

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Latency Management in Task Offloading from IoT to

MEC

Eram Fatima Siddiqui
1
 and Sandeep Kumar Nayak

2

1Department of Computer Application, Integral University, Lucknow, India

2Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Amethi, India
E-mail address: eramfatima24894@gmail.com, nayak.kr.sandeep@gmail.com

Abstract: Mobile Edge Computing is a state-of-art technology which is being used to provide real-time environment by
computing and responding in shorter timelines to the IoT generated requests. The task computation requests being sent to
these servers is called task offloading, which is a highly complex process. The decision to offload a task for remote
computation is done with the aim of receiving responses within few instant but these server in turn gets heavily loaded
with thousands of computation requests as each server is connected to a number of IoT devices. This may result in situations
like imbalanced workloads and resource starvation. The occurrence of this situation is caused due to adoption of full task
offloading policy targeted IoT environment. Many works have already been observed in order to improve this offloading
approach but it remains a complex issue. In this research study it is being tried to propose a latency minimizing procedure
with optimal task splitting method. This will not only prevent resource starvation but also reduce total incurring latency
and lead to quick responses. The proposed work will facilitate parallel remote and local computation of task and thus
reducing the total computation time with optimal set of resources. The proposed model has been validated using hypothesis
testing including Shapiro-wilk, One-way ANOVA Test, F-Test two-sample Z-test, Multiple Linear Regression Test and
was successfully found to be efficient in minimizing latency with the use of partial offloading policy and have resulted in
optimal resource allocation when compared to other traditionally existing offloading policies.

Keywords: Mobile Edge Computing, Internet of Things, Task Offloading, Latency, Task Splitting, Resource Allocation

1. INTRODUCTION

The rapid advancement in the usage of mobile
networks and IoT technology, has resulted in a lot of
improvement seen in computation-intensive and time-
critical applications such as augmented reality, speech-
recognition, speech-to-text translation and gaming. Along
with this IoT technology has revolutionized all global
sectors from agriculture to industrial growth and from
education to travelling, everything has become digitally
smart with intensive use of IoT. However, these devices
are power and resource-constrained devices due to which
they do not meet the increasing computational demands
and provide quality of experience to end users to stringent
real-time level. The power limitation and limited
availability of resources to compute complex tasks is a
remarkable issue to solve [1]. This is why the current
network architectures are failing to deal with enormous
amounts of data traffic being generated every second from
hundreds of IoT nodes. The main challenge is to process

this data successfully in order to deliver value data out of
it. Therefore in order to meet the latency and computation
requirements, cloud has emerged to be the most
promising solution. Cloud is capable of providing rich
amount of resources and other computational services to
these resource- intensive applications without the resource
starvation situation to occur. Along with this, the
approach helps in less power consumption for IoT devices
by offloading these computable tasks to remote cloud
centres [2]. However, the approach has many drawbacks
like location- unawareness, mobility support, high
latency, late response time and others which may
negatively affect real-time computation need and user
experiences [3]. Mobile Edge Computing technology
emerged as a solution in order to combat these drawbacks.
The technology will not replace the cloud but will create
an add-on to enhance the computing and response
functionalities of the cloud for time-intensive and
computation-intensive IoT applications.

2 Author Name: Paper Title …

http://journals.uob.edu.bh

Figure 1. Figure illustrating the need of using Multi-

Access Edge Computing with Cloud Computing

Offloading the tasks for purpose of computation to near
Edge servers instead of cloud provide faster responses with
minimal latency and enough availability of required
resources. Although, with benefits this kind of remote
computation method also increases the overhead of
transmitting the task towards edge server [4]. The location
at which the associated edge server may be residing, also
play a crucial role in adding up of the overhead. Therefore,
it is very necessary to determine whether it will be an
optimal solution to opt for remote computation or not. This
involves comparison of total time a task would take to
transmit to the server with task requirements and its
deadline. From here, the final offloading decision to be
taken by the mobile device should depend upon three
checkpoints a) Whether to offload or not b) To offload to
edge server c) To offload to Cloud.

Another major checkpoint on which the task offloading
decision depends is task computation requirements. If
these requirements do not match local resource
availability like non-availability of required resources,
incapability of computation resources, energy constraints
etc., it has to be offloaded to an MEC server for
computation. This adds up to the delay including
transmission delay and again waiting of task in the MEC’s
waiting and service queue. Also, even if the edge server
does not match the task requirements, finally it has to be
offloaded to cloud which doubles up the total overhead and
latency.

The task offloading problem has been studied
extensively and critically in cloud computing, but still the
problem remains unsolved to much extent even after the
introduction of MEC computing. Some major issues as
discussed include added latency and late response time,
energy consumption, unfair allocation of workloads and
extra transmission times. These considerable challenges
may affect the overall performance of the model and
nullify optimal resource allocation [5]. The solution

proposed in this paper to combat the task offloading
problem includes that the total number of task traffic be
divided and allocated for parallel remote as well as local
computation so that totally occurring delay overhead can
be minimized. This can be done by dividing the task into
subtasks and running them locally as well as remotely on
edge server. This kind of approach will not only minimize
the latency but will also improve the QoS and response
requirements. However optimal task splitting decision is
a challenging task and require a lot of parametric based
pre-calculation and knowledge of device, edge and cloud
status.

Another requirement for IoT-MEC architecture is the
presence of edge server at nearest position within the
network. Therefore, the distance parameter also comes
into play for causing latency and optimal computed
results. The association of any user-end device should be
with the nearest edge server so that there is minimum
occurrence of task migration, queuing and service latency
with optimal use of network and resources. The proposed
latency minimization IoT-MEC model is capable of
minimizing multiple types of latencies detected during
data transmission in uplink direction and meets the real-
time scenario.

The goal of this paper is to:

 Building of nearest distance IoT-MEC Pair for

minimum transmission latency.

 Design a double parallel-remote task computation

model.

 Design a parametric task offloading decision

algorithm for minimum latency and optimal

resource utilization.

The rest of this paper has been organized as follows:

Section II discusses about the previous works proposed in

order to carry out optimal task offloading with minimal

latency and maximum resource utilization, Section III

discusses the proposed task offloading methodology with

the aim to reduce total latency and provide real-time

responses, Section IV discusses the various policies which

will be used collectively in this research paper, in Section
V various Hypothesis Tests have been performed in order

to validate normal distribution of considered dataset and

proposed task offloading algorithm, Section VI analyse the

outputs or results when the proposed algorithm is

compared with traditionally existing task offloading

approaches, Section VII have a brief discussion of this

research paper and finally Section VIII discusses the future

work which may be done to enhance the proposed task

offloading approach.

TABLE I. S
UMMARY OF USED NOTATIONS

N Set of MEC

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

Servers

ʌ
Random Task

𝒕𝑻𝒓𝒂𝒏𝒔ʌ
𝒕

Task Transmission

Rate

𝜶𝒊𝑪

Server-cloud

association

indicator

𝒕𝒅𝒊𝒔𝒕
Distance between

device and server

𝒓𝒂

Resource

Allocation

𝒕𝒐𝒇𝒇
Task Offloading

decision time

ʌ𝑰𝑫
Unique Task ID

𝒍𝒚
Latency

𝑻𝒄𝒎𝒑
𝑪

Computation Time

of Task at Cloud

𝒏𝒑𝒂𝒄𝒌𝒆𝒕𝒔
Total Number of

Task Sub-units

𝒅ʌ
𝒍𝒐𝒄𝒂𝒍

Local task size

𝒕𝒐𝒇𝒇
Task offloading

time

t
Internal Decision

parameter

𝑻𝒘𝒂𝒊𝒕
𝒋

Time task has to

wait at server to get

serviced

𝐖𝐋𝐢
Current workload

on device

U
Set of IoT nodes

ʌ𝑻𝑫
Task Deadline

𝒅ʌ
Data size of task

𝜶𝒊𝒋

Server-Device

association

indicator

𝒄ʌ Total number of

CPU cycles

𝐖𝐋ʌ
Task Workload

𝑻𝒄𝒎𝒑
𝒊

Local Computation

Time of Task

𝑻𝒄𝒎𝒑
𝒋

Remote

Computation Time

of Task

𝒆𝒄
Energy Consumed

𝒕𝑻𝒓𝒂𝒏𝒔ʌ
𝒕

Total transmission

time towards server

𝑷
Pivot Point

𝒅ʌ
𝒓𝒆𝒎𝒐𝒕𝒆

Remote Task Size

𝒕𝒔𝒑𝒍𝒊𝒕
Task Splitting Time

𝑻𝒘𝒂𝒊𝒕
𝒊

Time task has to

wait at device to

get serviced

𝑻𝒄𝒎𝒑

Total Computation

Time

𝐖𝐋𝐣
Current workload

on server

𝑾𝑳𝒎𝒂𝒙
𝒊

Threshold to

process workload

locally

𝑾𝑳𝒓𝒆𝒎
𝒍𝒐𝒄𝒂𝒍

Remaining

workload capacity

of device

𝐌𝒇𝒓𝒆𝒆 Idle Memory

𝑾𝑳𝒎𝒂𝒙
𝒋

Threshold to

process workload

remotely

𝑾𝑳𝒓𝒆𝒎
𝒓𝒆𝒎𝒐𝒕𝒆

Remaining

workload capacity

of server

𝐌𝒂𝒍𝒍𝒐𝒄
Memory in use

2. RELATED WORK

Swain et al. have proposed Matching-Theory-Based
Efficient Task offloading framework which aims to

4 Author Name: Paper Title …

http://journals.uob.edu.bh

reduce the total system energy and remove any outage
activities which do not match the strict latency constraints
within an IoT-Fog network. The framework uses many-
to- one matching game theory for resource allocation [6].
Ali et al. have proposed a joint approach for minimizing
latency and allocation of resources. The authors have used
many-to- one matching game theory where both IoT
and Fog nodes are capable of self-organizing
themselves in order to solve the game [7]. Xue et al. have
proposed a novel approach which uses NOMA in order to
transmit those tasks which need offloading towards the
Edge-servers, thereby maximizing the system’s
processing capability and use of resources [8]. Rafiq et al.
used Khun-Munkres algorithm to give the optimal
solution for cell association and computational offloading
in MEC-IIoT networks [9].

Xia et al. have proposed a joint scheme for task
offloading and resource allocation using Lyapunov
optimization theory [10]. Senthil have developed a
resource scheduling method with minimum energy
consumption and optimal use of resources within strict
deadline constraints using the SFBL method [11]. Cui et
al. have proposed an MEC-SAT network based on IoT
technology for minimal latency occurrence and use of
total energy during data transmission, thereby doing task
scheduling and resource scheduling [12]. Alameddine et
al. have studied the DTOS problem and tried to solve the
resource scheduling and allocation problem in an MEC
enabled network [13]. Liu et al. have investigated the task
splitting for parallel task computation with optimal use of
resources in an Multi user-based environment [14].

Almughalles et al. have studied fog cell formulation
and selection on a joint basis for optimal use of resources
and minimal latency [15]. Gu et al. have facilitated a kind
of tutorial for resource management methods and
resource selection [16] . Do et al. have tried to solve the
convex problem of optimization for a distributed
environment for the purpose of resource allocation [17].
Deng et al. have worked on the basis of fog computing
environment to develop a framework for minimal energy
use and task allocation with optimal use of available
resources [18]. Zeng et al. have investigated the total time
used or consumed for completing a randomly arrived task
in an FC-SDES environment for optimal task placement
and scheduling [19]. Zhang et al. have proposed a
framework for multiple fog nodes, using Stackelberg
game pricing problem and many-to-many matching
theory [20]. Elbamby et al. have proposed a model for
optimal distribution of task and proactive computing
mechanism urder URLLC constraint [21]. Yang et al.
have proposed a model for multi-user MEC environments
in order to minimize the task computation latency [22].

Nikaein et al. have an low latent MEC-based
framework for decision coordination among distributed
segments of network [23]. Brik et al. have a novel

placement model for federated platform in order to
provide minimal latency with maximum utilization of
resources and full service availability in an MEC-based
environment [24]. Alnoman et al. have proposed an
SCMA-based scheme based on factors like latency,
throughput and connectivity [25]. Han et al. have studied
a UAV-based MEC system for the purpose of enhancing
computational capability and carry out a task-splitting
procedure over an optimal rate [26]. Gu et al. have
proposed a novel MEC-based framework for dynamic
IoT nodes based on federated intelligence [27].
Kovacevic et al. have studied the computational
offloading concept under strict latency constraints with
maximum usage of available resources [28].

Yoshino et al. have proposed an adaptive scheme for
statistically generated data in order to control data traffic.
Chen et al. have proposed a control and safety system for
IoT based application with minimal latency and energy
constraints [29]. Hong et al. have studied a distributed
antenna system for uplink transmission in an IIoT system
and environment [30]. Yang et al. proposed a scheme for
uplink data transmission under the 5G communication
model [31]. Ismail et al. have proposed an AGCM based
model for data aggregation at cloud with maximized
retransmission rate and throughput [32]. Zhang et al. have
investigated the MEC as well as IoT environment for task
offloading used hierarchical framework with minimum
energy consumption [33]. Germenis et al. have proposed
a cross layer optimization framework based upon the
concepts of green computing and intelligent
communication methods and minimal latency and
enhanced reliability constraints [34].

Calice et al. have proposed and implemented a low
cost and reliable seismograph which is configurable, low
latency and reliable for early warning of earthquakes [35].
have investigated various offloading strategies with
minimal energy consumption and maximum use of
resources. Kherraf et al. have proposed a mathematical
framework for task assignment and resource allocation
[36]. Hao et al. proposed a highly reliable wireless model
based upon 5G technology which satisfies the
transmission and latency constraints [37]. Park et al. have
presented a novel task distribution scheme with fair
workload balancing based on the queue maintained by
each server based on an MEC environment [38]. The
following Table 1 describes an analysis of past work done
on basis of latency, task offloading and optimal resource
allocation challenges:

TABLE II. S
UMMARY OF USED NOTATIONS

Ref.

Notation(𝑅𝑁𝑖)
Objective

Parameters

𝑙𝑦 𝑡𝑜𝑓𝑓 𝑟𝑎

𝑅𝑁1 To minimize total ↑ ↓ ↓

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

energy

consumption and

to meet the

deadline in the

IoT-Fog

internetwork.

𝑅𝑁2

To jointly handle

the workload and

latency factors in

IoT-Cloudlet

network within
strict deadline

requirements.

↑ ↓ ↑

𝑅𝑁3

To handle task-

offloading and

resource

optimization

activities within a

multi-user, multi-

task and multi-

server

environment.

↓ ↓ ↑

𝑅𝑁4

To investigate the

cell formulation

and
interconnection

for computational

offloading in an

MEC-IIoT

environment.

↑ ↓ ↓

𝑅𝑁5

To tackle and

optimize the

problem of

heterogeneous

task-offloading

and resource

allocation in an
MEC-IoT

network.

↑ ↓ ↑

𝑅𝑁6

To effectively

allocate resources

to the offloaded

task with

minimum energy

consumption and

latency.

↑ ↓ ↑

𝑅𝑁7

To optimize

latency and

energy-emission

constraints in an

MEC supported
SAT-IoT network.

↑ ↓ ↓

𝑅𝑁8
To tackle the

offloading of
↓ ↑ ↑

heterogeneous

tasks and its

simultaneous

resource

allocation

problem in an

MEC limited

capable

environment.

𝑅𝑁9

To investigate a

random task
offloading

framework in a

multi-user

environment with

task partitioning.

↑ ↓ ↑

𝑅𝑁10

To address

computational

offloading and

cell selection

problem jointly in

order to minimize

task computation

latency.

↑ ↑ ↓

𝑅𝑁11

To provide
optimal solution

for resource

allocation by the

help of matching

theory.

↓ ↑ ↓

𝑅𝑁12

To minimize user

traffic towards

centralized data

center and

minimize carbon

footprint and

resource
allocation

problem.

↓ ↑ ↓

𝑅𝑁13

To tackle the

trade-off

relationship that

exists between the

energy and

latency factors in a

fog-cloud

environment.

↑ ↓ ↑

𝑅𝑁14

To sustainably lay

task images on

any embedded or

server-based
platform

supported by fog

computing

environment.

↓ ↑ ↑

6 Author Name: Paper Title …

http://journals.uob.edu.bh

𝑅𝑁15

To propose a

general

framework for all

fog nodes, data

service operators,

data service

subscribers in

order to achieve

the optimal

resource
allocation

schemes in a

distributed

fashion.

↓ ↓ ↑

𝑅𝑁16

To provide an

environment

where cloudlets

may proactively

cache task

popularity with

minimal latency

constraint.

↑ ↓ ↓

𝑅𝑁17

To address the

task offloading
and computational

resource

allocation jointly

with minimum

latency.

↓ ↑ ↑

𝑅𝑁18

To propose a

Low-Latency

Multi-access Edge

Computing

platform thereby

enabling mobile

network
monitoring,

control, and

programmability.

↑ ↓ ↑

𝑅𝑁19

To address the

problem of

deploying MEC

based applications

over a federated

edge

infrastructure in

order to meet strict

latency and

computational
requirements.

↑ ↓ ↑

𝑅𝑁20

To investigate the

proposed

framework under

various SCMA

configurations in

↑ ↓ ↑

order to verify

various factors

like connectivity,

throughput, task

completion time,

and complexity.

𝑅𝑁21

To minimize

energy

consumption and

resource

allocation
problems in a

distributed MEC

environment.

↓ ↓ ↑

𝑅𝑁22

To reduce various

occurring

latencies and

enhance reliability

in the Edge-IoT

environment.

↑
↓ ↓

𝑅𝑁23

To propose a joint

solution for

computational

offloading and

resource
allocation with

strict latency

constraints.

↑ ↓ ↑

𝑅𝑁24

To propose a

scheme for

aggregation of

statistical data

with real-time

latency

constraints for

controlling

generated data
traffic.

↑ ↓ ↓

𝑅𝑁25

To investigate the

use of minimum

power and energy

transmission for

uplink data

transmission in a

URLLC

environment.

↑ ↓ ↓

𝑅𝑁26

To design a

distributed

antenna system

for complying to

strict latency and
reliability

requirements for

uplink

transmission in

↑ ↓ ↑

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

IIoT.

𝑅𝑁27

To propose such a

scheme that could

provide low

latency and do

resource

management with

a fixed period of

time.

↑ ↓ ↑

𝑅𝑁28

Have proposed a

queue based

model for green
cloud with

reduced energy

and latency

thereby reducing

congestion.

↑ ↓ ↓

𝑅𝑁29

To address

performance

measures for

energy efficiency

and workload

offloading in an

MEC

environment.

↓ ↑ ↓

𝑅𝑁30

To propose a
scheme to wave-

off the trade-off

between enegy

and spectrum

efficiency in 6G

enabled IoT

network.

↑ ↓ ↓

𝑅𝑁31

To design a low

cost and smart and

configurable

seismograph, that

is capable of
supporting

seismological and

geophysical data

in real-time

↑ ↓ ↓

𝑅𝑁32

To provide a

model for task

splitting for

parallel local and

remote

computation of

subtasks within

the same task and

same time.

↑ ↓ ↑

𝑅𝑁33

To study the

workload

assignment within
↓ ↑ ↓

the latency and

reliability

constraint.

𝑅𝑁34

To implement

IoT-Grid(IoT-G)

structure for

successful

broadband

transmission

within the existing

bandwidth.

↑ ↓ ↓

𝑅𝑁35

To enhance
efficiency of

available

resources in a

multi-access MEC

environment with

fair workload

distribution.

↑ ↑ ↑

Propose

Work

To provide task

computation

with minimal

latency, energy

and optimal

resource

allocation

↑ ↑ ↑

After critically analyzing the past works it has been
concluded that many rigorous works have been done and
practical frameworks and methodologies have been
proposed in order to reduce the total incurring latencies
and make shorter response time. Many authors have
proposed successful approaches in order to enhance the
real-time performance of IoT environment. However, it
has been found that the decision to offload the task in
very complex in itself and needs a lot of work in future for
an optimal decision model so that the task components are
not lost while responding back if partial offloading policy
is adopted [39]. In addition, if full offloading is carried
out then parameters like ultra-latent latency, balanced
workloads and real-time computation should be of critical
focus.

3. PROPOSED WORK

In this research study a concrete model for IoT-MEC
task offloading is being proposed to resolve the latency
issues. The proposed model is based on three constituent
technologies namely Internet of Things, Mobile Edge
Computing and Cloud Computing. The model explains
the task offloading methodology through splitting a task
into subunits and allocating them to both device and
remote area for parallel computation. The selection of
remote region will depend upon the task requirements and
server status of both MEC servers and Cloud servers.
Remote Computation will be carried since the IoT devices

8 Author Name: Paper Title …

http://journals.uob.edu.bh

are resource constrained devices in terms of storage and
computational capabilities. Thus, there is an urge of
offloading the task to either the edge servers or local
clouds for the purpose of task computation.

Figure 2. Figure illustrating an outline of propoed task

methodology

The aim is to provide optimal set of resources to these

resource-intensive tasks and to reduce latency. If cloud

is available locally then the task will be offloaded

directly to the cloud, since cloud is a resource rich region

it will always be preferred for task computation.

However, if cloud is at long distance then offloading at

edge is preferred over it for offloading tasks. Finally if
the task computation requirement matches to local

device then no offloading will be carried out and task

will get locally computed.

A. Introduction and Modeling of Task

There are a number of heterogeneous tasks generated
from IoT devices. It may be uploading of documents,
audio/video streaming, sensor data processing and others.
But basically a Task, may it be of any type, is a single
unit of work. This task may either be a sub-part of
some complex task or an input for another task
computation. In general, any generated task may be
categorized as a vector of five possible attributes namely

Task ID(ʌ𝐼𝐷), Task Size(𝑑ʌ), Computational Intensity i.e.

number of CPU Cycles in bits(𝑐ʌ), Task Deadline(ʌ𝑇𝐷)
and Task Workload(WLʌ). It may be modeled asʌ(ʌ𝐼𝐷, 𝑑ʌ,
𝑐ʌ, ʌ𝑇𝐷, WLʌ). The taxonomy of the task may be
illustrated as Fig 3.The task dependency (ʌ𝑑𝑒𝑝)plays a
very important role in task offloading process. A low-
dependent task is more highly to get offloaded easily as
compared to a coupled and dependent task. The
dependency may be due to system internal architecture or
the task may be acting as input source to another task. In
this case it is highly preferred to run the task locally
without offloading since it may create complexities with

results. ʌ𝑑𝑒𝑝 Is set to 0 is task is independent and 1 if it is
dependent. The factor will be checked before final
offloading decision. In other cases, the task may simply
be offloaded to either edge server or cloud for parallel
computation along with local processing of some part of
task. The value of ʌ𝑑𝑒𝑝 will be system dependent. In this
research paper only independent task subunits has been
considered.

Figure 3. Figure illustrating the Taxonomy of Incoming Task

The total time a task ʌ may take to get itself finally
computed include the following timelines:

1. Local Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑖): This is

the total time a task may take to get computed

locally.

2. Remote Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑗): This

is the total time a task may take to get computed

remotely.

3. Cloud Time for servicing a Device (𝑇𝑐𝑚𝑝
𝑐): This

is the total time a task may take to get computed

at cloud.

4. Time to transmit a task (𝑡𝑇𝑟𝑎𝑛𝑠⋀
𝑡): This is the

time the task will take to get offloaded to

either edge server or cloud.

There should be a time when the decision should be
taken to offload the task for remote computation, when
local computation only is not enough and deadline of task
completion is not met. Thus, it is the responsibility of the
device to take the decision within the time before
servicing of task is required and task deadline approaches.
It is also necessary so that task splitting is done before
time and a task unit for both local and remote computation
is assigned to both the resources.

The time when the task offloading decision and task
spilt decision will be taken by the device will be an
internal decision and it may be formulated as:

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

{
𝑡𝑜𝑓𝑓 = ⋀𝑇𝐷 − 𝑡

𝑡𝑠𝑝𝑙𝑖𝑡 = ⋀𝑇𝐷 − (𝑡𝑜𝑓𝑓 2⁄)
 (1)

After the task is split into two subunits, the other sub-
unit is required to be allocated to the associated MEC
server. Therefore it needs to be transmitted towards the
remote server which makes use of available allocated
bandwidth 𝐵𝑤𝑖.Thus, the total time to transmit a task for
remote computation may be calculated as:

𝑡𝑇𝑟𝑎𝑛𝑠⋀
𝑡 =

𝑑⋀
𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝑤𝑖𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑖)

(2)

where 𝑆𝐼𝑁𝑅𝑖 is signal to interference plus noise ratio
and can be calculated as :

𝑆𝐼𝑁𝑅𝑖

= 𝛼𝑖𝑗
𝑇𝑟𝑎𝑛𝑠𝑖𝑗𝐶ℎ𝑔𝑖𝑗

∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑗𝐶ℎ𝑔𝑖𝑗𝑖∈𝑈,𝑗∈𝑁 + ∂

(3)

where 𝑇𝑟𝑎𝑛𝑠𝑖,𝑗 is the transmit power of device i ,
𝐶ℎ𝑔𝑖,𝑗 is the channel gain between device i and server j,
and 𝜕 is the interfering noise factor. It is necessary to
calculate the noise since there may be hundreds of Iot
devices which is connected to a single MEC server.

Figure 4. Figure Illustrating the Task Splitting

Procedure

Therefore, the transmission of data from one device
will be getting influenced by the transmission of another
task for computation at the same resource. In further sub-
sections it has been discussed about the criteria of task
offloading which will be totally based upon parametric
comparisons and evaluations with splitting task for
parallel remote and local computation.

Since the total task will be split into two subunits, it will
affect the total task size allocated for computation at local

and remote regions with partial task offloading. It is
assumed that Task splitting is an internal decision to be
taken at device level thus to check the pivot point a random
value P is taken which will decide the limit to which task
subunit it is possible for local processing. The total size the
task will be divided into 1 subunit each of any memory unit
considered. For example if the task size is of 270 GB then
it will be considered as a composition of 27 units each of
10GB and vice versa. This may be described as:

𝑃𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 =
𝑑ʌ

10
⁄ (4)

The value of P will depend upon the task, device and
server status and will be purely hardware and network
based. In this paper a formula to set the pivot point is
described as:

𝑃 =
𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠

ʌ𝑇𝐷 ∗ 2
⁄ (5)

Until P the task subunits will be allocated for local
computation and the remaining unit after P will be
offloaded for remote computation. The data size will also
break here thus into two parts which may be formulated
as:

{
𝑑ʌ
𝑙𝑜𝑐𝑎𝑙 = 𝑃

𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 − 𝑑ʌ

𝑙𝑜𝑐𝑎𝑙
(6)

The 𝑑ʌ
𝑙𝑜𝑐𝑎𝑙 data size of the divided task will be allocated

for local computation while 𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒 data size will be

allocated for remote execution at the associated remote

server. The total remote and local computation times may

be calculated as follows:

𝑇𝑐𝑚𝑝
𝑗

= 𝑡𝑇𝑟𝑎𝑛𝑠ʌ
𝑡 +

(𝑑ʌ
𝑟𝑒𝑚𝑜𝑡𝑒)

𝑇𝑤𝑎𝑖𝑡
𝑗

(7)

The goal is to minimize the total computation time and

reduce the total response time for the computed task in a

real-time manner. Similarly if the task gets computed
locally without any offloading then it may be computed as:

𝑇𝑐𝑚𝑝
𝑖 =

(𝑑ʌ
𝑙𝑜𝑐𝑎𝑙)

𝑇𝑤𝑎𝑖𝑡
𝑖

(8)

If the task splitting process is carried out then the total

computation time can be calculated as:

𝑇𝑐𝑚𝑝 = (𝑇𝑐𝑚𝑝
𝑗

− 𝑇𝑐𝑚𝑝
𝑖) (9)

In above equation a subtraction operation has been
performed between two timelines since computation of

both parts of the task will be in parallel and not procedural.

10 Author Name: Paper Title …

http://journals.uob.edu.bh

Thus the remote time will be total time excluding the local

computation time.

Lastly the total workload imposed by the task may

be calculated as follows:

WLʌ = 𝑑ʌ ∗ (
𝑐ʌ
ʌ𝑇𝐷

)
(10)

The goal is to minimize the total computation time for the

generated task as well as to send back the computed results

with optimal computation time.

B. Device Modeling

The IoT device is the point from where random and

heterogeneous tasks will be generated for computation.

Suppose there are U IoT-nodes and each device may be

represented as ith IoT device where 𝑖 ∈ 𝑈. Any i may be
categorized as a vector of five possible attributes namely

Device ID (i𝐼𝐷) , Device’s computational capability
(𝐶𝑎𝑝i) , Total allocated Bandwidth (𝐵𝑤i) , Energy

Consumption (E𝑖) and Workload (WL𝑖) . It may be

modeled as i(i𝐼𝐷 , 𝐶𝑎𝑝i , 𝐵𝑤i, E𝑖 ,WL𝑖) . Through i𝐼𝐷 each

device may be identified uniquely in the IoT-MEC

environment and will be used to know the device status.

𝐶𝑎𝑝i of device i is a result of four attributes which assists
to get the knowledge of current device capacity that is the

Processing time (busy + idle), memory status, queue

length avg. and network consumption. The total allocated

bandwidth to any ith device is calculated as a product of

number of tasks generated by the device and throughput of

the device.

Figure 5. Figure Illustrating Taxonomy of

IoT Devices for Task Offloading

Calculation of energy consumption is a critical factor to

consider verifying the efficiency and data migration within

the network, since these IoT devices are power constrained
in nature with limited battery life. In further an analysis of

energy consumption will be done for all the three involved

tiers. And, finally the workload over the device may be

defined as the amount of tasks to be done by the computing

resources of the device, allocated over it. The workload of

the device WL𝑖 may be represented as:

WL𝑖 =∑WLʌ
(11)

Each 𝑖𝑡ℎ device will have some threshold capacity in order

to process the offloaded tasks and to compute the

offloaded workloads. Let it be denoted by 𝑊𝐿𝑚𝑎𝑥
𝑖 which

the maximum is allowed workload. This is the maximum
amount which a device may process locally. The

remaining space for arriving load to get processed may be

calculated as:

𝑊𝐿𝑟𝑒𝑚
𝑙𝑜𝑐𝑎𝑙 = 𝑊𝐿𝑚𝑎𝑥

𝑖 −WL𝑖 (12)

If any task with workload exceeding WL𝑟𝑒𝑚 should be

split and offloaded towards the server for computation.

C. Server Modeling

This section includes the modeling of both the edge server

and cloud server. In general, the server model may be

presented as j(j𝐼𝐷 , 𝐶𝑎𝑝j, 𝐵𝑤j, E𝑗 , WL𝑗) . The tuple-based

presentation is not mentioned for Cloud since the region

has ample resources for storage and computation. It is

understood that the task will surely get computed within
some instants of time if offloaded to cloud.

Figure 6. Figure Illustrating Taxonomy of Edge Server for Task

Offloading

The proposed model will include two groups of classes.

One will be N MEC servers where each server 𝑗 ∈ 𝑁 and

U IoT-nodes of User-end mobile devices where 𝑖 ∈ 𝑈. The

participants of the former class will be fixed at some

position but the latter participants will be mobile in nature

which means they will not stay in a fixed or central

location but will be moving continuously. Due to this

scenario, any 𝑖𝑡ℎ device will be near to a given 𝑗𝑡ℎ server

at a given instant time 𝑡, but may get far from the discovery

of 𝑗𝑡ℎ server at time 𝑡 + 𝑡′ . All the N MEC servers are

geographically distributed within the MEC region. They

are interconnected with each other, along with its

connection to hundreds of U IoT-nodes and for obvious

reason it will be also connected to central Cloud Server C.
The connected IoT nodes will be of heterogeneous nature

and will have their own processing and QoS requirements.

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

http://journals.uob.edu.bh

Also the communication frequencies of a 𝑖 − 𝑗 pair will

differentiate when compared to 𝑗 − 𝑗 pair. The workload

of the device WL𝑖 may be represented as:

WL𝑗 =∑WLi

(13)

Similar to the device, each 𝑗𝑡ℎ server will also have some

threshold capacity in order to process the offloaded tasks

and to compute the offloaded workloads. Let it be denoted

by 𝑊𝐿𝑚𝑎𝑥
𝑗

which the maximum is allowed workload. This

is the maximum amount which a server may compute

remotely. This is the maximum amount which a server

may process remotely. The remaining space for arriving

load to get processed may be calculated as:

𝑊𝐿𝑟𝑒𝑚
𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑊𝐿𝑚𝑎𝑥

𝑗
−WL𝑖 (14)

If any task with workload exceeding WL𝑟𝑒𝑚 should be
split and offloaded towards the server for computation.

For the sake of task offloading, it is necessary that the

device should be connected to a dedicated server, so that

the data may be routed to exact destination for

computation. In order to verify the connection between the

two classes, an association indicator will be assumed as

𝛼𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖𝑗 ∈ [0,1].If 𝛼𝑖𝑗 = 1 will then there exists a

successful connection otherwise 𝛼𝑖𝑗 = 0 will tell the non-

association of the two parties. Another association

indication will also be considered to connect device

directly with cloud as 𝛼𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖𝐶 ∈ [0,1] .If 𝛼𝑖𝐶 = 1

will then there exists a successful connection otherwise

𝛼𝑖𝑗 = 0 will tell the non-association of the two parties.

The distance based partial task offloading has been

discussed in further sections of this paper.

4. POLICIES FOR TASK OFFLOADING

A. Distance-Based Task Offloading

The goal is to find and associate a device i with server j

that could possible minimize the execution and

transmission latency with optimal resource utilization. In

order to do the mentioned the following distance formula

is used which will take the x and y co-ordinates of the

geographically located device and server in order to

calculate the distance as following:

𝑡𝑑𝑖𝑠𝑡 = √(𝑖𝑥2 − 𝑗𝑥1)
2 + (𝑖𝑦2 − 𝑗𝑦1)

2
, 𝑡𝑑𝑖𝑠𝑡

< 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥

(15)

where 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥 is the maximum discoverable allowed

distance between 𝑖 − 𝑗 pair.
The following constraints have been set to accomplish the

goal of minimum uplink and downlink transmission

latency. The constraints will help to verify if the device

has been associated with the server which exist at nearest

distance, so that if offloading of task occurs, then it take

less time to migrate the task for computation as well as to

deliver computed result. Following are the specified

constraints:

𝐶𝑜𝑛𝑠 𝐴: 𝑚𝑖𝑛∑∑(𝑡𝑑𝑖𝑠𝑡)

𝑗𝜖𝑁𝑢𝜖𝑈,

(16)

𝐶𝑜𝑛𝑠 𝐵 =∑𝛼𝑖𝑗𝜖{0,1}

𝑗𝜖𝑁

(17)

The distance should be less than the maximum threshold

distance 𝑡𝑑𝑖𝑠𝑡
𝑚𝑎𝑥 to avoid long-term latency and bad response

time for real-time requests. The association request is first

sent to the MEC orchestrator which decides either to
allocate the selected resultant MEC server or not.

B. Task Requirement-Based Offloading

This section discusses about the task execution based on

task offloading process. The task will be executed on the

basis of some task requirement criteria which is needed to

get fulfilled before execution starts. It is not necessary that

a task can fully be computed at one place. It is possible to

divide the task and compute it either locally or remotely at

edge server or cloud or both. This depends upon the

resource requirements of the task. IF task requirements are

very low then it is possible to compute it locally. However,
if the requirements are too high, then it should be offloaded

after splitting towards either edge server or cloud.

However, the execution time becomes variably high

whenever the task gets offloaded to the cloud.

The amount of memory currently being allocated may be

calculating by the difference of total provided memory and

total memory in use. Let both be represented as M𝑓𝑟𝑒𝑒 and

M𝑎𝑙𝑙𝑜𝑐 thus total memory M𝑡𝑜𝑡𝑎𝑙 may be given as M𝑡𝑜𝑡𝑎𝑙 =
 M𝑓𝑟𝑒𝑒 + M𝑎𝑙𝑙𝑜𝑐 . Concurrently, 𝑀𝑓𝑟𝑒𝑒

𝑙 and 𝑀𝑓𝑟𝑒𝑒
𝑟 represent

free memory for device and server processor. Each unit of

task ʌ will be assigned for local or remote processing. The

execution preference is set to local computation but, will

move to edge server computation mode based upon the

requirement of task. Let ʌ=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛] be the total

number of sub-units that will computed locally and

remotely. The data units of total task to be processed, exists

in form of continuous and systematic data pieces. Each sub

unit is a continuous and formal piece of data which is

independent to either get processed locally or at server or

finally at cloud.

C. Server Status-Based Offloading

This section discusses about the task splitting procedure on

basis of server status. The total number of task units in a

randomly generated task will be divided with some typical

12 Author Name: Paper Title …

http://journals.uob.edu.bh

method for parallel remote and local execution. The goal

to carry out this process is to minimize the total execution

latency and energy consumption with optimal resource

allocation. For this purpose three sets have been designed

namely L𝑥 = {ʌ1
𝑙 , ʌ2

𝑙 , … . . , ʌ𝑛
𝑙 } , R𝑦 = {ʌ1

𝑅 , ʌ2
𝑅 , … . . , ʌ𝑛

𝑅} ,

DC𝑧 = {ʌ1
𝐶 , ʌ2

𝐶 , … . . , ʌ𝑛
𝐶} and containing those subunits of

task ʌ assigned for local, remote and cloud based

computation.

The size of total task may be represented as L𝑥 + R𝑥 in

case of server association while L𝑥 + DC𝑥 in case of Cloud

association. It may e formulated as:

𝑑ʌ = (L𝑥 + R𝑥 +DC𝑥). (𝛼𝑖𝐶 . 𝛼𝑖𝑗)

(18)

However, the final decision to allocate the resources for

task execution depends upon the server status. The goal of

this paper is to minimize the total energy consumption and

to reduce the total computation time and transmission time.

The first goal that is minimum transmission latency, the

second goal that is to minimize the total execution latency

and finally the third goal to provide optimal resource
utilization. In the next section the proposed model will be

validated on the basis of hypothesis based statistical

analysis tests in order to verify its performance and

accuracy to validate the proposed objectives.

5. ULTRA-LATENT TASK OFFLOADING IOT-MEC

MODEL:VALIDATION APPROACH

In this section the proposed model will be validated on

the basis of hypothesis based statistical analysis tests in

order to verify its performance and accuracy to validate

the proposed objectives.

A. Data Collection

In this paper the data for the validation of the proposed

model has been collected from two different datasets [41,

42] which best fits the proposed idea and the mentioned

objectives of research. Both the dataset have been

combined for this research paper and the validation of the

proposed method and maximum attributes from both the

datasets have been selected as per the requirement for

validation and verification of algorithm. The following

Table 3 and Table 4 describe details of dataset attributes

with description:

TABLE III. D
ATASET TYPE 1

ID CurrentAllocate

dSize

Size CurrentAllocate

dRam

Name CurrentAllocate

dBw

MIPS CurrentAllocate

dMips

NumberOfP

es

BeingInstantiate

d

RAM GeoLocation/La

titude

BW GeoLocation/L

ongitude

Source DataType

Destination DataPercentage

Delay Tuple_Reversed

Priority IsServerFound

CloudletSch

eduler/

IsCloudServed

PreviousTim

e

IsServed

ClouletSche

duler/Curren

tMips

DeviceType

Service IsServedByFC_

Cloud

QueueDelay BurstTime

InternalProc

essingTime

BurstTimeDiffe

rence

FogLevelSer

ved

IsServedByFC

(output)

For workload allocation on CPU when task has been

finally offloaded to the remote regions either MEC server

or Cloud server, the dataset from latter source will be taken
into consideration to verify optimal CPU utilization,

network utilization and workload computation low latency

and quick response and execution time. The following

Table 4 represents the attributes of dataset taken for the

purpose.

TABLE IV. D
ATASET TYPE 2

Job Number Requested

Memory

Submit Time Status

Wait Time User ID

Run Time Group ID

No. Of Allocated

Processors

Executable

(Application)

Number

Avg. CPU Time

Used

Queue Number

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 13

http://journals.uob.edu.bh

Used Memory Partition Number

Requested Number

of Processors

Preceding Job

Number

Requested Time Think Time for

Preceding Job

The tasks as mentioned in previous sections, will arrive at

IoT device initially and from here a decision will be taken

whether the task will be computed locally or should be

allocated to a remote server. These devices and servers are

geographically distributed and the tasks is in form of

tuples. The geo-locations are of random nature and may be

present at random places. The dataset from source 2

contains a large amount of worklog files. These log files
contains data from a number of datacenters distributed

geographically across the globe. Some datacenters

included in these log files are NASA iPSC, KTH SP2,

Sandia Ross, SDSC DataStar and many more. The logfiles

also serve as a raw data volume in order to design a number

of workload models. The log files contains data taken for

a specific amount of duration from mentioned datacenters

with raw and processed data collection in a format as

Number of Jobs, Number of Users and % utilization of

CPU.

In order to execute the algorithm and analyze its accuracy,

performance and efficiency, it is required that only
important attributes to be considered leaving behind those

parameters that are not useful. These additional parameter

may also affect the final result negatively or influence the

expected output, therefore the procedure of detecting and

removing outliers must be done beforehand. The dataset

must contain all the data in numeric form but it has been

observed that the dataset from source 1 contains the

following attributed in categorical form:

1. Priority: High, Low, Medium

2. Data Type: Abrupt, location-based, multimedia,

medical, textual.
3. Device Type: Actuator, dumb Object, mobile,

sensor, node

Finally the following table present all the selected

attributes from both the datasets combined into one to

validate the proposed method. The table differentiates the

selected attributes in the form of dependent and

independent variables so that further various statistical

tests may easily be applied over comparative and isolated

parameters.

TABLE V. C

COMBINED DATASET FOR DEPENDENT VARIABLES

Dependent Variables

RAM Service

BW QueueDelay

CurrentAllocatedS

ize

InternalProcessing

Time

CurrentAllocated FogLevelServed

Ram

CurrentAllocated

Bw

IsServedByFC_Cl

oud

CurrentAllocated

Mips BurstTime

Tuple_Reversed

BurstTime

Difference

IsServerFound

IsServedByFC

(output)

IsCloudServed Wait Time

IsServed Run Time

Requested Memory

No. Of Allocated

Processors

Requested Time

Avg. CPU Time

Used

Used Memory

Requested

Number of

Processors

TABLE VI. C

COMBINED DATASET FOR INDEPENDENT VARIABLES

Independent Variables

ID

Size

CloudletScheduler/Previou

sTime

BeingInstantiated

Queue Number

GeoLocation/Latitude

GeoLocation/Longitude

ClouletScheduler/

CurrentMips

Submit Time

DataPercentage

The selected attributed will be imposed for the collected

data over it for the proposed model in order to check its

accuracy, performance and effectiveness over minimizing

total incurred latency during task execution and task

offloading with energy consumption. In the upcoming

subsection various tests have been applied to the dataset on

the basis null and alternate hypothesis through which the

successful validation of the proposed solution may be

represented to accomplish the goals of latency and energy

minimization with optimal resource allocation.

B. Validation Tests

A number of hypothesis tests have been applied which
successfully validates the proposed algorithm and
solution in terms of reducing the total computational
latency of the task. The hypothesis have undertaken four
policies to represent the significant reduction in task
computation, namely

 Policy 1: Full Offloading to Cloud

14 Author Name: Paper Title …

http://journals.uob.edu.bh

 Policy2: Full Offloading to MEC server

 Policy 3: Local computation without offloading

 Policy 4:Partial Offloading to with both local

and remote computation of task(Proposed

Policy).

The following section consists various hypothesis
tests through which the proposed algorithm will be tested
for its effect on minimizing the total computation latency.
In order to verify the proposed algorithm, two
hypothetical statements are formulated which will be
tested and verified against each mentioned tests as
follows:

Ho: Full offloading of task for remote execution at the

edge server is the only solution to deliver fast responses
and meet real-time scenario in IoT environment.

H1: Partial task offloading with task size splitting will

reduce the total task computation time will quicker
request responses and efficient performance of IoT
environment.

1) Shapiro Wilk Test
This test is used to analyze the normality of the data

distribution related to a continuous variable. It states two
statements in the form of null and alternate hypothesis
which says:

Ho: The variable is abnormally distributed.

H1: The variable is normally
distributed.

If the p-value is less than 0.05 then null hypothesis is
rejected otherwise accepted. For the proposed method,
the data of total time of task computation over all the four
policies will be analyzed for its normality using the test.
The following table will help to validate the normality of
data for all the four policies and their related computation
time.

TABLE VII. A
ANALYSIS OF TASK OFFLOADING POLICIES FOR NORALIY CHECK

 Policy 1 Policy 2 Policy 3 Policy 4

P-Value 0.1437 0.1437 0.2625 0.6949

W 0.883 0.883 0.9063 0.9483

Sample

Size

10 10 10 10

Average 62670.74
94

41780.79
96

13914.48
28

5485.62

Median 51720.08
41

34480.05
61

11166.66
67

5243.55
78

Standar

d

39499.00

2

26332.66

8

6896.922

7

1980.08

68

Deviatio

n

Skewnes

s

0.9832 0.9832 0.8487 0.7691

Ho

Accepte

d?

Yes Yes Yes Yes

Excess

Kurtosis

0.01472 0.01472 -0.1896 0.667

Since a larger P-value supports the null hypothesis, it may

be analyzed that all the four policies is larger than 0.05

which supports the null hypothesis. From here, it may be
concluded that the data is normally distributed.

Figure 7. Figure Illustrating Normality of Data Distribution for all

four Policies

Finally, it has become clear that all the data is
normally distributed and there are no abnormalities
present which could be removed or corrected. Through
the test it has been successfully validated that the samples
from the dataset relating to task computation time of
different regions like local, MEC, Cloud and Local with
MEC, are normally distributed sample sets.

2) Two-Sample Z-Test
It is a statistical hypothesis testing technique which is

used to verify the equality between two given population
sets. The test can be carried out nly if standard deviation
of both the population are known beforehand. Moreover,
to have this test result in success, the first factor to check
is the normal distribution of data. Although in the
previous section, it has already been verified through
Shapiro Wilk Test that the considered dataset is
normally distributed. The following formula is used to
carry out this test:

(𝑥1̅̅̅ − 𝑥2̅̅̅) − (𝜇1 − 𝜇2)

√
𝜎1
2

𝑛1
2 +

𝜎2
2

𝑛2
2

(19)

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 15

http://journals.uob.edu.bh

where, 𝑥 1 and 𝑥 2 are respective means of both
samples, 𝜇 1 and 𝜇 2 are respective means of both
populations, 𝜎2 and 𝜎2 are standard deviations and 𝑛1 and
𝑛2 are respective data points. For the proposed algorithm,
a sample size of 10 will be taken and through this the test
will be carried out. The following results show the
successful rejection of null hypothesis for significance
level 0.05.

Figure 8. Figure Illustrating Normality of Data Distribution for all four

Policies

Thus, the test accepts the alternate hypothesis
statement that it will be very much feasible to split the
incoming tasks from user-end devices into local and
remote computation areas and carry out task execution
parallel at both sides, which will result in reduced latency
in total task computation time.

3) F-Test

F-test is a way to test given hypothesis on the basis of
variances of given sample populations. The equality of
variances is tested followed with f-distribution and uses f-
statistic in order to test its equality. In order to carry out
an f-test, the sample population must be a set of
independent events. After conducting the f-test the results
are analyzed if it is statistically significant. If yes, then the
null hypothesis is rejected otherwise it is accepted. In this
paper, two-tailed F-Test has been considered where,

Ho: 𝜎1
2 = 𝜎2

2

H1: 𝜎1
2 ≠ 𝜎2

2

Decision Criteria: Test-Statistic F > F-Test Critical

Value

The test-statistic F is calculated as F= 𝜎1
2/𝜎2

2. The F-

Critical value is a data point which is used to decide the

acceptance or rejection of null hypothesis.

Figure 9. Figure Illustrating F-Test Results

For the considered dataset of this paper the
acceptance region falls between [0.2484:4.026]. In the
figure above it has been analyzed that the p-value never
falls between the acceptance range and thus null
hypothesis will be rejected. This again verifies the
validity and performance of the proposed algorithm.

4) Multiple Linear Regression Test
This is a statistical technique which may be used for

the prediction of some output variable based upon the
population samples of two or more variables. The
outcome or variable to be predicted is known as
dependent variable while the variables over which this
prediction iscarried out is known as independent or
explanatory variables. The formula for calculating
multiple linear regression is as follows:

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ +
𝑏𝑝𝑋𝑝+∈

(20)

where, 𝑌 is the outcome or predicted variable, 𝑏0 is the
y-intercept, 𝑏1 and 𝑏2 are regression coefficients, 𝑏𝑝 is the
slope coefficient for each independent variable and ∈ is
the model’s (residual) error factor. The Test statistic F

may be calculated as F=(𝑅𝑒𝑔)⁄𝑀𝑆(𝑅𝑒𝑠), where Reg
means regression and Res means Residual. The null and
alternate hypothesis may be given as follows:

Ho: 𝑏0

H1: 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝+∈

(21)

16 Author Name: Paper Title …

http://journals.uob.edu.bh

Decision Criteria: p-value < significance value (to reject

Ho)

Figure 9. Figure Illustrating Multiple Regression Test Results

In the above figure it has been analysed that in all the three
policies as compared against the proposed policy, the p-
value is found to be less than the significance level 0.05.
Therefore, this test also verifies the validity and
performance of the proposed task offloading policy.

5) One-Way ANOVA and Tukey HSD Test
This is another very effective statistical method or
technique to test a given hypothesis, which verifies the
hypothesis proposed on the basis of difference between
the averages of given sample populations and test its
significance. In one-way ANOVA test, the F-statistic
value is calculated as the ratio of variance between as well
as inside the sample populations. The smaller is the value
of F, the more likely are their equal averages. The
null and alternate hypothesis may be given as:

Ho: 𝜇1 = ⋯ = 𝜇𝑘

H1: 𝑛𝑜(𝜇1 = ⋯ = 𝜇𝑘)

(22)

Decision Criteria: P-value>Test-Statistic F

The Test statistic F may be calculated as

F=𝑀𝑆𝐺⁄𝑀𝑆𝑅, where Reg means regression and Res
means Residual. The degree of freedom may be calculated
as 𝑘 − 1 and related error as 𝑛 − 𝑘. The sum of squares
may be calculated as follows:

𝑆𝑆𝐺 =∑𝑛(𝑥�̅� − 𝑥)2
𝑘

𝑖=1

(22)

𝑆𝑆𝐸 =∑(𝑛𝑖 − 1)2
𝑘

𝑖=1

(23)

Thus, the MSG and MSR may be calculated on the
basis of eq 24 as follows:

𝑀𝑆𝐺
= 𝑆𝑆𝐺 (𝑘 − 1)⁄

(24)

𝑀𝑆𝐸
= 𝑆𝑆𝐸 (𝑛 − 𝑘)⁄

(25)

where, k is the total number of groups or sample
considered, 𝑛𝑖 is the sample side of group i, n is the
overall sample side, 𝑥 𝑖 is the average of group i, 𝑥 is the
overall average and 𝑆𝑖 is the standard deviation.

Figure 10. Figure Illustrating One-Way AMOVA Test Results

For the considered dataset of this paper the acceptance
region falls between [∞:4.4139]. In the figure above it
has been analyzed that the p-value never falls between the
acceptance range and thus null hypothesis will be
rejected. Also, In the above figure it has been analysed
that in all the three policies as compared against the
proposed policy, the p-value is found to be less than the
significance level 0.05. Therefore, this test also verifies
the validity and performance of the proposed task
offloading policy.

The following algorithm describes the proposed
model intended to perform the mentioned objectives of
the research paper.

Algorithm: NTRMLEC Algorithm

INPUT: Set of IoT Nodes i 𝜖 U, Set of MEC Servers

j 𝜖 N.

 𝑖 = {𝑖1, 𝑖2, 𝑖3, … . . , 𝑖𝑛 , } and 𝑗 =
{𝑗1, 𝑗2, 𝑗3 , … . . , 𝑗𝑛 , }
 Set of tasks ʌ𝑖=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛] n 𝜖 ʌ

 Set of local processing subunit L𝑥 =
{ʌ1

𝑙 , ʌ2
𝑙 , … . . , ʌ𝑛

𝑙 },
 Set of remote processing subunits R𝑦 =
{ʌ1

𝑅 , ʌ2
𝑅 , … . . , ʌ𝑛

𝑅} and

 Set of Cloud processing subunits DC𝑧 =
{ʌ1

𝐶 , ʌ2
𝐶 , … . . , ʌ𝑛

𝐶}
OUTPUT: Nearest Distance Task-Resource

Allocation with minimized latency

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 17

http://journals.uob.edu.bh

and Energy Consumption

1. START

2. Calculate number of packets of task ʌ𝑖 using

eq 4

3. Let TS(t)= ʌ𝑖(t)
4. WHILE TS(t) ≤ 𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠

5. DO

Take Prior knowledge of

𝐶𝑎𝑝i, 𝐵𝑤i𝐶𝑎𝑝j, 𝐵𝑤j of device and

Server

Calculate the workloadWL𝑖 , WL𝑗 of

device and server by eq 12 and 14.

Calculate the remaining processing

capacity of both device and server

using eq 13 and 15.

Check the task status ʌ(ʌ𝐼𝐷 , 𝑑ʌ, 𝑐ʌ, ʌ𝑇𝐷 ,
WLʌ) , device status

i(i𝐼𝐷 , 𝐶𝑎𝑝i, 𝐵𝑤i, E𝑖 ,WLi) , server

status j(j𝐼𝐷 , 𝐶𝑎𝑝j, 𝐵𝑤j, E𝑗 ,WL𝑗) using

mentioned euqations

Perform the following parametric

comparisons for each task subunit of

task ʌ𝑖 .
i. FOR k=0 to n-1

ii. Calculate Total

Transmission Time using

Eq2

iii. IF 𝑇𝑤𝑎𝑖𝑡
𝑖 < ʌ𝑇𝐷 AND

WL𝑖 < 𝑊𝐿𝑟𝑒𝑚
𝑙𝑜𝑐𝑎𝑙 AND

𝑑ʌ < 𝑀𝑓𝑟𝑒𝑒
𝑙

Alloca

te task

subuni

ts to

L𝑥
 Calculate

Total Local

Computation
Time using Eq8

GOTO HYP

ELSE IF 𝑇𝑤𝑎𝑖𝑡
𝑗

< ʌ𝑇𝐷

WL𝑗 < 𝑊𝐿𝑟𝑒𝑚
𝑟𝑒𝑚𝑜𝑡𝑒 AND

𝑑ʌ < 𝑀𝑓𝑟𝑒𝑒
𝑟

Discover j* on basis

of eq 21.// for

maximum 5 servers

For ith make a

distance-based set of

j* as 𝑡𝑑𝑖𝑠𝑡
𝑗

=
{𝑑1, 𝑑2, 𝑑3, … . . , 𝑑𝑛}
Verify

𝑚𝑖𝑛(𝑡𝑑𝑖𝑠𝑡
𝑗) < 𝑡𝑑𝑖𝑠𝑡

𝑚𝑎𝑥

Otherwise GOTO

Step A

Assign j with

𝑚𝑖𝑛(𝑡𝑑𝑖𝑠𝑡
𝑗) to ith

device.

Verify

𝐶𝑜𝑛𝑠 𝐴 𝑎𝑛𝑑 𝐶𝑜𝑛𝑠 𝐵
by eq 22 and 23
Otherwise GOTO

Step A

Set 𝛼𝑖𝑗 = 1

Calculate Pivot

Point and Data sizes

of splitted data using

Eq 5 and 6

Split task subunits to

L𝑥 until P and

remaining to R𝑦

Calculate 𝑇𝑐𝑚𝑝

using eq 7 and 9

𝑟𝑒𝑠𝑢𝑙𝑡𝑠
= L𝑥 ∪ R𝑦

GOTO HYP

i. ELSE

Set 𝛼𝑖𝑐 = 1
Calculate Pivot

Point and Data sizes

of splitted data using

Eq 5 and 6

Split task subunits to

L𝑥 until P and

remaining to DC𝑧
Calculate total

computation time.

𝑟𝑒𝑠𝑢𝑙𝑡𝑠
= L𝑥 ∪DC𝑧

GOTO HYP

ENDIF

ENDFOR

HYP: Perform-

1. Shapiro-Wilk
Test

2. Two-Sample Z-

Test

3. F-Test

4. Multiple

Regression Test

5. ANOVA and

Tukey HSD

6. STOP

18 Author Name: Paper Title …

http://journals.uob.edu.bh

6. RESULTS ANALYSIS

After the successful hypothesis testing on the
proposed task offloading policy, this section aims to
visualize the final findings and result interpretation over
the effect of proposed methodology with respect to
reduced latency in IoT-MEC environment. In Fig 9 it may
be analyzed that the proposed task offloading policy is the
best fit as compared to other existing task offloading
policy. It may be seen that the first task offloading method
that is the cloud- based task offloading has the highest
latency in terms of response time.

Figure 11. Task Computational Latency for adopted policies

The reason is that whole task size of incoming
tasks are sent to these cloud-based server which have
high queuing and downloading time which add up to
high response time. Next the MEC-server based task
offloading policy where whole tasks are sent to the
nearest edge servers. These also have considerable
queuing time which results in not matching to response
for real-time scenario. If the task is computed locally
with offloading it to server or remote computation which
is the third policy, it may be possible that these devices
do not have much resources and power which may lead
to high response time. However, if the task is divided
into subunits and parallel assigned to local as well
as remote computation, which is the proposed task
offloading policy, then it is highly possible that the
request and task computation will be completed within
few instants of time with overall reduced latency and
quick response time. Next in Fig 13. It has been illustrated
the performance of each policy and compared with the
proposed policy. It has been that the proposed policy has
the least computation time as compared to the other three
policies.

Figure 12. Incoming Task Traffic Vs. Computation Time

Next in Fig 14, it has been illustrated the effectiveness
of each existing as well as proposed algorithm for
computing the workload within a given time window. It
was found the least computation time is taken by the
proposed policy which supports both local as well as
remote computation.

Figure 13. Task Computation Vs Total Workload

Finally, from all these results interpretation, it has
been found that the proposed policy is capable of reducing
the overall computation latency and supports quick
response time which is a stringent requirement for IoT
real-time scenario. The major role of the proposed policy
is to highly support the task splitting and task offloading
decision which is the main factor, to be focused when
dividing the whole task into subunits for execution. The
task consists of many dependencies which should be kept
in mind before final division decision and resource
assignment. However, the proposed algorithm do focus
upon taking an appropriate task offloading decision
before final task splitting take place. The proposed
algorithm and task offloading method was found to be
highly reducing the data traffic over edge servers and
minimal computation time and maximum utilization of
resources.

7. DISCUSSION

The proposed research has focused upon minimizing
latency during transmission of data. The proposed task
offloading method was found to be effective in
minimizing various kinds of inter-dependent latencies
like transmission latency, computation latency, and task
execution latency. This research paper gives a threefold
solution along with optimal task offloading and resource
allocation decisions based upon device, server and task

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 19

http://journals.uob.edu.bh

status. The research has been validated using various
kinds of hypothesis tests and was successful in nullifying
the null hypothesis for each test. The results have been
interpreted and analysed using a powerful programming
language Python which is a best for analysing datasets
and visualizing the effectiveness of data in various
approaches. The two datasets were combined taking a
number of independent and dependent variables and the
proposed algorithm was implemented over Anaconda
platform. Lastly, the proposed research was successful in
resource utilization and minimizing the total incurred
latency.

8. CONCLUSION AND FUTURE WORK

Through this research study it may be concluded that
there is a heavy need of such kind of mechanism which
deals with the mentioned issues and challenges. A
qualitative and quantitative defined need of a hybrid
approach may be the best fit solution for minimizing
latency and maximizing resource utilization and various
affecting factors of better computation The proposed
method was found to be highly accurate in accomplishing
the goal of achieving the affecting factors as compared to
the unary methods that were proposed in the past since
they focused upon only one to two parameters. However,
the proposed research has focused upon four most
important parametersi.e. latency, task offloading and
resource allocation, which needs to be upon their optimal
status for a maintained IoT-MEC communication
internetwork.

In the future it will tried to implement the proposed
research in the form of genetic algorithm and will
definitely try to implement the data through machine
learning approach with real- time parameter and under
strict latency and QoS constraints. In future the focus will
be upon dependant task whose splitting is a complex
process so that its execution may be carried out with
minimal latency and energy constraints. This work will
be done to effectively enhance the accuracy and
effectiveness of the proposed method of latency
minimization and resource allocation.

REFERENCES

[1] S Wang, C Fan, CH Hsu, et al., “A Vertical
Handoff Method via Self-Selection Decision Tree for
Internet of Vehicles,” IEEE Systems Journal, vol. 10, no.
3, 2016, pp. 1183-1192.

[2] A Zhou, S Wang, B Cheng, et al., “Cloud
Service Reliability Enhancement via Virtual Machine
Placement Optimization,” IEEE Transactions on Services
Computing, 2016.

[3] S Wang, A Zhou, CH Hsu, et al., “Provision of
Data-Intensive Services Through Energy- and QoS-
Aware Virtual Machine Placement in National Cloud
Data Centers”, IEEE Transactions on Emerging Topics in
Computing, vol. 4, no. 2, 2016, pp. 290-300.

[4] Lin, L.; Liao, X.; Jin, H.; Li, P. Computation
Offloading Toward Edge Computing. Proc. IEEE 2019,
107, 1584–1607.

[5] Kuang, L.; Gong, T.; OuYang, S.; Gao, H.;
Deng, S. Offloading Decision Methods for Multiple Users
with Structured Tasks in Edge Computing for Smart
Cities. Future Gener. Comput. Syst. 2020, 105, 717–729.

[6] C. Swain, “METO: Matching-Theory-Based
Efficient Task Offloading in IoT-Fog Interconnection
Networks.” IEEE Internet of Things Journal, vol. 8, no.
16, pp. 12705- 12715, 2021, doi:
10.1109/jiot.2020.3025631.

[7] Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M.
Naeem, “Joint Cloudlet Selection and Latency
Minimization in Fog Networks.” IEEE Transactions on
Industrial Informatics, vol. 14, no. 9, pp. 4055-4063,
2018, doi: 10.1109/tii.2018.2829751.

[8] J. Xue and Y. An, “Joint Task Offloading and
Resource Allocation for Multi-Task Multi- Server
NOMA-MEC Networks.” IEEE Access, vol. 9, pp.
16152-16163, 2021, doi: 10.1109/access.2021.3049883.

[9] Rafiq, W. Ping, W. Min, S. H. Hong, and N. N.
Josbert, “Optimizing Energy consumption and Latency
based on computation offloading and cell association in
MEC enabled Industrial IoT environment.” 2021 6th
International Conference on Intelligent Computing and
Signal Processing (ICSP), 2021, doi:
10.1109/icsp51882.2021.9408693.

[10] S. Xia, X. Wen, Z. Yao, Y. Li, and G. Wang,
“Dynamic Task Offloading and Resource Allocation for
Heterogeneous MEC-enable IoT.” 2020 IEEE/CIC
International Conference on Communications in China
(ICCC), 2020, doi: 10.1109/iccc49849.2020.9238863.

[11] S. K. T., “EFFICIENT RESOURCE
ALLOCATION AND QOS ENHANCEMENTS OF IOT
WITH FOG NETWORK.” Journal of ISMAC, vol. 1, no.
2, pp. 21-30, 2019, doi: 10.36548/jismac.2019.2.003.

[12] G. Cui, X. Li, L. Xu, and W. Wang, “Latency
and Energy Optimization for MEC Enhanced SAT-IoT
Networks.” IEEE Access, vol. 8, pp. 55915-55926, 2020,
doi: 10.1109/access.2020.2982356.

[13] H. A. Alameddine, S. Sharafeddine, S. Sebbah,
S. Ayoubi, and C. Assi, “Dynamic Task Offloading and
Scheduling for Low-Latency IoT Services in Multi-

20 Author Name: Paper Title …

http://journals.uob.edu.bh

Access Edge Computing.” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 3, pp. 668- 682,
2019, doi: 10.1109/jsac.2019.2894306.

[14] J. Liu and Q. Zhang, “Adaptive Task
Partitioning at Local Device or Remote Edge Server for
Offloading in MEC.” 2020 IEEE Wireless
Communications and Networking Conference (WCNC),
2020, doi: 10.1109/wcnc45663.2020.9120484.

[15] W. Almughalles, R. Chai, J. Lin, and A. Zubair,
“Task Execution Latency Minimization- based Joint
Computation Offloading and Cell Selection for MEC-
Enabled HetNets.” 2019 28th Wireless and Optical
Communications Conference (WOCC), 2019, doi:
10.1109/wocc.2019.8770582.

[16] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z.
Han, “Matching theory for future wireless networks:
fundamentals and applications.” IEEE Communications
Magazine, vol. 53, no. 5, pp. 52-59, 2015, doi:
10.1109/mcom.2015.7105641.

[17] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam,
J. H. Son, and C. S. Hong, “A proximal algorithm for joint
resource allocation and minimizing carbon footprint in
geo-distributed fog computing,” in 2015 International
Conference on Information Networking (ICOIN), 2015.

[18] R. Deng, R. Lu, C. Lai, T. H. Luan, and H.
Liang, “Optimal workload allocation in fog- cloud
computing towards balanced delay and power
consumption,” IEEE Internet Things J., pp. 1–1, 2016.

[19] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu,
“Joint optimization of task scheduling and image
placement in fog computing supported software-defined
embedded system,” IEEE Trans. Comput., vol. 65, no. 12,
pp. 3702–3712, 2016.

[20] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu,
and Z. Han, “Computing resource allocation in three-tier
IoT fog networks: A joint optimization approach
combining stackelberg game and matching,” IEEE
Internet Things J., vol. 4, no. 5, pp. 1204–1215, 2017.

[21] M. S. Elbamby, M. Bennis, and W. Saad,
“Proactive edge computing in latency- constrained fog
networks,” in 2017 European Conference on Networks
and Communications (EuCNC), 2017.

[22] T. Yang, R. Chai, and L. Zhang, “Latency
optimization-based joint task offloading and scheduling
for multi-user MEC system,” in 2020 29th Wireless and
Optical Communications Conference (WOCC), 2020.

[23] N. Nikaein, X. Vasilakos, and A. Huang, “LL-
MEC: Enabling low latency edge applications,” in 2018

IEEE 7th International Conference on Cloud Networking
(CloudNet), 2018.

[24] B. Brik, P. A. Frangoudis, and A. Ksentini,
“Service-oriented MEC applications placement in a
federated edge cloud architecture,” in ICC 2020 - 2020
IEEE International Conference on Communications
(ICC), 2020.

[25] Alnoman, S. Erkucuk, and A. Anpalagan,
“Sparse code multiple access-based edge computing for
IoT systems,” IEEE Internet Things J., vol. 6, no. 4, pp.
7152–7161, 2019.

[26] R. Han, Y. Wen, L. Bai, J. Liu, and J. Choi,
“Rate splitting on mobile edge computing for UAV-aided
IoT systems,” IEEE Trans. Cogn. Commun. Netw., vol.
6, no. 4, pp. 1193– 1203, 2020.

[27] R. Gu, L. Yu, and J. Zhang, “MeFILL: A multi-
edged framework for intelligent and low latency mobile
IoT services,” in 2020 IEEE Wireless Communications
and Networking Conference (WCNC), 2020.

[28] Kovacevic, E. Harjula, S. Glisic, B. Lorenzo,
and M. Ylianttila, “Cloud and edge computation
offloading for latency limited services,” IEEE Access,
vol. 9, pp. 55764– 55776, 2021.

[29] H. Yoshino, K. Ota, and T. Hiraguri, “Adaptive
control of statistical data aggregation to minimize latency
in IoT gateway,” in 2018 Global Information
Infrastructure and Networking Symposium (GIIS), 2018.

[30] Chen, Y. Wang, Z. Fei, and X. Wang, “Power
limited ultra-reliable and low-latency communication in
UAV-enabled IoT networks,” in 2020 IEEE Wireless
Communications and Networking Conference (WCNC),
2020.

[31] J.-P. Hong, J. Park, W. Shin, and S. Beak,
“Distributed antenna system design for ultra- reliable
low-latency uplink communications,” in 2019
International Conference on Electronics, Information, and
Communication (ICEIC), 2019.

[32] M. Yang, S. Lim, S.-M. Oh, and J. Shin, “An
Uplink Transmission Scheme for TSN Service in 5G
Industrial IoT,” in 2020 International Conference on
Information and Communication Technology
Convergence (ICTC), 2020.

[33] H. Ismail, T. A. Soliman, G. M. Salama, N. A.
El-Bahnasawy, and H. F. A. Hamed, “Congestion-aware
and energy-efficient MEC model with low latency for
5G,” in 2019 7th International Japan-Africa Conference
on Electronics, Communications, and Computations,
(JAC-ECC), 2019.

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 21

http://journals.uob.edu.bh

[34] Zhang, S. Leng, Y. He, S. Maharjan, and Y.
Zhang, “Mobile edge computing and networking for
green and low-latency internet of things,” IEEE Commun.
Mag., vol. 56, no. 5, pp. 39–45, 2018.

[35] J. Zhang, X. Xu, K. Zhang, S. Han, X. Tao, and
P. Zhang, “Learning based flexible cross- layer
optimization for ultra-reliable and low latency
applications in IoT scenarios,” IEEE Internet Things J.,
pp. 1–1, 2021.

[36] N. Germenis, P. Fountas, and C. Koulamas,
“Low latency and low cost smart embedded seismograph
for early warning IoT applications,” in 2020 9th
Mediterranean Conference on Embedded Computing
(MECO), 2020.

[37] G. Calice, A. Mtibaa, R. Beraldi, and H.
Alnuweiri, “Mobile-to-mobile opportunistic task splitting
and offloading,” in 2015 IEEE 11th International
Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2015.

[38] N. Kherraf, S. Sharafeddine, C. M. Assi, and A.
Ghrayeb, “Latency and reliability-aware workload
assignment in IoT networks with mobile edge clouds,”
IEEE trans. netw. serv. manag., vol. 16, no. 4, pp. 1435–
1449, 2019.

[39] H. Hao, Y. Wang, Y. Shi, Z. Li, Y. Wu, and C.
Li, “IoT-G: A low-latency and high- reliability private
power wireless communication architecture for smart
grid,” in 2019 IEEE International Conference on
Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), 2019.

[40] J. Park and Y. Lim, “Balancing loads among
MEC servers by task redirection to enhance the resource
efficiency of MEC systems,” Appl. Sci. (Basel), vol. 11,
no. 16, p. 7589, 2021.

[41] SFogSim. [Online]. Available:
https://github.com/ saifulislamPhD/SFogSim

[42] Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/

[43] “Experience with using the Parallel Workloads

Archive” (J. Parallel & Distributed Comput. 74(10) pp.

2967-2982, Oct 2014)

Dr. Sandeep Kumar Nayak

Dr. Sandeep Kumar Nayak
received his bachelor degree in

Computer Science from

Lucknow University and

Masters in Computer

Application from UP Technical

University, Uttar Pradesh, and

Lucknow, India. He received his

PhD from Babasaheb Bhimrao

Ambedkar University, Lucknow

(A Central University of India). He is currently an

Associate Professor in Department of Information
Technology, Babasaheb Bhimrao Ambedkar University-

A Central University, Amethi, India. His research

interest is on a variety of topics like Big Data, Software

Engineering, Internet of Things, Sensor Networks, Cyber

Forensics, Crowdsourcing, Data Science and Cloud

Computing.

Ms. Eram Fatima Siddiqui

Ms. Eram Fatima Siddiqui received her bachelor degree in

Computer Application and Masters in Computer

Application from Integral University, Uttar Pradesh, and

Lucknow, India. She is currently a Research Scholar in

Department of Computer application, Integral University,

Lucknow, India. Her research topic is based on a

collaborative approach of Internet of Things and Fog

computing. Her interest is on a variety of topics like Big
Data, Edge Computing, Data Science, Machine Learning,

Blockchain, Internet of Things, Sensor Networks and

Cloud Computing.

	1. Introduction
	2. Related Work
	3. Proposed Work
	A. Introduction and Modeling of Task
	B. Device Modeling
	C. Server Modeling

	4. policies for task offloading
	A. Distance-Based Task Offloading
	B. Task Requirement-Based Offloading
	C. Server Status-Based Offloading

	5. Ultra-latent task offloading iot-mec model:validation approach
	A. Data Collection
	B. Validation Tests
	1) Shapiro Wilk Test
	2) Two-Sample Z-Test
	3) F-Test
	4) Multiple Linear Regression Test
	5) One-Way ANOVA and Tukey HSD Test

	6. Results Analysis
	7. Discussion
	8. Conclusion and future work
	References

