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Abstract: A Full Search Motion Estimation architecture design is proposed and fully elaborated and tested in this paper. The 

proposed Motion Estimation architecture smartly reuses the data fetched from the main memory to be used in the search area. This 

allows using less memory I/O bandwidth. The proposed architecture guarantees a full utilization of all resources and not to have any 

stall at all during the Motion Estimation process. The proposed architecture guarantees high speed by performing the Motion 

Estimation process in adequate number of clock cycles. Additionally, high video quality is obtained using the proposed architecture. 

Both of the high speed and the high video quality are achieved by using an efficient algorithm to load the search area into a local 

memory. The local memory efficiently loads the processing array with the required search area and achieving two data reuse levels. 

We concentrate on elaborating and functionally testing the whole Motion Estimation architecture using VHDL verification language 

and provide a proof for the high accuracy of the designed architecture. The design of the local memory is implemented using only 

registers and a simple counter. This simplifies the design by avoiding the use of complicated addressing to write or read into/from the 

local memory. The proposed architecture has a regular data flow which leads to a simple VLSI implementation. The proposed 

architecture is flexible and can be used for low and high definition video sequences. Due to the high speed of the proposed 

architecture, it can be used for many real time video applications such as video phones, video conference, and HDTV broad casting. 
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1. INTRODUCTION  

HD-DVD, video conferencing, HDTV broadcasting, 

video-on-demand, multimedia messaging, and ultra 

frequency video transmission are real time video 

applications that have been spread nowadays. 

H.264/AVC (Advanced Video Coding) and H.265/HEVC 

(High Efficiency Video Coding) are recent standards 

used for such applications [1-4]. Such standards keep 

very low bit-rate as well as high video quality. This is 

achieved by adding some complexities to the encoder 

design of such standards. Multiple reference frames, half-

pel and quarter-pel accurate Motion Estimation, parallel 

processing, and variable block sizes techniques are 

examples for such added complexities.  

Full Search Motion Estimation (FSME) is the well 

known algorithm used in both H.264/AVC and 

H.265/HEVC standards for removing the temporal 

redundancy of the transmitted video signal.  

Consequently, the encoder of such standards can 

achieve a high compression in the transmitted bit-rate. 

FSME guarantees high video quality and high 

compression in the transmitted bit-rate, however, it 

consumes most of the video encoding time [5]. 

Consequently, many fast Motion Estimation algorithms 

were developed to tackle the problem of high complexity 

of the FSME process. Three Step Search (TSS) [6, 7], 

New Three Step Search (NTSS) [8], Four Step Search 

(FSS) [9], Diamond Search (DS) [10], Cross Diamond 

Search (CDS) [11], Successive Elimination Algorithm 

(SEA) [12, 13], and Adaptive Search Window Size 

(ASWS) [14, 15] are examples for such fast Motion 

Estimation algorithms. 

Most of the previous fast Motion Estimation 

algorithms are not implemented in VLSI due to the un-

regularity of data flow. Although some of them are well 

implemented in VLSI, the transmitted video accuracy is 

low [16, 17]. As a result,   Full Search Motion Estimation 
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is still used for video transmission. Due to its regular data 

flow, FSME algorithm is well implemented in VLSI. In 

this paper, a Full Search Motion Estimation architecture 

design is presented and fully elaborated and tested. 

Regularity of data flow, reducing the I/O bandwidth 

required for video transmission, reusing data that is 

fetched from the main memory, and fully utilizing the 

resources of the proposed design are the issue in this 

paper. We use the VHDL verification language to verify 

the functionality and accuracy of all components of the 

proposed Motion Estimation architecture.    

The paper is organized as follows. Section 2 presents 

the problem formulation. The proposed Motion 

Estimation architecture is discussed in details in section 

3. The whole data flow of the Motion Estimation 

architecture is discussed in section 4. Section 5 discusses 

the simulation results. Finally conclusion and future work 

are drawn in section 6. 

 

2. PROBLEM FORMULATION 

H.264/AVC (Advanced Video Coding) and 

H.265/HEVC (High Efficiency Video Coding) are the 

most recent video coding standards jointly by ITU-T 

VCEG and ISO/IEC MPEG [1-4]. Figure 1 shows the 

time complexity of the encoding process of both 

H.264/AVC and H.265/HEVC standards, respectively. It 

is very clear that Motion Estimation and Compensation 

process (MC) is the most exhaustive part which 

consumes up to 53% and 84% in case of using 

H.264/AVC and H.265/HEVC encoders. This is due to 

the very high number of operations required to perform 

such process. Following is a brief description of the 

Motion Estimation process.    

H.264/AVC Encoding Time H.265/HEVC Encoding Time

MC, 53%

etc, 
13.50%

Integer 
Trans., 

15.20%

VLC, 
18.20%

Loop filter, 
0.10%

MC, 84%

Entropy, 
3.00%

Integer 
Trans., 

10.00%

Intra 
prediction
, 3.00%

 

Figure 1: Time encoding complexity for H.264/AVC and H.265/HEVC 

encoders using one reference frame. 

A. Motion Estimation Process 

Motion Estimation (ME) is the process of finding the 

Motion Vector (MV) that defines the transformation of 

the current block image from the reference block one. 

Full Search Block Matching Motion Estimation (FSBM-

ME) is the most popular ME algorithm [18]. In FSBM-

ME algorithm, the current frame is divided into blocks, 

each of size N×N pixels; where N=16.  Each block 

searches for its best match candidate block in the search 

area located at the reference frame. As seen in Figure 2, 

the best match candidate block using the FSBM-ME 

algorithm is calculated by searching each point in the 

search area represented by 2Pmax×2Pmax.; where 2Pmax is 

range of the selected search area. The point located at the 

smallest cost is selected as the best match candidate 

block. The cost can be measured using the Sum of 

Absolute Difference (SAD) metric. The displacement 

between the center of the search area and the best match 

reference block is represented by the Actual Motion 

Vector (AMV). 

 

Current Frame n

Current 

block

+

Residue

(k,l)

Reference Frame n-ψ

Best 

match

AM
V

Search Area

(0,0)

PmaxPmax

P
m

a
x

P
m

a
x

(u,v)

(k,l)

 

Figure 2: Full Search Block Matching Motion Estimation (FSBM-ME) 

algorithm. 

 

Comparing video applications to other multimedia 

sources such as speech and text, it consumes much data. 

Table 1 illustrates some different video data formats. For 

SIF video sequences, an 32×32 search area is needed. 

While for SDTV and HDTV video sequences, an 64×64 

search area is required [5, 19].  We concluded from the 

data in Table 1 two main important notations: 

1- Higher number of search areas are needed from 

the memory as the frame size is increased or due 

to the increasing consumer demand for higher 

resolution [5, 20]. For example, UHDTV 

broadcasting requires much data to be fetched 

from memory than the Video Conferencing 

which uses SIF video format. Since the memory 

I/O bandwidth is limited, the proposed work is 

proposing and elaborating the use of architecture 

for better use of the available memory I/O 
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bandwidth. In this paper an architecture is 

proposed for performing FSBM-ME process. 

The elaborated architecture allows the data reuse 

of an existing data inside the ME co-processor. 

Consequently, no need for fetching large 

amount of data from the main memory. 

2- The more the resolution of a video sequence is, 

the more the required computations to perform 

the FSBM-ME algorithm. These computations 

consume much encoding time. The proposed 

architecture allows parallel processing; 

consequently, higher speed of video 

transmission is obtained. Additionally, 100% 

utilization of the resources of the proposed 

architecture is achieved. Following sub-section 

is a brief description of the used data reuse 

principle.  

TABLE 1: DIFFERENT FORMATS FOR VIDEO TRANSMISSION [19]. 

 Pixels/line Lines/frame Frames/sec 

 UHD 8k 7680 4320 30 

UHD 4k 3840 2160 30 

HDTV broadcast 1920 1080 30 

SDTV broadcast 

(D1) 
720 486 30 

Video conferencing 

(SIF) 
352 240 30 

 

B. Data Reuse Principle 

Compared to H.264/AVC standard [3], H.265/HEVC 
has accomplished up to 50% savings in the transmitted 
bit-rate. Consequently, 4K and Ultra High Definition TV 
(UHD-TV) resolutions can be achieved [19]. There are 
two main problems in both standards [1, 3, 5, 21, 22]. The 
huge number of pixels data required from the external 
memory is the first problem [5]. For a current block of 
size N×N pixels, a search area of size 2Pmax ×(2Pmax +N-1) 
pixels is required from the external memory. The second 
problem is the huge number of computations required for 
performing the full search Motion Estimation process.  
2Pmax ×(2Pmax +N-1) absolute difference operations for a 
full Motion Estimation process per one current block is 
required. The huge number of data can be solved by using 
data reuse techniques [23-25].  In this work we use two 
different data reuse levels; i.e., Level A and Level B as 
follows: 

Data reuse level A: In a single strip of the search area 
of size 2Pmax×2Pmax, consecutive candidate blocks are 
overlapping in (N×N-1 pixels) within the same strip as 
seen in Figure 3. As a result, the overlapped area can be 
reused for the future candidate block #2 and only one 

column is needed from the external memory for such 
future candidate block#2. 

Data reuse level B: There are overlapped pixels 
between two consecutive strips (i.e., strip#1 and strip#2) 
as seen in Figure 3. Consequently, while processing 
strip#2, most of the pixels used in strip#1 can be reused. It 
means, only one row of pixels is needed from the external 
memory to complete strip#2. 
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Figure 3: Data reuse levels A and B. 

3. PROPOSED MOTION ESTIMATION ARCHITECTURE 
 

The whole proposed ME architecture is shown in 
Figure 4. This architecture is mainly used for the 
H.264/AVC standard. The search area fetched from 
memory is 2Pmax ×(2Pmax +N-1) and the current block size 
is N×N. N and Pmax are chosen to be 16. The ME 
operation starts when the De-multiplexer (Demux) receive 
the pixels of both the Current Block (CB) and the search 
area from the external memory. The Demux distributes 
the data to either the Local Memory or the PE Array. The 
Local Memory consists of three sub-memories. Local 
Memory send candidate blocks to the Processing Array 
which contains the data of both the current and the 
candidate blocks. After the absolute differences are 
calculated inside the PE array, they will be sent to the 
Adder Tree to get the Sum of Absolute Address (SAD). 
The SAD value is then sent to the Compare Unit to find 
the minimum SAD between the CB and all candidates in 
the search area. After the comparison, the position of the 
final minimum SAD is stored in the motion vector 
memory. The motion vector memory sends all the stored 
actual motion vectors to the main processor. The Control 
Unit controls all those activities of the components. 

It is worth mentioning that this architecture is scalable 
one, so it can be easily used for the H.265/HEVC 
standard. Local memory will have same size but the PE 
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array will be extended to be 32×32 in order to be suitable 
for the ME of the H.265/HEVC standard. 

Control unit

SUB memory1

PE Array

SUB memory2 SUB memory3

Local memory

DEMUX

Main ProcessorExternal Memory

Adder Tree

MVMem

Compare unit

Reference data

CB data

Absolute 

difference SAD

minPOS

start System clock

 

Figure 4: The proposed ME architecture. 

A. PE Array 

The Processing Element (PE) array is the factory of 
getting the Absolute Difference (AD) values between the 
current block and the candidate block in the search area. It 
consists of 16 PE Rows as seen in Figure 5 to form the PE 
array in Figure 6. The current block data pixels and the 
candidate block data pixels enter the 16 rows in parallel 
via the terminals CBRin and RBRin, respectively. Every 
clock cycle, one data pixel enters the least significant PE 
of each row of Figure 5. Since the pixel value ranged from 
0 to 255 gray levels, the number of bits per pixel is chosen 
to me 8. As a result, each PE row has 128 bits for the 
whole ADs in one row. It is worth mentioning that the 
data enters the first PE and each PE sends its stored data 
to the next PE. There is an exception for the last PE which 
does not need to send any data to any next PE. All of the 
PEs calculates the absolute difference in parallel. 

PE PE PE PE PE PE PE PE PE PE PE PE PE

128-bit

PE Row

PEPE PE

Absolute Difference

CBin

RBin

 

Figure 5: PE row. 
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Figure 6: PE array. 

B. Adder Tree 

The output of the PE Array is 256 AD values that need 
to be summed in a very fast fashion. Using normal adders 
result in a huge delay that may prevent the proposed 
architecture to be used in the real time video applications. 
Adder tree architecture is a good choice that uses parallel 
processing to add many values in one clock cycle [5, 26]. 
The main unit in adder tree is the 4-2 compressor shown 
in Figure 7. It is used to add 4 bits at a time.  

Sum
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Input 1
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Carry Out
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Carry

 

Figure 7: 4-2 compressor. 

Assume that we have four Bytes: 

Byte1:        a7 a6 a5 a4 a3 a2 a1 a0 

Byte2:        b7 b6 b5 b4 b3 b2 b1 b0 

Byte3:        c7 c6 c5 c4 c3 c2 c1 c0 

Byte4:        d7 d6 d5 d4 d3 d2 d1 d0 

These four Bytes will enter to 4-2 compressors as seen in 
Figure 8. The value of carry out for the current stage i will 
be Cin for the next stage ii. The final result will be 
obtained by using 9-bits adder which adds the output of 
the adder tree in Figure 8 as follows:  
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Figure 8: 4-Bytes adder tree. 
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C. Sum of Absolute Difference (SAD) Unit 

The 256 AD values, result from the PE array, are divided 
into 16 4×4 groups.  Each group uses the adder tree 
principle to add all of its AD values. All groups are 
working in parallel and the final result is a 16-bits SAD 
value as seen in Figure 9.  

16x16 PE Array
Adder Tree

4x4 4x4 4x4 4x4

4x44x4 4x4 4x4

4x4 4x4 4x44x4
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S
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128-bit CB

128-bit RB

Figure 9: The SAD unit. 

D. Local Memory 

The main idea of data reuse principle is performed by 
using the Local Memory unit. It is used to save the data of 
the search area as well as data that may be reused in the 
future. Consequently, no need for fetching such reused 
data again from the main memory.  The Local Memory 
unit consists of two main units: The Demultiplexer 
(Demux) and the sub-memory units as seen in  

Figure 11.  

Figure 10 shows the required search area for a 16×16 
current block. The last pixels in part 2 and part 4 required 
additional 16×15 pixels for completing the search process. 
This is the reason for using the last sub-memory 3 in Figure 

11. The additional pixels (dashed area in Error! 
Reference source not found.), which are required for 
searching the pixels in part 3 and part 4, can be fetched 
using the three sub-memories 1, 2, and 3, consequently. 
Each sub memory contains a 16×16 register array as seen 
in Figure 12. Each register is eight bits in length and saves 
a value of one pixel in the search area. The data enter as 
16 pixels row by row from down to top direction. Each 
clock cycle one row enters from bottom and shift one row 
to the upper register row. Data outputs from sub-memory 
column by column starting from the left column and move 
forward to the right direction. Selecting a specific column 
is done by using a counter. 

text
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Figure 10: The search area needed for a 16×16 current block. 
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Figure 11: Local Memory. 
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Figure 12: The sub-memory architecture. 
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The Demux is acting as the interface between the 
external memory and both the PE array and the local 
memory. Data is transferred from the external memory 
using 128 bits data bus (16 pixels wide). The PE array 
starts filling its registers with the Current Block data 
fetched from the external memory once per ME search 
operation when the select of the DEMUX is set to 0. The 
search area is filled starting by sub memories 1, 2, and 3, 
respectively, when the select terminal is in positions1, 2, 
and 3.  

Back to the whole architecture of the local memory in 
Figure 11 and the search area in Figure 10, the whole 
operation will be as follows. During the first 16 clock 
cycles, the select terminal of the DEMUX will be 0. The 
PE array starts getting the values of the current block row 
by row as 16 pixels (128 bits) in the upward direction. In 
the next 16 clock cycles, the select terminal will be 1 and 
sub-memory 1 start to be filled in the upward direction 
with part 1 of the search area. In clock cycle number 33, 
the counter will refer to the most significant column of 
sub-memory 1 and select terminal will be 2. Additionally, 
sub-memory 2 starts to be filled with part 2 of the search 
area. The counter keeps increasing until clock cycle # 48. 
At clock cycle # 48, all part 1 of search area is moved to 
the PE array and group 2 is filled in sub-memory 2. PE 
array will give 256 Absolute Difference (AD) values at 
clock cycle # 49. The AD values will be added by the 
adder tree to get the final SAD value at clock cycle # 50. 
Level A data reuse is achieved by moving the counter to 
the first left column of part 2 of the search. Once the 
counter is selecting this column, it will be entered to the 
left column of the PE array to give another 256 AD 
values. The process will continue until the first strip of 
level A data reuse is done. It is worth mentioning that on 
clock cycle # 49, the select terminal will be 3 to start 
filling the sub-memory 3 with the dashed area of first strip 
level A of the search area in Figure 10. Level B data reuse 
[21] will be achieve by filling only one row from part 3 ad 
part 4 into sub-memories 1, 2, and 3, respectively. The 
counter will be updated to cover all points in the search 
area in Figure 10. It is worth mentioning that the SAD 
value is 16 bits length. 

E. Motion Vector Memory 

The output of the adder tree is a SAD value between 
the current block and the candidate block (SAD_current). 
The compare unit stores the value of the minimum SAD 
so far and its corresponding position. The compare unit 
compares the SAD_current with the minimum SAD. Id 
SAD_current is less than the minimum SAD, the compare 
unit will update its minimum SAD value with 
SAD_current and its new position. After all candidate 
blocks in the search area are processed, the final position 
will be sent to a motion vector memory in Figure 13. 

The proposed ME architecture is flexible one. It 
means it can be used for doing ME process for many 
formats of video sequences. For example, QSIF, SIF, and 
SDTV video sequences [5].  For Motion Estimation, the 

current block should be divided into 16×16 and each 
current block should have an actual motion vector 
(position of the minimum SAD). These actual motion 
vectors (AMV) are stored in a motion vector memory 
shown in Figure 13.  

The size of the SDTV video sequence is 720×486 
pixels per frame. If divided into 16×16 current blocks, 
1395 AMVs are needed. Motion vector memory is simply 
a FIFO system that contains 1395 registers. We simply 
used 32×32 search area in our simulation. Consequently, 
the input to the motion vector memory is 11-bits in length. 
The first position is stored in the bottom register and shifts 
in the upper direction every new AMV. The reset terminal 
(Rst) is enabled once per current frame. The enable 
terminal (En) is enabled at the end of each Motion 
Estimation process to store an AMV for a current block. 

11-bits register #1394

11-bits register #2

11-bits register #1

11-bits register #0

Rst

En

To the main 

Processor

AMV
 

Figure 13: Motion Vector Memory. 

 

F. Control Unit 

The Control Unit is the most important and complex 
part of the design. It produces all the required control 
signals for the whole components of the ME architecture. 
The control unit consists of two important parts: the up 
counter and the control signals controller. The Control 
Unit has three inputs; i.e., enable, reset, and the system 
clock. The outputs of such unit are all the needed control 
signals. 

The up counter is used to count the clock cycles 
needed for each ME process start from the top left pixel to 
the bottom right one in the search area. For example, for a 
search area of 32×32, the up counter starts from 000H to 
400H. To start counting, an enable, reset and system clock 
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are needed as inputs, and the number of clock is the 
output of the up counter. The up counter value is reset 
with every new ME process. The output of such counter 
represents the position of the candidate block inside the 
search area. This value should be matched to the whole 
frame axis before storing the value of the best match 
candidate position in the motion vector memory. 

The control signals controller takes the output of the 
up counter as its input. The output of such controller is the 
control signals that initiate all component of the whole 
ME architecture.  

4. THE DATA FLOW OF THE ME ARCHITECTURE 

The ME process starts by getting start control signal 
and the system clock from the main processor. PE array is 
filled with the current block pixel values in the first 16 
clock cycles. This filling operation occurs by set the select 
terminal of the DEMUX to 0. The second 16 clock cycles, 
the sub-memory 1 will be filled by 16×16 pixels of search 
area (group 1) as seen in Figure 14. This will be done by 
set the select terminal of the DEMUX to 1. In clock cycle 
number 33, PE array starts read data of group 1 and sub-
memory 2 also starts reading 16×16 search area group 2 
by setting the select terminal to 2. At clock cycle number 
48 the PE array gives 256 absolute differences to the 
adder tree and sub-memory 3 starts getting its 16×16 
search area pixels by setting the select terminal to 3. In 
clock cycle number 49 the adder tree will give the SAD 
value to the compare unit and the PE array gets the first 
column of group 2 in Figure 14 which achieve data reuse 
level A. In clock cycle number 50, the compare unit is 
done by its update operation. It is worth mentioning that 
sub-memory 3 finishes filling its pixel values at clock 
cycle number 64. It means each sub-memory requires 16 
clock cycle to be filled. After filling sub-memory 3, in 
clock cycle number 65, only 16 pixels (group 4) will fill 
the bottom row of sub-memory 1. All values in sub-
memory 1 will be shifted upward to achieve level B data 
reuse. After filling the contents of group 3 into the PE 
array, new candidate value of group 1 starts to enter the 
PE array. Groups 5 and 6 will be filled in clock cycles 66 
and 67, respectively. Operations will be repeated by 
entering the remaining search area values in the sub-
memories and read them accordingly into the PE array. It 
is worth mentioning that sub-memories 1 and 2 require 16 
clock cycles to read data column by column from each 
one. Sub-memory 3 only fills 15 columns into the PE 
array.   

 

 

 

 

 

 

It is clear from previous discussion that data enters the 
sub-memories row by row to achieve level B data reuse. 
Level A data reuse is achieved by switching the read 
operations between sub-memories. Thus, 16 clock cycles 
are needed to read from sub-memory 1 while writing sub-
memory 2 row by row. And 16 clock cycles to read from 
sub-memory 2 while writing sub-memory 3 row by row. 
Finally, 15 clock cycles are needed read from sub-
memory 3 while writing the bottom row of sub-memory 1 
and sub-memory 2 (level B data reuse). That is a total of 
47 clock cycles. Those 47 clock cycles are repeated, with 
resetting the counter of the local memory for each row, for 
32 rows of the search area. Adding 16 clock cycles for 
loading the current block into the PE array, another 16 
clock cycles for loading the first candidate block inside 
the PE array, two clock cycles for getting the first SAD, 
one clock cycle for the compare unit, and one clock cycle 
for resetting all registers at the beginning of the ME 
process, the total setup clock cycles are 36. The number of 
clock cycles required for the whole ME operation are (32 
row of search area) × (47 clock cycles for reading one 
slice using sub memories 1, 2, and 3) + 36 (setup clock 
cycles) which are 1540 clock cycles. 
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Figure 14: Data flow in the ME architecture. 
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5. SIMULATION RESULTS 

The frames are divided into blocks of size 16×16. The 

used search area has a size of 32×32 pixels. The proposed 

Motion Estimation architecture is tested using VHDL 

verification language and full functional verification was 

performed using Modelsim tool. 

 In our simulations, we simulate each part of the whole 

ME architecture in Figure 4. Figure 15 and Figure 16show 

the test benches for the current block (CB) and the 

candidate or reference block (RB) used to test the PE 

array. If we fill both of the CB and the RB at same time to 

the PE array, it takes 16 clock cycles to be loaded inside 

the registers of the PE array. Since for each PE, there two 

registers, two more clock cycles are needed. The expected 

results of the absolute difference shown in Figure 17can 

be obtained after clock cycle number 18. The simulation 

result in Figure 20 confirms the absolute difference values 

in Figure 17 of the PE array at clock cycle number 18. 
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Figure 15: The current block (CB). 
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Figure 16: The reference block (RB). 
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Figure 17: The expected absolute difference values. 

 

 

The second part that we checked is to join the PE 

array with the adder tree to calculate the SAD value. The 

used CB and RB in this case are more complex and are 

shown in Figure 18 and Figure 19, respectively. The 

expected SAD value is 200H after 18 clock cycles. 

Figure 21 confirms such results.  
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Figure 18: The CB used in SAD calculation. 
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Figure 19: The RB used in SAD calculation. 

 

The whole architecture is checked using a search area start 

at (R0,C0) and has a search area size of 32×32. The whole 

Motion Estimation process consumes 1540 clock cycles 

(16 clks for loading CB into PE array, 16 clks for loading 

sub-memory 1, 47 clocks for loading each strip into the 

PE array, 2 clks for getting the SAD, 1 clk for reset the 

whole registers, and 1 clk for the compare unit to store 

into the MV memory. It is worth mentioning that we have 

32 strips of search area that should be loaded into the PE 

array.  As seen in Figure 22, the best match is the block in 

red that is located in the position (R30, C27). Using the 

calculation above, we expect that the Actual Motion 

Vector (AMV) of the best match candidate block is to be 

located at clock cycle # 1487. Figure 23 shows the 

simulation results of performing the ME process and 

finding the best match at clock cycle # 1478. This is 

considered as the AMV which is stored in the MV 

memory after the whole ME process is done at clock cycle 

# 1540. 
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Figure 20: Simulation result of the PE array. 

 

 
Figure 21: Simulation result of SAD unit.  
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C0   C1  C2 C3 C4  C5 C6   C7  C8  C9    C10  C11C12 C13 C14C15       C16  C17 C18 C19 C20 C21 C22 C23 C24C25 C26 C27 C28 C29 C30C31 C32 C33C34 C35  C36 C37C38C39 C40C41C42C43  C44  C45C46 C47

R0: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R1:  22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R2: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R3: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R4: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R5: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R6: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R7: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R8: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R9: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R10:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R11:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R12:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R13:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R14:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R15:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R16:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R17:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11      22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R18:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R19:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R20:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R21:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R22:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R23:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R24:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R25:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R26:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R27:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R28:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R29:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R30:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R31: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R32: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R33: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R34: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R35: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R36: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R37: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11    22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R38:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R39:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R40:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R41:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R42:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R43:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R44:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R45:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R46:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R47:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11     22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

 
 

Figure 22: The best match is selected at (R30, C27) for a search area of size 32×32. 
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Figure 23: The simulation result of the best match is located at clock # 1487. 

 

CONCLUSION AND FUTURE WORK 

Full Search Motion Estimation architecture is proposed and 

fully functionally tested using VHDL verification language. 

Simulation results show that the whole Motion Estimation 

process can be performed using 1540 clock cycles (it means the 

transmission throughput is 
 

    
) with 100% utilization of all 

resources. Data reuse is achieved using smart data flow as well 

as small internal local memory. Simulation results show that the 

proposed architecture can find the exact AMV with 100% 

success rate. The future work will include the calculation of 

hardware cost and comparing the proposed design with the state 

of the art ME architectures. Since the proposed architecture 

uses less number of components and has a regular data flow, 

this is expected to positively affect on speed, area, and power 

consumption. A comprehensive comparison between the 

architecture in this paper and the future work is considered. 
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