything has become digitally 
smart with intensive use of IoT. However, these devices 
are power and resource-constrained devices due to which 
they do not meet the increasing computational demands 
and provide quality of experience to end users to stringent 
real-time level. The power limitation and limited 
availability of resources to compute complex tasks is a 
remarkable issue to solve [1]. This is why the current 
network architectures are failing to deal with enormous 
amounts of data traffic being generated every second from 
hundreds of IoT nodes. The main challenge is to process 

this data successfully in order to deliver value data out of 
it. Therefore in order to meet the latency and computation 
requirements, cloud has emerged to be the most 
promising solution. Cloud is capable of providing rich 
amount of resources and other computational services to 
these resource- intensive applications without the resource 
starvation situation to occur. Along with this, the 
approach helps in less power consumption for IoT devices 
by offloading these computable tasks to remote cloud 
centres [2]. However, the approach has many drawbacks 
like location- unawareness, mobility support, high 
latency, late response time and others which may 
negatively affect real-time computation need and user 
experiences [3]. Mobile Edge Computing technology 
emerged as a solution in order to combat these drawbacks. 
The technology will not replace the cloud but will create 
an add-on to enhance the computing and response 
functionalities of the cloud for time-intensive and 
computation-intensive IoT applications. 
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Figure 1.  Figure illustrating the need of using Multi-

Access Edge Computing with Cloud Computing 

Offloading the tasks for purpose of computation to near 
Edge servers instead of cloud provide faster responses with 
minimal latency and enough availability of required 
resources. Although, with benefits this kind of remote 
computation method also increases the overhead of 
transmitting the task towards edge server [4]. The location 
at which the associated edge server may be residing, also 
play a crucial role in adding up of the overhead. Therefore, 
it is very necessary to determine whether it will be an 
optimal solution to opt for remote computation or not. This 
involves comparison of total time a task would take to 
transmit to the server with task requirements and its 
deadline. From here, the final offloading decision to be 
taken by the mobile device should depend upon three 
checkpoints a) Whether to offload or not b) To offload to 
edge server c) To offload to Cloud. 

Another major checkpoint on which the task offloading 
decision depends is task computation requirements. If 
these requirements do not match local resource 
availability like non-availability of required resources, 
incapability of computation resources, energy constraints 
etc., it has to be offloaded to an MEC server for 
computation. This adds up to the delay including 
transmission delay and again waiting of task in the MEC’s 
waiting and service queue. Also, even if the edge server 
does not match the task requirements, finally it has to be 
offloaded to cloud which doubles up the total overhead and 
latency. 

The task offloading problem has been studied 
extensively and critically in cloud computing, but still the 
problem remains unsolved to much extent even after the 
introduction of MEC computing. Some major issues as 
discussed include added latency and late response time, 
energy consumption, unfair allocation of workloads and 
extra transmission times. These considerable challenges 
may affect the overall performance of the model and 
nullify optimal resource allocation [5]. The solution 

proposed in this paper to combat the task offloading 
problem includes that the total number of task traffic be 
divided and allocated for parallel remote as well as local 
computation so that totally occurring delay overhead can 
be minimized. This can be done by dividing the task into 
subtasks and running them locally as well as remotely on 
edge server. This kind of approach will not only minimize 
the latency but will also improve the QoS and response 
requirements. However optimal task splitting decision is 
a challenging task and require a lot of parametric based 
pre-calculation and knowledge of device, edge and cloud 
status. 

Another requirement for IoT-MEC architecture is the 
presence of edge server at nearest position within the 
network. Therefore, the distance parameter also comes 
into play for causing latency and optimal computed 
results. The association of any user-end device should be 
with the nearest edge server so that there is minimum 
occurrence of task migration, queuing and service latency 
with optimal use of network and resources. The proposed 
latency minimization IoT-MEC model is capable of 
minimizing multiple types of latencies detected during 
data transmission in uplink direction and meets the real-
time scenario. 

The goal of this paper is to: 

 Building of nearest distance IoT-MEC Pair for 

minimum transmission latency. 

 Design a double parallel-remote task computation 

model. 

 Design a parametric task offloading decision 

algorithm for minimum latency and optimal 

resource utilization. 

The rest of this paper has been organized as follows: 

Section II discusses about the previous works proposed in 

order to carry out optimal task offloading with minimal 

latency and maximum resource utilization, Section III 

discusses the proposed task offloading methodology with 

the aim to reduce total latency and provide real-time 

responses, Section IV discusses the various policies which 

will be used collectively in this research paper, in Section 
V various Hypothesis Tests have been performed in order 

to validate normal distribution of considered dataset and 

proposed task offloading algorithm, Section VI analyse the 

outputs or results when the proposed algorithm is 

compared with traditionally existing task offloading 

approaches, Section VII have a brief discussion of this 

research paper and finally Section VIII discusses the future 

work which may be done to enhance the proposed task 

offloading approach. 

TABLE I.  S
UMMARY OF USED NOTATIONS 

N Set of MEC 

 



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        3 

 

 
http://journals.uob.edu.bh 

 

Servers 

ʌ 
Random Task 

𝒕𝑻𝒓𝒂𝒏𝒔ʌ
𝒕 

Task Transmission 

Rate 

𝜶𝒊𝑪 

Server-cloud 

association 

indicator 

𝒕𝒅𝒊𝒔𝒕 
Distance between 

device and server 

𝒓𝒂 

Resource 

Allocation  

𝒕𝒐𝒇𝒇 
Task Offloading 

decision time 

ʌ𝑰𝑫 
Unique Task ID 

𝒍𝒚 
Latency 

𝑻𝒄𝒎𝒑
𝑪  

Computation Time 

of Task at Cloud 

𝒏𝒑𝒂𝒄𝒌𝒆𝒕𝒔 
Total Number of 

Task Sub-units 

𝒅ʌ
𝒍𝒐𝒄𝒂𝒍 

Local task size 

𝒕𝒐𝒇𝒇 
Task offloading 

time 

t 
Internal Decision 

parameter 

𝑻𝒘𝒂𝒊𝒕
𝒋

 

Time task has to 

wait at server to get 

serviced 

𝐖𝐋𝐢 
Current workload 

on device  

U 
Set of IoT nodes 

ʌ𝑻𝑫 
Task Deadline 

𝒅ʌ 
Data size of task 

𝜶𝒊𝒋 

Server-Device 

association 

indicator 

𝒄ʌ Total number of 

CPU cycles 

𝐖𝐋ʌ 
Task Workload  

𝑻𝒄𝒎𝒑
𝒊  

Local Computation 

Time of Task 

𝑻𝒄𝒎𝒑
𝒋

 

Remote 

Computation Time 

of Task 

𝒆𝒄 
Energy Consumed 

𝒕𝑻𝒓𝒂𝒏𝒔ʌ
𝒕  

Total transmission 

time towards server 

𝑷 
Pivot Point  

𝒅ʌ
𝒓𝒆𝒎𝒐𝒕𝒆 

Remote Task Size 

𝒕𝒔𝒑𝒍𝒊𝒕 
Task Splitting Time 

𝑻𝒘𝒂𝒊𝒕
𝒊  

Time task has to 

wait at device to 

get serviced 

𝑻𝒄𝒎𝒑 

Total Computation 

Time 

𝐖𝐋𝐣 
Current workload 

on server 

𝑾𝑳𝒎𝒂𝒙
𝒊  

Threshold to 

process workload 

locally 

𝑾𝑳𝒓𝒆𝒎
𝒍𝒐𝒄𝒂𝒍 

Remaining 

workload capacity 

of device 

𝐌𝒇𝒓𝒆𝒆 Idle Memory 

𝑾𝑳𝒎𝒂𝒙
𝒋

 

Threshold to 

process workload 

remotely 

𝑾𝑳𝒓𝒆𝒎
𝒓𝒆𝒎𝒐𝒕𝒆 

Remaining 

workload capacity 

of server 

𝐌𝒂𝒍𝒍𝒐𝒄 
Memory in use 

2. RELATED WORK 

Swain et al. have proposed Matching-Theory-Based 
Efficient Task offloading framework which aims to 
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reduce the total system energy and remove any outage 
activities which do not match the strict latency constraints 
within an IoT-Fog network. The framework uses many-
to- one matching game theory for resource allocation [6]. 
Ali et al. have proposed a joint approach for minimizing 
latency and allocation of resources. The authors have used 
many-to- one matching game theory where both IoT 
and Fog nodes are capable of self-organizing 
themselves in order to solve the game [7]. Xue et al. have 
proposed a novel approach which uses NOMA in order to 
transmit those tasks which need offloading towards the 
Edge-servers, thereby maximizing the system’s 
processing capability and use of resources [8]. Rafiq et al. 
used Khun-Munkres algorithm to give the optimal 
solution for cell association and computational offloading 
in MEC-IIoT networks [9]. 

Xia et al. have proposed a joint scheme for task 
offloading and resource allocation using Lyapunov 
optimization theory [10]. Senthil have developed a 
resource scheduling method with minimum energy 
consumption and optimal use of resources within strict 
deadline constraints using the SFBL method [11]. Cui et 
al. have proposed an MEC-SAT network based on IoT 
technology for minimal latency occurrence and use of 
total energy during data transmission, thereby doing task 
scheduling and resource scheduling [12]. Alameddine et 
al. have studied the DTOS problem and tried to solve the 
resource scheduling and allocation problem in an MEC 
enabled network [13]. Liu et al. have investigated the task 
splitting for parallel task computation with optimal use of 
resources in an Multi user-based environment [14]. 

Almughalles et al. have studied fog cell formulation 
and selection on a joint basis for optimal use of resources 
and minimal latency [15]. Gu et al. have facilitated a kind 
of tutorial for resource management methods and 
resource selection [16] . Do et al. have tried to solve the 
convex problem of optimization for a distributed 
environment for the purpose of resource allocation [17]. 
Deng et al. have worked on the basis of fog computing 
environment to develop a framework for minimal energy 
use and task allocation with optimal use of available 
resources [18]. Zeng et al. have investigated the total time 
used or consumed for completing a randomly arrived task 
in an FC-SDES environment for optimal task placement 
and scheduling [19]. Zhang et al. have proposed a 
framework for multiple fog nodes, using Stackelberg 
game pricing problem and many-to-many matching 
theory [20]. Elbamby et al. have proposed a model for 
optimal distribution of task and proactive computing 
mechanism urder URLLC constraint [21]. Yang et al. 
have proposed a model for multi-user MEC environments 
in order to minimize the task computation latency [22]. 

Nikaein et al. have an low latent MEC-based 
framework for decision coordination among distributed 
segments of network [23]. Brik et al. have a novel 

placement model for federated platform in order to 
provide minimal latency with maximum utilization of 
resources and full service availability in an MEC-based 
environment [24]. Alnoman et al. have proposed an 
SCMA-based scheme based on factors like latency, 
throughput and connectivity [25]. Han et al. have studied 
a UAV-based MEC system for the purpose of enhancing 
computational capability and carry out a task-splitting 
procedure over an optimal rate [26]. Gu et al. have 
proposed a novel MEC-based framework for dynamic 
IoT nodes based on federated intelligence [27]. 
Kovacevic et al. have studied the computational 
offloading concept under strict latency constraints with 
maximum usage of available resources [28]. 

Yoshino et al. have proposed an adaptive scheme for 
statistically generated data in order to control data traffic. 
Chen et al. have proposed a control and safety system for 
IoT based application with minimal latency and energy 
constraints [29]. Hong et al. have studied a distributed 
antenna system for uplink transmission in an IIoT system 
and environment [30]. Yang et al. proposed a scheme for 
uplink data transmission under the 5G communication 
model [31]. Ismail et al. have proposed an AGCM based 
model for data aggregation at cloud with maximized 
retransmission rate and throughput [32]. Zhang et al. have 
investigated the MEC as well as IoT environment for task 
offloading used hierarchical framework with minimum 
energy consumption [33]. Germenis et al. have proposed 
a cross layer optimization framework based upon the 
concepts of green computing and intelligent 
communication methods and minimal latency and 
enhanced reliability constraints [34]. 

Calice et al. have proposed and implemented a low 
cost and reliable seismograph which is configurable, low 
latency and reliable for early warning of earthquakes [35]. 
have investigated various offloading strategies with 
minimal energy consumption and maximum use of 
resources. Kherraf et al. have proposed a mathematical 
framework for task assignment and resource allocation 
[36]. Hao et al. proposed a highly reliable wireless model 
based upon 5G technology which satisfies the 
transmission and latency constraints [37]. Park et al. have 
presented a novel task distribution scheme with fair 
workload balancing based on the queue maintained by 
each server based on an MEC environment [38]. The 
following Table 1 describes an analysis of past work done 
on basis of latency, task offloading and optimal resource 
allocation challenges: 

TABLE II.  S
UMMARY OF USED NOTATIONS 

Ref. 

Notation(𝑅𝑁𝑖) 
Objective 

Parameters 

𝑙𝑦 𝑡𝑜𝑓𝑓  𝑟𝑎 

𝑅𝑁1 To minimize total ↑ ↓ ↓ 
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energy 

consumption and 

to meet the 

deadline in the 

IoT-Fog 

internetwork. 

𝑅𝑁2 

To jointly handle 

the workload and 

latency factors in 

IoT-Cloudlet 

network within 
strict deadline 

requirements. 

↑ ↓ ↑ 

𝑅𝑁3 

To handle task-

offloading and 

resource 

optimization 

activities within a 

multi-user, multi-

task and multi-

server 

environment. 

↓ ↓ ↑ 

𝑅𝑁4 

To investigate the 

cell formulation 

and 
interconnection 

for computational 

offloading in an 

MEC-IIoT 

environment. 

↑ ↓ ↓ 

𝑅𝑁5 

To tackle and 

optimize the 

problem of 

heterogeneous 

task-offloading 

and resource 

allocation in an 
MEC-IoT 

network. 

↑ ↓ ↑ 

𝑅𝑁6 

To effectively 

allocate resources 

to the offloaded 

task with 

minimum energy 

consumption and 

latency. 

↑ ↓ ↑ 

𝑅𝑁7 

To optimize 

latency and 

energy-emission 

constraints in an 

MEC supported 
SAT-IoT network. 

↑ ↓ ↓ 

𝑅𝑁8 
To tackle the 

offloading of 
↓ ↑ ↑ 

heterogeneous 

tasks and its 

simultaneous 

resource 

allocation 

problem in an 

MEC limited 

capable 

environment. 

𝑅𝑁9 

To investigate a 

random task 
offloading 

framework in a 

multi-user 

environment with 

task partitioning. 

↑ ↓ ↑ 

𝑅𝑁10 

To address 

computational 

offloading and 

cell selection 

problem jointly in 

order to minimize 

task computation 

latency. 

↑ ↑ ↓ 

𝑅𝑁11 

To provide 
optimal solution 

for resource 

allocation by the 

help of matching 

theory. 

↓ ↑ ↓ 

𝑅𝑁12 

To minimize user 

traffic towards 

centralized data 

center and 

minimize carbon 

footprint and 

resource 
allocation 

problem. 

↓ ↑ ↓ 

𝑅𝑁13 

To tackle the 

trade-off 

relationship that 

exists between the 

energy and 

latency factors in a 

fog-cloud 

environment. 

↑ ↓ ↑ 

𝑅𝑁14 

To sustainably lay 

task images on 

any embedded or 

server-based 
platform 

supported by fog 

computing 

environment. 

↓ ↑ ↑ 
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𝑅𝑁15 

To propose a 

general 

framework for all 

fog nodes, data 

service operators, 

data service 

subscribers in 

order to achieve 

the optimal 

resource 
allocation 

schemes in a 

distributed 

fashion. 

↓ ↓ ↑ 

𝑅𝑁16 

To provide an 

environment 

where cloudlets 

may proactively 

cache task 

popularity with 

minimal latency 

constraint. 

↑ ↓ ↓ 

𝑅𝑁17 

To address the 

task offloading 
and computational 

resource 

allocation jointly 

with minimum 

latency. 

↓ ↑ ↑ 

𝑅𝑁18 

To propose a 

Low-Latency 

Multi-access Edge 

Computing 

platform thereby 

enabling mobile 

network 
monitoring, 

control, and 

programmability. 

↑ ↓ ↑ 

𝑅𝑁19 

To address the 

problem of 

deploying MEC 

based applications 

over a federated 

edge 

infrastructure in 

order to meet strict 

latency and 

computational 
requirements. 

↑ ↓ ↑ 

𝑅𝑁20 

To investigate the 

proposed 

framework under 

various SCMA 

configurations in 

↑ ↓ ↑ 

order to verify 

various factors 

like connectivity, 

throughput, task 

completion time, 

and complexity. 

𝑅𝑁21 

To minimize 

energy 

consumption and 

resource 

allocation 
problems in a 

distributed MEC 

environment. 

↓ ↓ ↑ 

𝑅𝑁22 

To reduce various 

occurring 

latencies and 

enhance reliability 

in the Edge-IoT 

environment. 

 

↑ 
↓ ↓ 

𝑅𝑁23 

To propose a joint 

solution for 

computational 

offloading and 

resource 
allocation with 

strict latency 

constraints. 

↑ ↓ ↑ 

𝑅𝑁24 

To propose a 

scheme for 

aggregation of 

statistical data 

with real-time 

latency 

constraints for 

controlling 

generated data 
traffic. 

↑ ↓ ↓ 

𝑅𝑁25 

To investigate the 

use of minimum 

power and energy 

transmission for 

uplink data 

transmission in a 

URLLC 

environment. 

↑ ↓ ↓ 

𝑅𝑁26 

To design a 

distributed 

antenna system 

for complying to 

strict latency and 
reliability 

requirements for 

uplink 

transmission in 

↑ ↓ ↑ 
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IIoT. 

𝑅𝑁27 

To propose such a 

scheme that could 

provide low 

latency and do 

resource 

management with 

a fixed period of 

time. 

↑ ↓ ↑ 

𝑅𝑁28 

Have proposed a 

queue based 

model for green 
cloud with 

reduced energy 

and latency 

thereby reducing 

congestion. 

↑ ↓ ↓ 

𝑅𝑁29 

To address 

performance 

measures for 

energy efficiency 

and workload 

offloading in an 

MEC 

environment. 

↓ ↑ ↓ 

𝑅𝑁30 

To propose a 
scheme to wave-

off the trade-off 

between enegy 

and spectrum 

efficiency in 6G 

enabled IoT 

network. 

↑ ↓ ↓ 

𝑅𝑁31 

To design a low 

cost and smart and 

configurable 

seismograph, that 

is capable of 
supporting 

seismological and 

geophysical data 

in real-time 

↑ ↓ ↓ 

𝑅𝑁32 

To provide a 

model for task 

splitting for 

parallel local and 

remote 

computation of 

subtasks within 

the same task and 

same time. 

↑ ↓ ↑ 

𝑅𝑁33 

To study the 

workload 

assignment within 
↓ ↑ ↓ 

the latency and 

reliability 

constraint. 

𝑅𝑁34 

To implement 

IoT-Grid(IoT-G) 

structure for 

successful 

broadband 

transmission 

within the existing 

bandwidth. 

↑ ↓ ↓ 

𝑅𝑁35 

To enhance 
efficiency of 

available 

resources in a 

multi-access MEC 

environment with 

fair workload 

distribution. 

↑ ↑ ↑ 

Propose 

Work 

To provide task 

computation 

with minimal 

latency, energy 

and optimal 

resource 

allocation 

↑ ↑ ↑ 

 

After critically analyzing the past works it has been 
concluded that many rigorous works have been done and 
practical frameworks and methodologies have been 
proposed in order to reduce the total incurring latencies 
and make shorter response time. Many authors have 
proposed successful approaches in order to enhance the 
real-time performance of IoT environment. However, it 
has been found that the decision to offload the task in 
very complex in itself and needs a lot of work in future for 
an optimal decision model so that the task components are 
not lost while responding back if partial offloading policy 
is adopted [39]. In addition, if full offloading is carried 
out then parameters like ultra-latent latency, balanced 
workloads and real-time computation should be of critical 
focus. 

3. PROPOSED WORK 

In this research study a concrete model for IoT-MEC 
task offloading is being proposed to resolve the latency 
issues. The proposed model is based on three constituent 
technologies namely Internet of Things, Mobile Edge 
Computing and Cloud Computing. The model explains 
the task offloading methodology through splitting a task 
into subunits and allocating them to both device and 
remote area for parallel computation. The selection of 
remote region will depend upon the task requirements and 
server status of both MEC servers and Cloud servers. 
Remote Computation will be carried since the IoT devices 
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are resource constrained devices in terms of storage and 
computational capabilities. Thus, there is an urge of 
offloading the task to either the edge servers or local 
clouds for the purpose of task computation. 

 

 

Figure 2.  Figure illustrating an outline of propoed task 

methodology 

The aim is to provide optimal set of resources to these 

resource-intensive tasks and to reduce latency. If cloud 

is available locally then the task will be offloaded 

directly to the cloud, since cloud is a resource rich region 

it will always be preferred for task computation. 

However, if cloud is at long distance then offloading at 

edge is preferred over it for offloading tasks. Finally if 
the task computation requirement matches to local 

device then no offloading will be carried out and task 

will get locally computed. 

A. Introduction and Modeling of Task 

There are a number of heterogeneous tasks generated 
from IoT devices. It may be uploading of documents, 
audio/video streaming, sensor data processing and others. 
But basically a Task, may it be of any type, is a single 
unit of work. This task may either be a sub-part of 
some complex task or an input for another task 
computation. In general, any generated task may be 
categorized as a vector of five possible attributes namely 

Task ID(ʌ𝐼𝐷), Task Size(𝑑ʌ), Computational Intensity i.e. 

number of CPU Cycles in bits(𝑐ʌ), Task Deadline(ʌ𝑇𝐷) 
and Task Workload(WLʌ). It may be modeled asʌ(ʌ𝐼𝐷, 𝑑ʌ, 
𝑐ʌ, ʌ𝑇𝐷, WLʌ). The taxonomy of the task may be 
illustrated as Fig 3.The task dependency (ʌ𝑑𝑒𝑝)plays a 
very important role in task offloading process. A low-
dependent task is more highly to get offloaded easily as 
compared to a coupled and dependent task. The 
dependency may be due to system internal architecture or 
the task may be acting as input source to another task. In 
this case it is highly preferred to run the task locally 
without offloading since it may create complexities with 

results. ʌ𝑑𝑒𝑝 Is set to 0 is task is independent and 1 if it is 
dependent. The factor will be checked before final 
offloading decision. In other cases, the task may simply 
be offloaded to either edge server or cloud for parallel 
computation along with local processing of some part of 
task. The value of ʌ𝑑𝑒𝑝 will be system dependent. In this 
research paper only independent task subunits has been 
considered. 

 

Figure 3.  Figure illustrating the Taxonomy of Incoming Task 

The total time a task ʌ  may take to get itself finally 
computed include the following timelines: 

1. Local Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑖 ): This is 

the total time a task may take to get computed 

locally. 

2. Remote Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑗 ): This 

is the total time a task may take to get computed 

remotely. 

3. Cloud Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑐 ): This 

is the total time a task may take to get computed 

at cloud. 

4. Time to transmit a task (𝑡𝑇𝑟𝑎𝑛𝑠⋀
𝑡 ): This is the 

time the task will take to get offloaded to 

either edge server or cloud. 

There should be a time when the decision should be 
taken to offload the task for remote computation, when 
local computation only is not enough and deadline of task 
completion is not met. Thus, it is the responsibility of the 
device to take the decision within the time before 
servicing of task is required and task deadline approaches. 
It is also necessary so that task splitting is done before 
time and a task unit for both local and remote computation 
is assigned to both the resources. 

The time when the task offloading decision and task 
spilt decision will be taken by the device will be an 
internal decision and it may be formulated as: 
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{
𝑡𝑜𝑓𝑓 = ⋀𝑇𝐷 − 𝑡

𝑡𝑠𝑝𝑙𝑖𝑡 = ⋀𝑇𝐷 − (𝑡𝑜𝑓𝑓 2⁄ )
 (1) 

 

After the task is split into two subunits, the other sub-
unit is required to be allocated to the associated MEC 
server. Therefore it needs to be transmitted towards the 
remote server which makes use of available allocated 
bandwidth 𝐵𝑤𝑖.Thus, the total time to transmit a task for 
remote computation may be calculated as: 

𝑡𝑇𝑟𝑎𝑛𝑠⋀
𝑡 =

𝑑⋀
𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝑤𝑖𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑖)
 

(2) 

where 𝑆𝐼𝑁𝑅𝑖 is signal to interference plus noise ratio 
and can be calculated as : 

 

𝑆𝐼𝑁𝑅𝑖

= 𝛼𝑖𝑗
𝑇𝑟𝑎𝑛𝑠𝑖𝑗𝐶ℎ𝑔𝑖𝑗

∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑗𝐶ℎ𝑔𝑖𝑗𝑖∈𝑈,𝑗∈𝑁 + ∂ 
 

(3) 

 

where 𝑇𝑟𝑎𝑛𝑠𝑖,𝑗 is the transmit power of device i , 
𝐶ℎ𝑔𝑖,𝑗 is the channel gain between device i and server j, 
and 𝜕 is the interfering noise factor. It is necessary to 
calculate the noise since there may be hundreds of Iot 
devices which is connected to a single MEC server. 

 

Figure 4.  Figure Illustrating the Task Splitting 

Procedure 

Therefore, the transmission of data from one device 
will be getting influenced by the transmission of another 
task for computation at the same resource. In further sub-
sections it has been discussed about the criteria of task 
offloading which will be totally based upon parametric 
comparisons and evaluations with splitting task for 
parallel remote and local computation. 

Since the total task will be split into two subunits, it will 
affect the total task size allocated for computation at local 

and remote regions with partial task offloading. It is 
assumed that Task splitting is an internal decision to be 
taken at device level thus to check the pivot point a random 
value P is taken which will decide the limit to which task 
subunit it is possible for local processing. The total size the 
task will be divided into 1 subunit each of any memory unit 
considered. For example if the task size is of 270 GB then 
it will be considered as a composition of 27 units each of 
10GB and vice versa. This may be described as: 

𝑃𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 =
𝑑ʌ

10
⁄  (4) 

The value of P will depend upon the task, device and 
server status and will be purely hardware and network 
based. In this paper a formula to set the pivot point is 
described as: 

𝑃 =
𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠

ʌ𝑇𝐷 ∗ 2
⁄  (5) 

Until P the task subunits will be allocated for local 
computation and the remaining unit after P will be 
offloaded for remote computation. The data size will also 
break here thus into two parts which may be formulated 
as:  

{
𝑑ʌ
𝑙𝑜𝑐𝑎𝑙 = 𝑃

𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 − 𝑑ʌ

𝑙𝑜𝑐𝑎𝑙  
(6) 

The 𝑑ʌ
𝑙𝑜𝑐𝑎𝑙  data size of the divided task will be allocated 

for local computation while 𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒  data size will be 

allocated for remote execution at the associated remote 

server. The total remote and local computation times may 

be calculated as follows:  

 

𝑇𝑐𝑚𝑝
𝑗

= 𝑡𝑇𝑟𝑎𝑛𝑠ʌ
𝑡 +

(𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒)

𝑇𝑤𝑎𝑖𝑡
𝑗  

(7) 

The goal is to minimize the total computation time and 

reduce the total response time for the computed task in a 

real-time manner. Similarly if the task gets computed 
locally without any offloading then it may be computed as: 

 

𝑇𝑐𝑚𝑝
𝑖 =

(𝑑ʌ
𝑙𝑜𝑐𝑎𝑙)

𝑇𝑤𝑎𝑖𝑡
𝑖  

(8) 

 
If the task splitting process is carried out then the total 

computation time can be calculated as: 

 

𝑇𝑐𝑚𝑝 = (𝑇𝑐𝑚𝑝
𝑗

− 𝑇𝑐𝑚𝑝
𝑖 ) (9) 

In above equation a subtraction operation has been 
performed between two timelines since computation of 

both parts of the task will be in parallel and not procedural. 
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Thus the remote time will be total time excluding the local 

computation time. 

Lastly the total workload imposed by the task may 

be calculated as follows: 

 

WLʌ = 𝑑ʌ ∗ (
𝑐ʌ
ʌ𝑇𝐷

) 
(10) 

The goal is to minimize the total computation time for the 

generated task as well as to send back the computed results 

with optimal computation time.  

B. Device Modeling 

The IoT device is the point from where random and 

heterogeneous tasks will be generated for computation. 

Suppose there are U IoT-nodes and each device may be 

represented as ith IoT device where 𝑖 ∈ 𝑈. Any i  may be 
categorized as a vector of five possible attributes namely 

Device ID (i𝐼𝐷) , Device’s computational capability 
(𝐶𝑎𝑝i) , Total allocated Bandwidth (𝐵𝑤i) , Energy 

Consumption (E𝑖)  and Workload (WL𝑖) . It may be 

modeled as  i(i𝐼𝐷 , 𝐶𝑎𝑝i , 𝐵𝑤i, E𝑖 ,WL𝑖) . Through i𝐼𝐷  each 

device may be identified uniquely in the IoT-MEC 

environment and will be used to know the device status. 

𝐶𝑎𝑝i of device i is a result of four attributes which assists 
to get the knowledge of current device capacity that is the 

Processing time (busy + idle), memory status, queue 

length avg. and network consumption. The total allocated 

bandwidth to any ith device is calculated as a product of 

number of tasks generated by the device and throughput of 

the device.  

 

 

Figure 5.  Figure Illustrating Taxonomy of 

IoT Devices for Task Offloading 

Calculation of energy consumption is a critical factor to 

consider verifying the efficiency and data migration within 

the network, since these IoT devices are power constrained 
in nature with limited battery life. In further an analysis of 

energy consumption will be done for all the three involved 

tiers. And, finally the workload over the device may be 

defined as the amount of tasks to be done by the computing 

resources of the device, allocated over it. The workload of 

the device WL𝑖 may be represented as: 

 

WL𝑖 =∑WLʌ 
(11) 

Each 𝑖𝑡ℎ device will have some threshold capacity in order 

to process the offloaded tasks and to compute the 

offloaded workloads. Let it be denoted by 𝑊𝐿𝑚𝑎𝑥
𝑖 which 

the maximum is allowed workload. This is the maximum 
amount which a device may process locally. The 

remaining space for arriving load to get processed may be 

calculated as: 

 

𝑊𝐿𝑟𝑒𝑚
𝑙𝑜𝑐𝑎𝑙 = 𝑊𝐿𝑚𝑎𝑥

𝑖 −WL𝑖 (12) 

 

If any task with workload exceeding WL𝑟𝑒𝑚  should be 

split and offloaded towards the server for computation. 

C. Server Modeling 

This section includes the modeling of both the edge server 

and cloud server. In general, the server model may be 

presented as j(j𝐼𝐷 , 𝐶𝑎𝑝j, 𝐵𝑤j, E𝑗 , WL𝑗) . The tuple-based 

presentation is not mentioned for Cloud since the region 

has ample resources for storage and computation. It is 

understood that the task will surely get computed within 
some instants of time if offloaded to cloud.  

 

Figure 6.  Figure Illustrating Taxonomy of Edge Server for Task 

Offloading 

The proposed model will include two groups of classes. 

One will be N MEC servers where each server 𝑗 ∈ 𝑁 and 

U IoT-nodes of User-end mobile devices where 𝑖 ∈ 𝑈. The 

participants of the former class will be fixed at some 

position but the latter participants will be mobile in nature 

which means they will not stay in a fixed or central 

location but will be moving continuously. Due to this 

scenario, any 𝑖𝑡ℎ device will be near to a given 𝑗𝑡ℎ server 

at a given instant time 𝑡, but may get far from the discovery 

of 𝑗𝑡ℎ  server at time 𝑡 + 𝑡′ . All the N MEC servers are 

geographically distributed within the MEC region. They 

are interconnected with each other, along with its 

connection to hundreds of U IoT-nodes and for obvious 

reason it will be also connected to central Cloud Server C. 
The connected IoT nodes will be of heterogeneous nature 

and will have their own processing and QoS requirements. 
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Also the communication frequencies of a 𝑖 − 𝑗 pair will 

differentiate when compared to 𝑗 − 𝑗 pair. The workload 

of the device WL𝑖 may be represented as: 

WL𝑗 =∑WLi 

 

(13) 

Similar to the device, each 𝑗𝑡ℎ server will also have some 

threshold capacity in order to process the offloaded tasks 

and to compute the offloaded workloads. Let it be denoted 

by 𝑊𝐿𝑚𝑎𝑥
𝑗

which the maximum is allowed workload. This 

is the maximum amount which a server may compute 

remotely. This is the maximum amount which a server 

may process remotely. The remaining space for arriving 

load to get processed may be calculated as: 

𝑊𝐿𝑟𝑒𝑚
𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑊𝐿𝑚𝑎𝑥

𝑗
−WL𝑖 (14) 

 

If any task with workload exceeding WL𝑟𝑒𝑚  should be 
split and offloaded towards the server for computation. 

For the sake of task offloading, it is necessary that the 

device should be connected to a dedicated server, so that 

the data may be routed to exact destination for 

computation. In order to verify the connection between the 

two classes, an association indicator will be assumed as 

𝛼𝑖𝑗  𝑤ℎ𝑒𝑟𝑒 𝛼𝑖𝑗 ∈ [0,1].If 𝛼𝑖𝑗 = 1 will then there exists a 

successful connection otherwise 𝛼𝑖𝑗 = 0 will tell the non-

association of the two parties. Another association 

indication will also be considered to connect device 

directly with cloud as 𝛼𝑖𝑗  𝑤ℎ𝑒𝑟𝑒 𝛼𝑖𝐶 ∈ [0,1] .If 𝛼𝑖𝐶 = 1 

will then there exists a successful connection otherwise 

𝛼𝑖𝑗 = 0 will tell the non-association of the two parties. 

The distance based partial task offloading has been 

discussed in further sections of this paper. 

4. POLICIES FOR TASK OFFLOADING 

A. Distance-Based Task Offloading 

The goal is to find and associate a device i with server j 

that could possible minimize the execution and 

transmission latency with optimal resource utilization. In 

order to do the mentioned the following distance formula 

is used which will take the x and y co-ordinates of the 

geographically located device and server in order to 

calculate the distance as following: 

 

𝑡𝑑𝑖𝑠𝑡 = √(𝑖𝑥2 − 𝑗𝑥1)
2 + (𝑖𝑦2 − 𝑗𝑦1)

2
, 𝑡𝑑𝑖𝑠𝑡

< 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥 

 

(15) 

where 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥  is the maximum discoverable allowed 

distance between 𝑖 − 𝑗 pair.  
The following constraints have been set to accomplish the 

goal of minimum uplink and downlink transmission 

latency. The constraints will help to verify if the device 

has been associated with the server which exist at nearest 

distance, so that if offloading of task occurs, then it take 

less time to migrate the task for computation as well as to 

deliver computed result. Following are the specified 

constraints: 

 

𝐶𝑜𝑛𝑠 𝐴: 𝑚𝑖𝑛∑∑(𝑡𝑑𝑖𝑠𝑡)

𝑗𝜖𝑁𝑢𝜖𝑈,

 
(16) 

𝐶𝑜𝑛𝑠 𝐵 =∑𝛼𝑖𝑗𝜖{0,1}

𝑗𝜖𝑁

 
(17) 

The distance should be less than the maximum threshold 

distance 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥 to avoid long-term latency and bad response 

time for real-time requests. The association request is first 

sent to the MEC orchestrator which decides either to 
allocate the selected resultant MEC server or not.  

 

B. Task Requirement-Based Offloading 

This section discusses about the task execution based on 

task offloading process. The task will be executed on the 

basis of some task requirement criteria which is needed to 

get fulfilled before execution starts. It is not necessary that 

a task can fully be computed at one place. It is possible to 

divide the task and compute it either locally or remotely at 

edge server or cloud or both. This depends upon the 

resource requirements of the task. IF task requirements are 

very low then it is possible to compute it locally. However, 
if the requirements are too high, then it should be offloaded 

after splitting towards either edge server or cloud. 

However, the execution time becomes variably high 

whenever the task gets offloaded to the cloud.   

 

The amount of memory currently being allocated may be 

calculating by the difference of total provided memory and 

total memory in use. Let both be represented as M𝑓𝑟𝑒𝑒  and 

M𝑎𝑙𝑙𝑜𝑐  thus total memory M𝑡𝑜𝑡𝑎𝑙 may be given as M𝑡𝑜𝑡𝑎𝑙 =
 M𝑓𝑟𝑒𝑒 + M𝑎𝑙𝑙𝑜𝑐 . Concurrently, 𝑀𝑓𝑟𝑒𝑒

𝑙  and 𝑀𝑓𝑟𝑒𝑒
𝑟  represent 

free memory for device and server processor. Each unit of 

task ʌ will be assigned for local or remote processing. The 

execution preference is set to local computation but, will 

move to edge server computation mode based upon the 

requirement of task. Let ʌ=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛] be the total 

number of sub-units that will computed locally and 

remotely. The data units of total task to be processed, exists 

in form of continuous and systematic data pieces. Each sub 

unit is a continuous and formal piece of data which is 

independent to either get processed locally or at server or 

finally at cloud.  

 

C. Server Status-Based Offloading 

This section discusses about the task splitting procedure on 

basis of server status. The total number of task units in a 

randomly generated task will be divided with some typical 



 

 

12       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

method for parallel remote and local execution. The goal 

to carry out this process is to minimize the total execution 

latency and energy consumption with optimal resource 

allocation. For this purpose three sets have been designed 

namely L𝑥 = {ʌ1
𝑙 , ʌ2

𝑙 , … . . , ʌ𝑛
𝑙 } , R𝑦  = {ʌ1

𝑅 , ʌ2
𝑅 , … . . , ʌ𝑛

𝑅} , 

DC𝑧 = {ʌ1
𝐶 , ʌ2

𝐶 , … . . , ʌ𝑛
𝐶} and containing those subunits of 

task ʌ  assigned for local, remote and cloud based 

computation. 

The size of total task may be represented as L𝑥 + R𝑥  in 

case of server association while L𝑥 + DC𝑥 in case of Cloud 

association. It may e formulated as: 

 

𝑑ʌ = (L𝑥 + R𝑥 +DC𝑥). ( 𝛼𝑖𝐶 . 𝛼𝑖𝑗) 

 

(18) 

However, the final decision to allocate the resources for 

task execution depends upon the server status. The goal of 

this paper is to minimize the total energy consumption and 

to reduce the total computation time and transmission time. 

The first goal that is minimum transmission latency, the 

second goal that is to minimize the total execution latency 

and finally the third goal to provide optimal resource 
utilization. In the next section the proposed model will be 

validated on the basis of hypothesis based statistical 

analysis tests in order to verify its performance and 

accuracy to validate the proposed objectives. 

5. ULTRA-LATENT TASK OFFLOADING IOT-MEC 

MODEL:VALIDATION APPROACH 

In this section the proposed model will be validated on 

the basis of hypothesis based statistical analysis tests in 

order to verify its performance and accuracy to validate 

the proposed objectives. 

A. Data Collection 

In this paper the data for the validation of the proposed 

model has been collected from two different datasets [41, 

42] which best fits the proposed idea and the mentioned 

objectives of research. Both the dataset have been 

combined for this research paper and the validation of the 

proposed method and maximum attributes from both the 

datasets have been selected as per the requirement for 

validation and verification of algorithm.  The following 

Table 3 and Table 4 describe details of dataset attributes 

with description: 

 

 

 

TABLE III.  D
ATASET TYPE 1 

ID CurrentAllocate

dSize 

Size CurrentAllocate

dRam 

Name CurrentAllocate

dBw 

MIPS CurrentAllocate

dMips 

NumberOfP

es 

BeingInstantiate

d 

RAM GeoLocation/La

titude 

BW GeoLocation/L

ongitude 

Source DataType 

Destination DataPercentage 

Delay Tuple_Reversed 

Priority IsServerFound 

CloudletSch

eduler/ 

IsCloudServed 

PreviousTim

e 

IsServed 

ClouletSche

duler/Curren

tMips 

DeviceType 

Service IsServedByFC_

Cloud 

QueueDelay BurstTime 

InternalProc

essingTime 

BurstTimeDiffe

rence 

FogLevelSer

ved 

IsServedByFC 

(output) 
 

For workload allocation on CPU when task has been 

finally offloaded to the remote regions either MEC server 

or Cloud server, the dataset from latter source will be taken 
into consideration to verify optimal CPU utilization, 

network utilization and workload computation low latency 

and quick response and execution time. The following 

Table 4 represents the attributes of dataset taken for the 

purpose. 

TABLE IV.  D
ATASET TYPE 2 

Job Number Requested 

Memory 

Submit Time Status 

Wait Time User ID 

Run Time Group ID 

No. Of Allocated 

Processors 

Executable 

(Application) 

Number 

Avg. CPU Time 

Used 

Queue Number 
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Used Memory Partition Number 

Requested Number 

of Processors 

Preceding Job 

Number 

Requested Time Think Time for 

Preceding Job 

The tasks as mentioned in previous sections, will arrive at 

IoT device initially and from here a decision will be taken 

whether the task will be computed locally or should be 

allocated to a remote server. These devices and servers are 

geographically distributed and the tasks is in form of 

tuples. The geo-locations are of random nature and may be 

present at random places. The dataset from source 2 

contains a large amount of worklog files. These log files 
contains data from a number of datacenters distributed 

geographically across the globe. Some datacenters 

included in these log files are NASA iPSC, KTH SP2, 

Sandia Ross, SDSC DataStar and many more. The logfiles 

also serve as a raw data volume in order to design a number 

of workload models. The log files contains data taken for 

a specific amount of duration from mentioned datacenters 

with raw and processed data collection in a format as 

Number of Jobs, Number of Users and  % utilization of 

CPU.  

In order to execute the algorithm and analyze its accuracy, 

performance and efficiency, it is required that only 
important attributes to be considered leaving behind those 

parameters that are not useful. These additional parameter 

may also affect the final result negatively or influence the 

expected output, therefore the procedure of detecting and 

removing outliers must be done beforehand. The dataset 

must contain all the data in numeric form but it has been 

observed that the dataset from source 1 contains the 

following attributed in categorical form: 

1. Priority: High, Low, Medium 

2. Data Type: Abrupt,  location-based, multimedia, 

medical, textual. 
3. Device Type: Actuator, dumb Object, mobile, 

sensor, node 

Finally the following table present all the selected 

attributes from both the datasets combined into one to 

validate the proposed method. The table differentiates the 

selected attributes in the form of dependent and 

independent variables so that further various statistical 

tests may easily be applied over comparative and isolated 

parameters. 

TABLE V.  C

COMBINED DATASET FOR DEPENDENT VARIABLES 

Dependent Variables 

RAM Service 

BW QueueDelay 

CurrentAllocatedS

ize 

InternalProcessing 

Time 

CurrentAllocated FogLevelServed 

Ram 

CurrentAllocated

Bw 

IsServedByFC_Cl

oud 

CurrentAllocated 

Mips BurstTime 

Tuple_Reversed 

BurstTime 

Difference 

IsServerFound 

IsServedByFC 

(output) 

IsCloudServed Wait Time 

IsServed Run Time 

Requested Memory 

No. Of Allocated 

Processors 

Requested Time 

Avg. CPU Time 

Used 

Used Memory 

Requested 

Number of 

Processors 

TABLE VI.  C

COMBINED DATASET FOR INDEPENDENT VARIABLES 

Independent Variables 

ID 

Size 

CloudletScheduler/Previou

sTime 

BeingInstantiated 

Queue Number 

GeoLocation/Latitude 

GeoLocation/Longitude 

ClouletScheduler/ 

CurrentMips 

Submit Time 

DataPercentage 

The selected attributed will be imposed for the collected 

data over it for the proposed model in order to check its 

accuracy, performance and effectiveness over minimizing 

total incurred latency during task execution and task 

offloading with energy consumption. In the upcoming 

subsection various tests have been applied to the dataset on 

the basis null and alternate hypothesis through which the 

successful validation of the proposed solution may be 

represented to accomplish the goals of latency and energy 

minimization with optimal resource allocation. 

B. Validation Tests 

A number of hypothesis tests have been applied which 
successfully validates the proposed algorithm and 
solution in terms of reducing the total computational 
latency of the task. The hypothesis have undertaken four 
policies to represent the significant reduction in task 
computation, namely 

 Policy 1: Full Offloading to Cloud 
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 Policy2: Full Offloading to MEC server 

 

 Policy 3: Local computation without offloading 

 

 Policy 4:Partial Offloading to with both local 

and remote computation of task(Proposed 

Policy). 

The following section consists various hypothesis 
tests through which the proposed algorithm will be tested 
for its effect on minimizing the total computation latency. 
In order to verify the proposed algorithm, two 
hypothetical statements are formulated which will be 
tested and verified against each mentioned tests as 
follows: 

Ho: Full offloading of task for remote execution at the 

edge server is the only solution to deliver fast responses 
and meet real-time scenario in IoT environment. 

H1: Partial task offloading with task size splitting will 

reduce the total task computation time will quicker 
request responses and efficient performance of IoT 
environment. 

1) Shapiro Wilk Test 
This test is used to analyze the normality of the data 

distribution related to a continuous variable. It states two 
statements in the form of null and alternate hypothesis 
which says: 

Ho: The variable is abnormally distributed. 

H1: The variable is normally   
distributed. 

If the p-value is less than 0.05 then null hypothesis is 
rejected otherwise accepted. For the proposed method, 
the data of total time of task computation over all the four 
policies will be analyzed for its normality using the test. 
The following table will help to validate the normality of 
data for all the four policies and their related computation 
time. 

TABLE VII.  A
ANALYSIS OF TASK OFFLOADING POLICIES FOR NORALIY CHECK 

 Policy 1 Policy 2 Policy 3 Policy 4 

P-Value 0.1437 0.1437 0.2625 0.6949 

W 0.883 0.883 0.9063 0.9483 

Sample 

Size 

10 10 10 10 

Average  62670.74
94 

41780.79
96 

13914.48
28 

5485.62 

Median 51720.08
41 

34480.05
61 

11166.66
67 

5243.55
78 

Standar

d 

39499.00

2 

26332.66

8 

6896.922

7 

1980.08

68 

Deviatio

n 

Skewnes

s 

0.9832 0.9832 0.8487 0.7691 

Ho 

Accepte

d? 

Yes Yes Yes Yes 

Excess 

Kurtosis 

0.01472 0.01472 -0.1896 0.667 

 

Since a larger P-value supports the null hypothesis, it may 

be analyzed that all the four policies is larger than 0.05 

which supports the null hypothesis. From here, it may be 
concluded that the data is normally distributed. 

 

 

Figure 7.  Figure Illustrating Normality of Data Distribution for all 

four Policies 

Finally, it has become clear that all the data is 
normally distributed and there are no abnormalities 
present which could be removed or corrected. Through 
the test it has been successfully validated that the samples 
from the dataset relating to task computation time of 
different regions like local, MEC, Cloud and Local with 
MEC, are normally distributed sample sets. 

2) Two-Sample Z-Test 
It is a statistical hypothesis testing technique which is 

used to verify the equality between two given population 
sets. The test can be carried out nly if standard deviation 
of both the population are known beforehand. Moreover, 
to have this test result in success, the first factor to check 
is the normal distribution of data. Although in the 
previous section, it has already been verified through 
Shapiro Wilk Test that the considered dataset is 
normally distributed. The following formula is used to 
carry out this test: 

(𝑥1̅̅̅ − 𝑥2̅̅̅) − (𝜇1 − 𝜇2)

√
𝜎1
2

𝑛1
2 +

𝜎2
2

𝑛2
2

 

 

(19) 
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where, 𝑥 1 and 𝑥 2 are respective means of both 
samples, 𝜇 1 and 𝜇 2 are respective means of both 
populations, 𝜎2 and 𝜎2 are standard deviations and 𝑛1 and 
𝑛2 are respective data points. For the proposed algorithm, 
a sample size of 10 will be taken and through this the test 
will be carried out. The following results show the 
successful rejection of null hypothesis for significance 
level 0.05. 

 

Figure 8. Figure Illustrating Normality of Data Distribution for all four 

Policies 

 

 
 

Thus, the test accepts the alternate hypothesis 
statement that it will be very much feasible to split the 
incoming tasks from user-end devices into local and 
remote computation areas and carry out task execution 
parallel at both sides, which will result in reduced latency 
in total task computation time. 

3) F-Test 

F-test is a way to test given hypothesis on the basis of 
variances of given sample populations. The equality of 
variances is tested followed with f-distribution and uses f-
statistic in order to test its equality. In order to carry out 
an f-test, the sample population must be a set of 
independent events. After conducting the f-test the results 
are analyzed if it is statistically significant. If yes, then the 
null hypothesis is rejected otherwise it is accepted. In this 
paper, two-tailed F-Test has been considered where, 

Ho: 𝜎1
2 = 𝜎2

2 

H1: 𝜎1
2 ≠ 𝜎2

2 

Decision Criteria: Test-Statistic F > F-Test Critical 

Value 

The test-statistic F is calculated as F= 𝜎1
2/𝜎2

2. The F-

Critical value is a data point which is used to decide the 

acceptance or rejection of null hypothesis. 

 

Figure 9. Figure Illustrating F-Test Results 

For the considered dataset of this paper the 
acceptance region falls between [0.2484:4.026]. In the 
figure above it has been analyzed that the p-value never 
falls between the acceptance range and thus null 
hypothesis will be rejected. This again verifies the 
validity and performance of the proposed algorithm. 

4) Multiple Linear Regression Test 
This is a statistical technique which may be used for 

the prediction of some output variable based upon the 
population samples of two or more variables. The 
outcome or variable to be predicted is known as 
dependent variable while the variables over which this 
prediction iscarried out is known as independent or 
explanatory variables. The formula for calculating 
multiple linear regression is as follows: 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 
𝑏𝑝𝑋𝑝+∈ 

(20) 

where, 𝑌 is the outcome or predicted variable, 𝑏0 is the 
y-intercept, 𝑏1 and 𝑏2 are regression coefficients, 𝑏𝑝 is the 
slope coefficient for each independent variable and ∈ is 
the model’s (residual) error factor. The Test statistic F 

may be calculated as F=(𝑅𝑒𝑔)⁄𝑀𝑆(𝑅𝑒𝑠), where Reg 
means regression and Res means Residual. The null and 
alternate hypothesis may be given as follows: 

Ho: 𝑏0 
 

H1: 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝+∈ 

 

(21) 
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Decision Criteria: p-value < significance value (to reject 

Ho) 

 

 

Figure 9. Figure Illustrating Multiple Regression Test Results 

In the above figure it has been analysed that in all the three 
policies as compared against the proposed policy, the p-
value is found to be less than the significance level 0.05. 
Therefore, this test also verifies the validity and 
performance of the proposed task offloading policy. 

5) One-Way ANOVA and Tukey HSD Test 
This is another very effective statistical method or 
technique to test a given hypothesis, which verifies the 
hypothesis proposed on the basis of difference between 
the averages of given sample populations and test its 
significance. In one-way ANOVA test, the F-statistic 
value is calculated as the ratio of variance between as well 
as inside the sample populations. The smaller is the value 
of F, the more likely are their equal averages. The 
null and alternate hypothesis may be given as: 

Ho: 𝜇1 = ⋯ = 𝜇𝑘 

H1: 𝑛𝑜(𝜇1 = ⋯ = 𝜇𝑘) 

(22) 

Decision Criteria: P-value>Test-Statistic F 

The Test statistic F may be calculated as 

F=𝑀𝑆𝐺⁄𝑀𝑆𝑅, where Reg means regression and Res 
means Residual. The degree of freedom may be calculated 
as 𝑘 − 1 and related error as 𝑛 − 𝑘. The sum of squares 
may be calculated as follows: 

𝑆𝑆𝐺 =∑𝑛(𝑥�̅� − 𝑥 )2
𝑘

𝑖=1

 
(22) 

𝑆𝑆𝐸 =∑(𝑛𝑖 − 1)2
𝑘

𝑖=1

 
(23) 

Thus, the MSG and MSR may be calculated on the 
basis of eq 24 as follows: 

𝑀𝑆𝐺
= 𝑆𝑆𝐺 (𝑘 − 1)⁄  

(24) 

𝑀𝑆𝐸
= 𝑆𝑆𝐸 (𝑛 − 𝑘)⁄  

(25) 

where, k is the total number of groups or sample 
considered, 𝑛𝑖 is the sample side of group i, n is the 
overall sample side, 𝑥 𝑖 is the average of group i, 𝑥 is the 
overall average and 𝑆𝑖 is the standard deviation. 

 

Figure 10. Figure Illustrating One-Way AMOVA Test Results 

For the considered dataset of this paper the acceptance 
region falls between [∞:4.4139]. In the figure above it 
has been analyzed that the p-value never falls between the 
acceptance range and thus null hypothesis will be 
rejected. Also, In the above figure it has been analysed 
that in all the three policies as compared against the 
proposed policy, the p-value is found to be less than the 
significance level 0.05. Therefore, this test also verifies 
the validity and performance of the proposed task 
offloading policy. 

The following algorithm describes the proposed 
model intended to perform the mentioned objectives of 
the research paper. 

Algorithm: NTRMLEC Algorithm 

INPUT: Set of IoT Nodes i 𝜖 U, Set of MEC Servers 

j 𝜖 N. 

              𝑖 = {𝑖1, 𝑖2, 𝑖3, … . . , 𝑖𝑛 , }  and 𝑗 =
{𝑗1, 𝑗2, 𝑗3 , … . . , 𝑗𝑛 , } 
              Set of tasks ʌ𝑖=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛]  n 𝜖 ʌ 

              Set of local processing subunit L𝑥 =
{ʌ1

𝑙 , ʌ2
𝑙 , … . . , ʌ𝑛

𝑙 },  
              Set of remote processing subunits R𝑦  =
{ʌ1

𝑅 , ʌ2
𝑅 , … . . , ʌ𝑛

𝑅} and  

              Set of Cloud processing subunits DC𝑧 =
{ʌ1

𝐶 , ʌ2
𝐶 , … . . , ʌ𝑛

𝐶} 
OUTPUT: Nearest Distance Task-Resource 

Allocation with minimized latency 
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and Energy Consumption 

1. START 

2. Calculate number of packets of task ʌ𝑖 using 

eq 4 

3. Let TS(t)= ʌ𝑖(t) 
4. WHILE TS(t) ≤ 𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 

5.  DO 

Take Prior knowledge of 

𝐶𝑎𝑝i, 𝐵𝑤i𝐶𝑎𝑝j, 𝐵𝑤j  of device and 

Server  

Calculate the workloadWL𝑖 , WL𝑗  of 

device and server by eq 12 and 14. 

Calculate the remaining processing 

capacity of both device and server 

using eq 13 and 15. 

Check the task status ʌ(ʌ𝐼𝐷 , 𝑑ʌ, 𝑐ʌ, ʌ𝑇𝐷 ,
WLʌ) , device status 

i(i𝐼𝐷 , 𝐶𝑎𝑝i, 𝐵𝑤i, E𝑖 ,WLi) , server 

status  j(j𝐼𝐷 , 𝐶𝑎𝑝j, 𝐵𝑤j, E𝑗 ,WL𝑗)  using 

mentioned euqations 

Perform the following parametric 

comparisons for each task subunit of 

task ʌ𝑖 . 
i. FOR k=0 to n-1 

ii. Calculate Total 

Transmission Time using 

Eq2 

iii. IF 𝑇𝑤𝑎𝑖𝑡
𝑖 < ʌ𝑇𝐷  AND 

WL𝑖 < 𝑊𝐿𝑟𝑒𝑚
𝑙𝑜𝑐𝑎𝑙  AND 

𝑑ʌ < 𝑀𝑓𝑟𝑒𝑒
𝑙  

Alloca

te task 

subuni

ts to 

L𝑥 
       Calculate 

Total Local 

Computation 
Time using Eq8 

GOTO HYP 

                       

ELSE IF  𝑇𝑤𝑎𝑖𝑡
𝑗

< ʌ𝑇𝐷 

WL𝑗 < 𝑊𝐿𝑟𝑒𝑚
𝑟𝑒𝑚𝑜𝑡𝑒 AND 

𝑑ʌ < 𝑀𝑓𝑟𝑒𝑒
𝑟  

Discover j* on basis 

of eq 21.// for 

maximum 5 servers 

For ith make a 

distance-based set of 

j* as 𝑡𝑑𝑖𝑠𝑡
𝑗

=
{𝑑1, 𝑑2, 𝑑3, … . . , 𝑑𝑛} 
Verify 

𝑚𝑖𝑛(𝑡𝑑𝑖𝑠𝑡
𝑗 ) < 𝑡𝑑𝑖𝑠𝑡

𝑚𝑎𝑥  

Otherwise GOTO 

Step A 

Assign j with 

𝑚𝑖𝑛(𝑡𝑑𝑖𝑠𝑡
𝑗 )  to ith 

device. 

Verify 

𝐶𝑜𝑛𝑠 𝐴 𝑎𝑛𝑑 𝐶𝑜𝑛𝑠 𝐵 
by eq 22 and 23 
Otherwise GOTO 

Step A 

Set 𝛼𝑖𝑗 = 1 

Calculate Pivot 

Point and Data sizes 

of splitted data using 

Eq 5 and 6 

Split task subunits to 

L𝑥  until P and 

remaining to R𝑦  

Calculate 𝑇𝑐𝑚𝑝 

using eq 7 and 9 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠
= L𝑥 ∪ R𝑦 

GOTO HYP 
 

i. ELSE 

Set 𝛼𝑖𝑐 = 1 
Calculate Pivot 

Point and Data sizes 

of splitted data using 

Eq 5 and 6 

Split task subunits to 

L𝑥  until P and 

remaining to DC𝑧  
Calculate total 

computation time. 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠
= L𝑥 ∪DC𝑧 

GOTO HYP 

ENDIF  

ENDFOR 

HYP: Perform- 

1. Shapiro-Wilk 
Test 

2. Two-Sample Z-

Test 

3. F-Test 

4. Multiple 

Regression Test 

5. ANOVA and 

Tukey HSD 

6. STOP 
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6. RESULTS ANALYSIS 

After the successful hypothesis testing on the 
proposed task offloading policy, this section aims to 
visualize the final findings and result interpretation over 
the effect of proposed methodology with respect to 
reduced latency in IoT-MEC environment. In Fig 9 it may 
be analyzed that the proposed task offloading policy is the 
best fit as compared to other existing task offloading 
policy. It may be seen that the first task offloading method 
that is the cloud- based task offloading has the highest 
latency in terms of response time. 

 

Figure 11. Task Computational Latency for adopted policies 

The reason is that whole task size of incoming 
tasks are sent to these cloud-based server which have 
high queuing and downloading time which add up to 
high response time. Next the MEC-server based task 
offloading policy where whole tasks are sent to the 
nearest edge servers. These also have considerable 
queuing time which results in not matching to response 
for real-time scenario. If the task is computed locally 
with offloading it to server or remote computation which 
is the third policy, it may be possible that these devices 
do not have much resources and power which may lead 
to high response time. However, if the task is divided 
into subunits and parallel assigned to local as well 
as remote computation, which is the proposed task 
offloading policy, then it is highly possible that the 
request and task computation will be completed within 
few instants of time with overall reduced latency and 
quick response time. Next in Fig 13. It has been illustrated 
the performance of each policy and compared with the 
proposed policy. It has been that the proposed policy has 
the least computation time as compared to the other three 
policies. 

 

Figure 12. Incoming Task Traffic Vs. Computation Time 

Next in Fig 14, it has been illustrated the effectiveness 
of each existing as well as proposed algorithm for 
computing the workload within a given time window. It 
was found the least computation time is taken by the 
proposed policy which supports both local as well as 
remote computation. 

 

Figure 13. Task Computation Vs Total Workload 

Finally, from all these results interpretation, it has 
been found that the proposed policy is capable of reducing 
the overall computation latency and supports quick 
response time which is a stringent requirement for IoT 
real-time scenario. The major role of the proposed policy 
is to highly support the task splitting and task offloading 
decision which is the main factor, to be focused when 
dividing the whole task into subunits for execution. The 
task consists of many dependencies which should be kept 
in mind before final division decision and resource 
assignment. However, the proposed algorithm do focus 
upon taking an appropriate task offloading decision 
before final task splitting take place. The proposed 
algorithm and task offloading method was found to be 
highly reducing the data traffic over edge servers and 
minimal computation time and maximum utilization of 
resources. 

7. DISCUSSION 

The proposed research has focused upon minimizing 
latency during transmission of data. The proposed task 
offloading method was found to be effective in 
minimizing various kinds of inter-dependent latencies 
like transmission latency, computation latency, and task 
execution latency. This research paper gives a threefold 
solution along with optimal task offloading and resource 
allocation decisions based upon device, server and task 
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status. The research has been validated using various 
kinds of hypothesis tests and was successful in nullifying 
the null hypothesis for each test. The results have been 
interpreted and analysed using a powerful programming 
language Python which is a best for analysing datasets 
and visualizing the effectiveness of data in various 
approaches. The two datasets were combined taking a 
number of independent and dependent variables and the 
proposed algorithm was implemented over Anaconda 
platform. Lastly, the proposed research was successful in 
resource utilization and minimizing the total incurred 
latency. 

8. CONCLUSION AND FUTURE WORK 

Through this research study it may be concluded that 
there is a heavy need of such kind of mechanism which 
deals with the mentioned issues and challenges. A 
qualitative and quantitative defined need of a hybrid 
approach may be the best fit solution for minimizing 
latency and maximizing resource utilization and various 
affecting factors of better computation The proposed 
method was found to be highly accurate in accomplishing 
the goal of achieving the affecting factors as compared to 
the unary methods that were proposed in the past since 
they focused upon only one to two parameters. However, 
the proposed research has focused upon four most 
important parametersi.e. latency, task offloading and 
resource allocation, which needs to be upon their optimal 
status for a maintained IoT-MEC communication 
internetwork. 

In the future it will tried to implement the proposed 
research in the form of genetic algorithm and will 
definitely try to implement the data through machine 
learning approach with real- time parameter and under 
strict latency and QoS constraints. In future the focus will 
be upon dependant task whose splitting is a complex 
process so that its execution may be carried out with 
minimal latency and energy constraints. This work will 
be done to effectively enhance the accuracy and 
effectiveness of the proposed method of latency 
minimization and resource allocation. 
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