

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 4, No.4 (Oct-2015)

E-mail: yasserali1977@gmail.com

 http://journals.uob.edu.bh

A Complete Verification of a Full Search Motion Estimation

Engine

Yasser Ismail

1,2

1College of Information Technology, Department of Computer Engineering, University of Bahrain, Sakhair, Bahrain.

2Electronics and Communications Engineering Department – Faculty of Engineering – Mansoura University – Mansoura – Egypt.

Received 10 May 2015, Revised 12 July 2015, Accepted 28 August. 2015, Published 1 October 2015

Abstract: A Full Search Motion Estimation architecture design is proposed and fully elaborated and tested in this paper. The

proposed Motion Estimation architecture smartly reuses the data fetched from the main memory to be used in the search area. This

allows using less memory I/O bandwidth. The proposed architecture guarantees a full utilization of all resources and not to have any

stall at all during the Motion Estimation process. The proposed architecture guarantees high speed by performing the Motion

Estimation process in adequate number of clock cycles. Additionally, high video quality is obtained using the proposed architecture.

Both of the high speed and the high video quality are achieved by using an efficient algorithm to load the search area into a local

memory. The local memory efficiently loads the processing array with the required search area and achieving two data reuse levels.

We concentrate on elaborating and functionally testing the whole Motion Estimation architecture using VHDL verification language

and provide a proof for the high accuracy of the designed architecture. The design of the local memory is implemented using only

registers and a simple counter. This simplifies the design by avoiding the use of complicated addressing to write or read into/from the

local memory. The proposed architecture has a regular data flow which leads to a simple VLSI implementation. The proposed

architecture is flexible and can be used for low and high definition video sequences. Due to the high speed of the proposed

architecture, it can be used for many real time video applications such as video phones, video conference, and HDTV broad casting.

Keywords: H.264/AVC, H.265/HEVC, Motion Estimation, video coding, VHDL

1. INTRODUCTION

HD-DVD, video conferencing, HDTV broadcasting,

video-on-demand, multimedia messaging, and ultra

frequency video transmission are real time video

applications that have been spread nowadays.

H.264/AVC (Advanced Video Coding) and H.265/HEVC

(High Efficiency Video Coding) are recent standards

used for such applications [1-4]. Such standards keep

very low bit-rate as well as high video quality. This is

achieved by adding some complexities to the encoder

design of such standards. Multiple reference frames, half-

pel and quarter-pel accurate Motion Estimation, parallel

processing, and variable block sizes techniques are

examples for such added complexities.

Full Search Motion Estimation (FSME) is the well

known algorithm used in both H.264/AVC and

H.265/HEVC standards for removing the temporal

redundancy of the transmitted video signal.

Consequently, the encoder of such standards can

achieve a high compression in the transmitted bit-rate.

FSME guarantees high video quality and high

compression in the transmitted bit-rate, however, it

consumes most of the video encoding time [5].

Consequently, many fast Motion Estimation algorithms

were developed to tackle the problem of high complexity

of the FSME process. Three Step Search (TSS) [6, 7],

New Three Step Search (NTSS) [8], Four Step Search

(FSS) [9], Diamond Search (DS) [10], Cross Diamond

Search (CDS) [11], Successive Elimination Algorithm

(SEA) [12, 13], and Adaptive Search Window Size

(ASWS) [14, 15] are examples for such fast Motion

Estimation algorithms.

Most of the previous fast Motion Estimation

algorithms are not implemented in VLSI due to the un-

regularity of data flow. Although some of them are well

implemented in VLSI, the transmitted video accuracy is

low [16, 17]. As a result, Full Search Motion Estimation

http://dx.doi.org/10.12785/ijcds/040401

222 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

is still used for video transmission. Due to its regular data

flow, FSME algorithm is well implemented in VLSI. In

this paper, a Full Search Motion Estimation architecture

design is presented and fully elaborated and tested.

Regularity of data flow, reducing the I/O bandwidth

required for video transmission, reusing data that is

fetched from the main memory, and fully utilizing the

resources of the proposed design are the issue in this

paper. We use the VHDL verification language to verify

the functionality and accuracy of all components of the

proposed Motion Estimation architecture.

The paper is organized as follows. Section 2 presents

the problem formulation. The proposed Motion

Estimation architecture is discussed in details in section

3. The whole data flow of the Motion Estimation

architecture is discussed in section 4. Section 5 discusses

the simulation results. Finally conclusion and future work

are drawn in section 6.

2. PROBLEM FORMULATION

H.264/AVC (Advanced Video Coding) and

H.265/HEVC (High Efficiency Video Coding) are the

most recent video coding standards jointly by ITU-T

VCEG and ISO/IEC MPEG [1-4]. Figure 1 shows the

time complexity of the encoding process of both

H.264/AVC and H.265/HEVC standards, respectively. It

is very clear that Motion Estimation and Compensation

process (MC) is the most exhaustive part which

consumes up to 53% and 84% in case of using

H.264/AVC and H.265/HEVC encoders. This is due to

the very high number of operations required to perform

such process. Following is a brief description of the

Motion Estimation process.

H.264/AVC Encoding Time H.265/HEVC Encoding Time

MC, 53%

etc,
13.50%

Integer
Trans.,

15.20%

VLC,
18.20%

Loop filter,
0.10%

MC, 84%

Entropy,
3.00%

Integer
Trans.,

10.00%

Intra
prediction
, 3.00%

Figure 1: Time encoding complexity for H.264/AVC and H.265/HEVC

encoders using one reference frame.

A. Motion Estimation Process

Motion Estimation (ME) is the process of finding the

Motion Vector (MV) that defines the transformation of

the current block image from the reference block one.

Full Search Block Matching Motion Estimation (FSBM-

ME) is the most popular ME algorithm [18]. In FSBM-

ME algorithm, the current frame is divided into blocks,

each of size N×N pixels; where N=16. Each block

searches for its best match candidate block in the search

area located at the reference frame. As seen in Figure 2,

the best match candidate block using the FSBM-ME

algorithm is calculated by searching each point in the

search area represented by 2Pmax×2Pmax.; where 2Pmax is

range of the selected search area. The point located at the

smallest cost is selected as the best match candidate

block. The cost can be measured using the Sum of

Absolute Difference (SAD) metric. The displacement

between the center of the search area and the best match

reference block is represented by the Actual Motion

Vector (AMV).

Current Frame n

Current

block

+

Residue

(k,l)

Reference Frame n-ψ

Best

match

AM
V

Search Area

(0,0)

PmaxPmax

P
m

a
x

P
m

a
x

(u,v)

(k,l)

Figure 2: Full Search Block Matching Motion Estimation (FSBM-ME)

algorithm.

Comparing video applications to other multimedia

sources such as speech and text, it consumes much data.

Table 1 illustrates some different video data formats. For

SIF video sequences, an 32×32 search area is needed.

While for SDTV and HDTV video sequences, an 64×64

search area is required [5, 19]. We concluded from the

data in Table 1 two main important notations:

1- Higher number of search areas are needed from

the memory as the frame size is increased or due

to the increasing consumer demand for higher

resolution [5, 20]. For example, UHDTV

broadcasting requires much data to be fetched

from memory than the Video Conferencing

which uses SIF video format. Since the memory

I/O bandwidth is limited, the proposed work is

proposing and elaborating the use of architecture

for better use of the available memory I/O

 Int. J. Com. Dig. Sys. 4, No.4, 221-232 (Oct-2015) 223

http://journals.uob.edu.bh

bandwidth. In this paper an architecture is

proposed for performing FSBM-ME process.

The elaborated architecture allows the data reuse

of an existing data inside the ME co-processor.

Consequently, no need for fetching large

amount of data from the main memory.

2- The more the resolution of a video sequence is,

the more the required computations to perform

the FSBM-ME algorithm. These computations

consume much encoding time. The proposed

architecture allows parallel processing;

consequently, higher speed of video

transmission is obtained. Additionally, 100%

utilization of the resources of the proposed

architecture is achieved. Following sub-section

is a brief description of the used data reuse

principle.

TABLE 1: DIFFERENT FORMATS FOR VIDEO TRANSMISSION [19].

 Pixels/line Lines/frame Frames/sec

 UHD 8k 7680 4320 30

UHD 4k 3840 2160 30

HDTV broadcast 1920 1080 30

SDTV broadcast

(D1)
720 486 30

Video conferencing

(SIF)
352 240 30

B. Data Reuse Principle

Compared to H.264/AVC standard [3], H.265/HEVC
has accomplished up to 50% savings in the transmitted
bit-rate. Consequently, 4K and Ultra High Definition TV
(UHD-TV) resolutions can be achieved [19]. There are
two main problems in both standards [1, 3, 5, 21, 22]. The
huge number of pixels data required from the external
memory is the first problem [5]. For a current block of
size N×N pixels, a search area of size 2Pmax ×(2Pmax +N-1)
pixels is required from the external memory. The second
problem is the huge number of computations required for
performing the full search Motion Estimation process.
2Pmax ×(2Pmax +N-1) absolute difference operations for a
full Motion Estimation process per one current block is
required. The huge number of data can be solved by using
data reuse techniques [23-25]. In this work we use two
different data reuse levels; i.e., Level A and Level B as
follows:

Data reuse level A: In a single strip of the search area
of size 2Pmax×2Pmax, consecutive candidate blocks are
overlapping in (N×N-1 pixels) within the same strip as
seen in Figure 3. As a result, the overlapped area can be
reused for the future candidate block #2 and only one

column is needed from the external memory for such
future candidate block#2.

Data reuse level B: There are overlapped pixels
between two consecutive strips (i.e., strip#1 and strip#2)
as seen in Figure 3. Consequently, while processing
strip#2, most of the pixels used in strip#1 can be reused. It
means, only one row of pixels is needed from the external
memory to complete strip#2.

N-1

N - 1

C
a

n
d

id
a

te

B
lo

c
k
S

tr
ip

 #
1

C
a

n
d

id
a

te

B
lo

c
k
S

tr
ip

 #
2

Candidate

Block #1

Candidate

Block #2

1

1

1 1
LEVEL A

L
E

V
E

L
 B

2Pmax

2
P

m
a
x

Figure 3: Data reuse levels A and B.

3. PROPOSED MOTION ESTIMATION ARCHITECTURE

The whole proposed ME architecture is shown in
Figure 4. This architecture is mainly used for the
H.264/AVC standard. The search area fetched from
memory is 2Pmax ×(2Pmax +N-1) and the current block size
is N×N. N and Pmax are chosen to be 16. The ME
operation starts when the De-multiplexer (Demux) receive
the pixels of both the Current Block (CB) and the search
area from the external memory. The Demux distributes
the data to either the Local Memory or the PE Array. The
Local Memory consists of three sub-memories. Local
Memory send candidate blocks to the Processing Array
which contains the data of both the current and the
candidate blocks. After the absolute differences are
calculated inside the PE array, they will be sent to the
Adder Tree to get the Sum of Absolute Address (SAD).
The SAD value is then sent to the Compare Unit to find
the minimum SAD between the CB and all candidates in
the search area. After the comparison, the position of the
final minimum SAD is stored in the motion vector
memory. The motion vector memory sends all the stored
actual motion vectors to the main processor. The Control
Unit controls all those activities of the components.

It is worth mentioning that this architecture is scalable
one, so it can be easily used for the H.265/HEVC
standard. Local memory will have same size but the PE

224 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

array will be extended to be 32×32 in order to be suitable
for the ME of the H.265/HEVC standard.

Control unit

SUB memory1

PE Array

SUB memory2 SUB memory3

Local memory

DEMUX

Main ProcessorExternal Memory

Adder Tree

MVMem

Compare unit

Reference data

CB data

Absolute

difference SAD

minPOS

start System clock

Figure 4: The proposed ME architecture.

A. PE Array

The Processing Element (PE) array is the factory of
getting the Absolute Difference (AD) values between the
current block and the candidate block in the search area. It
consists of 16 PE Rows as seen in Figure 5 to form the PE
array in Figure 6. The current block data pixels and the
candidate block data pixels enter the 16 rows in parallel
via the terminals CBRin and RBRin, respectively. Every
clock cycle, one data pixel enters the least significant PE
of each row of Figure 5. Since the pixel value ranged from
0 to 255 gray levels, the number of bits per pixel is chosen
to me 8. As a result, each PE row has 128 bits for the
whole ADs in one row. It is worth mentioning that the
data enters the first PE and each PE sends its stored data
to the next PE. There is an exception for the last PE which
does not need to send any data to any next PE. All of the
PEs calculates the absolute difference in parallel.

PE PE PE PE PE PE PE PE PE PE PE PE PE

128-bit

PE Row

PEPE PE

Absolute Difference

CBin

RBin

Figure 5: PE row.

PE PE PE PE PE

PE PE PEPE PE

PE PE PE PE PE

PE PE PEPE PE

CBRin
RBRin

Figure 6: PE array.

B. Adder Tree

The output of the PE Array is 256 AD values that need
to be summed in a very fast fashion. Using normal adders
result in a huge delay that may prevent the proposed
architecture to be used in the real time video applications.
Adder tree architecture is a good choice that uses parallel
processing to add many values in one clock cycle [5, 26].
The main unit in adder tree is the 4-2 compressor shown
in Figure 7. It is used to add 4 bits at a time.

Sum

Carry

SUM

Carry

Input 1

Input 2

Input 3

Input 4

Carry In

Cin

Carry Out

Sum

Carry

Figure 7: 4-2 compressor.

Assume that we have four Bytes:

Byte1: a7 a6 a5 a4 a3 a2 a1 a0

Byte2: b7 b6 b5 b4 b3 b2 b1 b0

Byte3: c7 c6 c5 c4 c3 c2 c1 c0

Byte4: d7 d6 d5 d4 d3 d2 d1 d0

These four Bytes will enter to 4-2 compressors as seen in
Figure 8. The value of carry out for the current stage i will
be Cin for the next stage ii. The final result will be
obtained by using 9-bits adder which adds the output of
the adder tree in Figure 8 as follows:

Carry out S8 S7 S6 S5 S4 S3 S2 S1 S0

+
C8 C7 C6 C5 C4 C3 C2 C1 C0 0

4 to 2

Compressor

4 to 2

Compressor

4 to 2

Compressor

4 to 2

Compressor

d0c0b0a0d1b1a1 c1a2 b2 c2 d2a3 b3 c3 d3

S0S1S2S3

Cin=0

C1C2C3

4 to 2

Compressor

4 to 2

Compressor

4 to 2

Compressor

4 to 2

Compressor

d4c4b4a4d5b5a5 c5a6 b6 c6 d6a7 b7 c7 d7

S4S5S6

C
a

rr
y
 o

u
t

S7 C0C5C6C7 C4

Figure 8: 4-Bytes adder tree.

 Int. J. Com. Dig. Sys. 4, No.4, 221-232 (Oct-2015) 225

http://journals.uob.edu.bh

C. Sum of Absolute Difference (SAD) Unit

The 256 AD values, result from the PE array, are divided
into 16 4×4 groups. Each group uses the adder tree
principle to add all of its AD values. All groups are
working in parallel and the final result is a 16-bits SAD
value as seen in Figure 9.

16x16 PE Array
Adder Tree

4x4 4x4 4x4 4x4

4x44x4 4x4 4x4

4x4 4x4 4x44x4

4x4 4x4 4x4 4x4

2
0

4
8

 b
it
s

1
6

-b
it
s

S
A

D
 v

a
lu

e

128-bit CB

128-bit RB

Figure 9: The SAD unit.

D. Local Memory

The main idea of data reuse principle is performed by
using the Local Memory unit. It is used to save the data of
the search area as well as data that may be reused in the
future. Consequently, no need for fetching such reused
data again from the main memory. The Local Memory
unit consists of two main units: The Demultiplexer
(Demux) and the sub-memory units as seen in

Figure 11.

Figure 10 shows the required search area for a 16×16
current block. The last pixels in part 2 and part 4 required
additional 16×15 pixels for completing the search process.
This is the reason for using the last sub-memory 3 in Figure

11. The additional pixels (dashed area in Error!
Reference source not found.), which are required for
searching the pixels in part 3 and part 4, can be fetched
using the three sub-memories 1, 2, and 3, consequently.
Each sub memory contains a 16×16 register array as seen
in Figure 12. Each register is eight bits in length and saves
a value of one pixel in the search area. The data enter as
16 pixels row by row from down to top direction. Each
clock cycle one row enters from bottom and shift one row
to the upper register row. Data outputs from sub-memory
column by column starting from the left column and move
forward to the right direction. Selecting a specific column
is done by using a counter.

text

Part 1 Part 2

Part 2 Part 4

Search Area 32x32

16 pixels 15 pixels

1
6

 p
ix

e
ls

Figure 10: The search area needed for a 16×16 current block.

Demux

1

PE Array

2
0 3

16 pixel (8 bits each)

Memory

128 bit

Sub memory1 Sub memory2 Sub memory3

Selector

48 pixel (8 bits each)

Figure 11: Local Memory.

Sub memory

8-bit register #15

16 pixels (128 bits bus)

counter

8-bit register #223

8-bit register #0 8-bit register #1

8-bit register #208 8-bit register #209

8-bit register #224 8-bit register #225

8-bit register #240 8-bit register #241

8-bit register #239

8-bit register #255

1
6

 p
ix

e
ls

 (
1

2
8

 b
it

s
 b

u
s

)

Figure 12: The sub-memory architecture.

226 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

The Demux is acting as the interface between the
external memory and both the PE array and the local
memory. Data is transferred from the external memory
using 128 bits data bus (16 pixels wide). The PE array
starts filling its registers with the Current Block data
fetched from the external memory once per ME search
operation when the select of the DEMUX is set to 0. The
search area is filled starting by sub memories 1, 2, and 3,
respectively, when the select terminal is in positions1, 2,
and 3.

Back to the whole architecture of the local memory in
Figure 11 and the search area in Figure 10, the whole
operation will be as follows. During the first 16 clock
cycles, the select terminal of the DEMUX will be 0. The
PE array starts getting the values of the current block row
by row as 16 pixels (128 bits) in the upward direction. In
the next 16 clock cycles, the select terminal will be 1 and
sub-memory 1 start to be filled in the upward direction
with part 1 of the search area. In clock cycle number 33,
the counter will refer to the most significant column of
sub-memory 1 and select terminal will be 2. Additionally,
sub-memory 2 starts to be filled with part 2 of the search
area. The counter keeps increasing until clock cycle # 48.
At clock cycle # 48, all part 1 of search area is moved to
the PE array and group 2 is filled in sub-memory 2. PE
array will give 256 Absolute Difference (AD) values at
clock cycle # 49. The AD values will be added by the
adder tree to get the final SAD value at clock cycle # 50.
Level A data reuse is achieved by moving the counter to
the first left column of part 2 of the search. Once the
counter is selecting this column, it will be entered to the
left column of the PE array to give another 256 AD
values. The process will continue until the first strip of
level A data reuse is done. It is worth mentioning that on
clock cycle # 49, the select terminal will be 3 to start
filling the sub-memory 3 with the dashed area of first strip
level A of the search area in Figure 10. Level B data reuse
[21] will be achieve by filling only one row from part 3 ad
part 4 into sub-memories 1, 2, and 3, respectively. The
counter will be updated to cover all points in the search
area in Figure 10. It is worth mentioning that the SAD
value is 16 bits length.

E. Motion Vector Memory

The output of the adder tree is a SAD value between
the current block and the candidate block (SAD_current).
The compare unit stores the value of the minimum SAD
so far and its corresponding position. The compare unit
compares the SAD_current with the minimum SAD. Id
SAD_current is less than the minimum SAD, the compare
unit will update its minimum SAD value with
SAD_current and its new position. After all candidate
blocks in the search area are processed, the final position
will be sent to a motion vector memory in Figure 13.

The proposed ME architecture is flexible one. It
means it can be used for doing ME process for many
formats of video sequences. For example, QSIF, SIF, and
SDTV video sequences [5]. For Motion Estimation, the

current block should be divided into 16×16 and each
current block should have an actual motion vector
(position of the minimum SAD). These actual motion
vectors (AMV) are stored in a motion vector memory
shown in Figure 13.

The size of the SDTV video sequence is 720×486
pixels per frame. If divided into 16×16 current blocks,
1395 AMVs are needed. Motion vector memory is simply
a FIFO system that contains 1395 registers. We simply
used 32×32 search area in our simulation. Consequently,
the input to the motion vector memory is 11-bits in length.
The first position is stored in the bottom register and shifts
in the upper direction every new AMV. The reset terminal
(Rst) is enabled once per current frame. The enable
terminal (En) is enabled at the end of each Motion
Estimation process to store an AMV for a current block.

11-bits register #1394

11-bits register #2

11-bits register #1

11-bits register #0

Rst

En

To the main

Processor

AMV

Figure 13: Motion Vector Memory.

F. Control Unit

The Control Unit is the most important and complex
part of the design. It produces all the required control
signals for the whole components of the ME architecture.
The control unit consists of two important parts: the up
counter and the control signals controller. The Control
Unit has three inputs; i.e., enable, reset, and the system
clock. The outputs of such unit are all the needed control
signals.

The up counter is used to count the clock cycles
needed for each ME process start from the top left pixel to
the bottom right one in the search area. For example, for a
search area of 32×32, the up counter starts from 000H to
400H. To start counting, an enable, reset and system clock

 Int. J. Com. Dig. Sys. 4, No.4, 221-232 (Oct-2015) 227

http://journals.uob.edu.bh

are needed as inputs, and the number of clock is the
output of the up counter. The up counter value is reset
with every new ME process. The output of such counter
represents the position of the candidate block inside the
search area. This value should be matched to the whole
frame axis before storing the value of the best match
candidate position in the motion vector memory.

The control signals controller takes the output of the
up counter as its input. The output of such controller is the
control signals that initiate all component of the whole
ME architecture.

4. THE DATA FLOW OF THE ME ARCHITECTURE

The ME process starts by getting start control signal
and the system clock from the main processor. PE array is
filled with the current block pixel values in the first 16
clock cycles. This filling operation occurs by set the select
terminal of the DEMUX to 0. The second 16 clock cycles,
the sub-memory 1 will be filled by 16×16 pixels of search
area (group 1) as seen in Figure 14. This will be done by
set the select terminal of the DEMUX to 1. In clock cycle
number 33, PE array starts read data of group 1 and sub-
memory 2 also starts reading 16×16 search area group 2
by setting the select terminal to 2. At clock cycle number
48 the PE array gives 256 absolute differences to the
adder tree and sub-memory 3 starts getting its 16×16
search area pixels by setting the select terminal to 3. In
clock cycle number 49 the adder tree will give the SAD
value to the compare unit and the PE array gets the first
column of group 2 in Figure 14 which achieve data reuse
level A. In clock cycle number 50, the compare unit is
done by its update operation. It is worth mentioning that
sub-memory 3 finishes filling its pixel values at clock
cycle number 64. It means each sub-memory requires 16
clock cycle to be filled. After filling sub-memory 3, in
clock cycle number 65, only 16 pixels (group 4) will fill
the bottom row of sub-memory 1. All values in sub-
memory 1 will be shifted upward to achieve level B data
reuse. After filling the contents of group 3 into the PE
array, new candidate value of group 1 starts to enter the
PE array. Groups 5 and 6 will be filled in clock cycles 66
and 67, respectively. Operations will be repeated by
entering the remaining search area values in the sub-
memories and read them accordingly into the PE array. It
is worth mentioning that sub-memories 1 and 2 require 16
clock cycles to read data column by column from each
one. Sub-memory 3 only fills 15 columns into the PE
array.

It is clear from previous discussion that data enters the
sub-memories row by row to achieve level B data reuse.
Level A data reuse is achieved by switching the read
operations between sub-memories. Thus, 16 clock cycles
are needed to read from sub-memory 1 while writing sub-
memory 2 row by row. And 16 clock cycles to read from
sub-memory 2 while writing sub-memory 3 row by row.
Finally, 15 clock cycles are needed read from sub-
memory 3 while writing the bottom row of sub-memory 1
and sub-memory 2 (level B data reuse). That is a total of
47 clock cycles. Those 47 clock cycles are repeated, with
resetting the counter of the local memory for each row, for
32 rows of the search area. Adding 16 clock cycles for
loading the current block into the PE array, another 16
clock cycles for loading the first candidate block inside
the PE array, two clock cycles for getting the first SAD,
one clock cycle for the compare unit, and one clock cycle
for resetting all registers at the beginning of the ME
process, the total setup clock cycles are 36. The number of
clock cycles required for the whole ME operation are (32
row of search area) × (47 clock cycles for reading one
slice using sub memories 1, 2, and 3) + 36 (setup clock
cycles) which are 1540 clock cycles.

16 extra columns

of pixels
32*32 pixels

Search area

1
5

 e
x

tr
a

 r
o

w
s

o
f

p
ix

e
ls

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Figure 14: Data flow in the ME architecture.

228 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

5. SIMULATION RESULTS

The frames are divided into blocks of size 16×16. The

used search area has a size of 32×32 pixels. The proposed

Motion Estimation architecture is tested using VHDL

verification language and full functional verification was

performed using Modelsim tool.

 In our simulations, we simulate each part of the whole

ME architecture in Figure 4. Figure 15 and Figure 16show

the test benches for the current block (CB) and the

candidate or reference block (RB) used to test the PE

array. If we fill both of the CB and the RB at same time to

the PE array, it takes 16 clock cycles to be loaded inside

the registers of the PE array. Since for each PE, there two

registers, two more clock cycles are needed. The expected

results of the absolute difference shown in Figure 17can

be obtained after clock cycle number 18. The simulation

result in Figure 20 confirms the absolute difference values

in Figure 17 of the PE array at clock cycle number 18.

[

]

Figure 15: The current block (CB).

[

]

Figure 16: The reference block (RB).

| |

[

]

Figure 17: The expected absolute difference values.

The second part that we checked is to join the PE

array with the adder tree to calculate the SAD value. The

used CB and RB in this case are more complex and are

shown in Figure 18 and Figure 19, respectively. The

expected SAD value is 200H after 18 clock cycles.

Figure 21 confirms such results.

[

]

Figure 18: The CB used in SAD calculation.

[

]

Figure 19: The RB used in SAD calculation.

The whole architecture is checked using a search area start

at (R0,C0) and has a search area size of 32×32. The whole

Motion Estimation process consumes 1540 clock cycles

(16 clks for loading CB into PE array, 16 clks for loading

sub-memory 1, 47 clocks for loading each strip into the

PE array, 2 clks for getting the SAD, 1 clk for reset the

whole registers, and 1 clk for the compare unit to store

into the MV memory. It is worth mentioning that we have

32 strips of search area that should be loaded into the PE

array. As seen in Figure 22, the best match is the block in

red that is located in the position (R30, C27). Using the

calculation above, we expect that the Actual Motion

Vector (AMV) of the best match candidate block is to be

located at clock cycle # 1487. Figure 23 shows the

simulation results of performing the ME process and

finding the best match at clock cycle # 1478. This is

considered as the AMV which is stored in the MV

memory after the whole ME process is done at clock cycle

1540.

 Int. J. Com. Dig. Sys. 4, No.4, 221-232 (Oct-2015) 229

http://journals.uob.edu.bh

Figure 20: Simulation result of the PE array.

Figure 21: Simulation result of SAD unit.

230 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C12 C13 C14C15 C16 C17 C18 C19 C20 C21 C22 C23 C24C25 C26 C27 C28 C29 C30C31 C32 C33C34 C35 C36 C37C38C39 C40C41C42C43 C44 C45C46 C47

R0: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R1: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R2: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R3: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R4: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R5: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R6: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R7: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R8: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R9: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R10:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R11:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R12:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R13:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R14:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R15:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R16:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R17:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R18:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R19:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R20:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R21:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R22:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R23:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R24:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R25:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R26:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R27:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R28:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11
R29:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R30:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R31: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R32: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R33: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R34: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R35: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R36: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R37: 22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R38:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R39:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R40:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R41:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11

R42:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R43:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R44:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R45:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 10 22 20 12 12 12 10 20 22 22 20 12 10 11 11 11 22 22 11 11 11
R46:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

R47:22 22 20 20 20 12 12 10 10 20 22 22 22 10 11 11 22 22 20 20 20 12 12 10 10 22 22 22 22 11 11 11 22 22 22 22 22 11 11 11 11 22 22 22 22 11 11 11

Figure 22: The best match is selected at (R30, C27) for a search area of size 32×32.

 Int. J. Com. Dig. Sys. 4, No.4, 221-232 (Oct-2015) 231

http://journals.uob.edu.bh

Figure 23: The simulation result of the best match is located at clock # 1487.

CONCLUSION AND FUTURE WORK

Full Search Motion Estimation architecture is proposed and

fully functionally tested using VHDL verification language.

Simulation results show that the whole Motion Estimation

process can be performed using 1540 clock cycles (it means the

transmission throughput is

) with 100% utilization of all

resources. Data reuse is achieved using smart data flow as well

as small internal local memory. Simulation results show that the

proposed architecture can find the exact AMV with 100%

success rate. The future work will include the calculation of

hardware cost and comparing the proposed design with the state

of the art ME architectures. Since the proposed architecture

uses less number of components and has a regular data flow,

this is expected to positively affect on speed, area, and power

consumption. A comprehensive comparison between the

architecture in this paper and the future work is considered.

ACKNOWLEDGMENT

The author acknowledges the support of the Deanship
of Scientific Research – University of Bahrain – Bahrain
for supporting this work under the project number
43308016. The author thanks his student, Najeeba
Mohammed Jaffar, for her efforts in simulations.

REFERENCES

[1] J. Ohm, G. J. Sullivan, H. Schwarz, T. Thiow Keng, and T.

Wiegand, "Comparison of the Coding Efficiency of Video

Coding Standards - Including High Efficiency Video

Coding (HEVC)," IEEE Transactions on Circuits and

Systems for Video Technology,, vol. 22, pp. 1669-1684,

2012.

[2] Z. Hao and M. Zhan, "Fast Intra Mode Decision for High

Efficiency Video Coding (HEVC)," IEEE Transactions on

Circuits and Systems for Video Technology,, vol. 24, pp.

660-668, 2014.

[3] Y. Ismail, J. B. McNeely, M. Shaaban, H. Mahmoud, and

M. A. Bayoumi, "Fast Motion Estimation System Using

Dynamic Models for H.264/AVC Video Coding," IEEE

Transactions on Circuits and Systems for Video

Technology, , vol. 22, pp. 28-42, 2012.

[4] "High Efficiency Video Coding (HEVC) Text

Specification Draft 6," ISO/IEC JTC1/SC29/WG11 and

ITU-T SG16 WP3, Feb. 2012.

[5] Y. Ismail, W. El-Medany, H. Al-Junaid, and A.

Abdelgawad, "High Performance Architecture for Real-

time HDTV Broadcasting," Journal of Real-Time Image

Processing, Springer, ISSN: 1861-8200 (print version),

and ISSN: 1861-8219 (electronic version), May 27, 2014.

[6] H. Amirpour, A. Mousavinia, and N. Shamsi, "Predictive

Three Step Search (PTSS) algorithm for motion

estimation," in 2013 8th Iranian Conference on Machine

Vision and Image Processing (MVIP), 2013, pp. 48-52.

[7] H. A. Choudhury and M. Saikia, "Reduced three steps

logarithmic search for motion estimation," in 2014

International Conference on Information Communication

and Embedded Systems (ICICES), 2014, pp. 1-5.

[8] L. Renxiang, Z. Bing, and M. L. Liou, "A new three-step

search algorithm for block motion estimation," IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 4, pp. 438-442, 1994.

[9] P. Lai-Man and M. Wing-Chung, "A novel four-step

search algorithm for fast block motion estimation," IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 6, pp. 313-317, 1996.

[10] Z. Shan and M. Kai-Kuang, "A new diamond search

algorithm for fast block matching motion estimation," in

Proceedings of 1997 International Conference on

Information, Communications and Signal Processing,

1997. ICICS., 1997, pp. 292-296 vol.1.

[11] C. Chun-Ho and P. Lai-Man, "A novel cross-diamond

search algorithm for fast block motion estimation," IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 12, pp. 1168-1177, 2002.

[12] C. Changryoul and J. Jechang, "Successive Elimination

Algorithm for Constrained One-bit Transform Based

Motion Estimation Using the Bonferroni Inequality," IEEE

Signal Processing Letters, vol. 21, pp. 1260-1264, 2014.

232 Yasser Ismail: A complete Verification of A Full Search …

http://journals.uob.edu.bh

[13] L. Hwal-Suk, J. Jik-Han, and P. Dong-Jo, "An effective

successive elimination algorithm for fast optimal block-

matching motion estimation," in 15th IEEE International

Conference on Image Processing, 2008. ICIP 2008, 2008,

pp. 1984-1987.

[14] Y. Ismail, M. Shaaban, J. B. McNeely, and M. A.

Bayoumi, "An Efficient Adaptive High Speed

Manipulation Architecture for Fast Variable Padding

Frequency Domain Motion Estimation," IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, pp. 1239-1248, 2011.

[15] S. Goel, Y. Ismail, and M. A. Bayoumi, "Adaptive search

window size algorithm for fast motion estimation in

H.264/AVC standard," in 48th Midwest Symposium on

Circuits and Systems, 2005, 2005, pp. 1557-1560 Vol. 2.

[16] J. Sung-Tae and L. Sang-Seol, "A 4-way pipelined

processing architecture for three-step search block-

matching motion estimation," IEEE Transactions on

Consumer Electronics, vol. 50, pp. 674-681, 2004.

[17] D. Xu, J. M. Noras, and W. Booth, "A simple and efficient

VLSI architecture for a very fast high performance three

step search algorithm," in IEE Colloquium on High

Performance Architectures for Real-Time Image

Processing (Ref. No. 1998/197), 1998, pp. 6/1-6/6.

[18] L. Yeong-Kang and C. Lien-Fei, "A high data-reuse

architecture with double-slice processing for full-search

block-matching algorithm," in Proceedings of the 2003

International Symposium on Circuits and Systems, 2003.

ISCAS '03. , 2003, pp. II-716-II-719 vol.2.

[19] P. Davis and S. Marikkannan, "Implementation of Motion

Estimation Algorithm for H.265/HEVC," International

Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering, vol. 3, Special Issue 3,

April 2014.

[20] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, "On the data reuse

and memory bandwidth analysis for full-search block-

matching VLSI architecture," Trans. Circuits Syst. Video

Technol.. vol. 12, pp. 61-72, Jan. 2002.

[21] D. Meng, C. Canhui, and M. Kai-Kuang, "A novel

multiple description video coding based on data reuse," in

2013 20th IEEE International Conference on Image

Processing (ICIP), 2013, pp. 1928-1932.

[22] T. Muralidhar Reddy, P. Muralidhar, and C. B. Rama Rao,

"New fast search block matching Motion Estimation

algorithm for H.264 /AVC," in 2014 International

Conference on Recent Trends in Information Technology

(ICRTIT), 2014, pp. 1-5.

[23] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, and S. Goto,

"High-Throughput Power-Efficient VLSI Architecture of

Fractional Motion Estimation for Ultra-HD HEVC Video

Encoding," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. PP, pp. 1-1, 2015.

[24] N. Aarthi, K. S. Athishkarthic, N. Madhan Kumar, and P.

Jayakrishnan, "A high performance 2-dimensional VLSI

architecture for H.264/AVC Variable Block Size integer

motion estimation," in 2013 International Conference on

Emerging Trends in Communication, Control, Signal

Processing & Computing Applications (C2SPCA), 2013,

pp. 1-4.

[25] W. Yansheng, L. Leibo, Y. Shouyi, Z. Min, C. Peng, Y.

Jun, and W. Shaojun, "On-Chip Memory Hierarchy in One

Coarse-Grained Reconfigurable Architecture to Compress

Memory Space and to Reduce Reconfiguration Time and

Data-Reference Time," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 22, pp. 983-994,

2014.

[26] W. Shugang, "Residue checker using optimal signed-digit

adder tree for error detection of arithmetic circuits," in

2014 IEEE Region 10 Conference - TENCON 2014 2014,

pp. 1-6.

 Dr. Yasser Ismail received the

B.Sc.degree in Electronics &

Communications Engineering from

Mansoura University, Mansoura, Egypt, in

1999, the M.Sc. degree in Electrical

Communications from Mansoura

University, Mansoura, Egypt, in 2002, the

M.Sc. degree in Computer Engineering

from University of Louisiana at Lafayette, Louisiana, USA, in

2007. Dr. Yasser Ismail got his Ph.D. from the University of

Louisiana at Lafayette in May 2010. Dr. Yasser Ismail worked

as an assistant professor in Umm Alqura University – KSA

from 2010 to 2012. He is currently working as an assistant

professor in University Of Bahrain (UOB) - Bahrain. Dr. Yasser

permanently working at the Electronics and Communications

Engineering Department – Faculty of Engineering – Mansoura

University – Mansoura – Egypt. Dr. Yasser is served as a

reviewer for several conferences and journals, including ISCAS

2010, ICIP 2010, ICIP 2011, ICECS2013, Transaction on

Circuit and System for Video Technology (TCSVT), and IEEE

Transactions on Image Processing, and Signal Processing. He

has also gained many valuable projects from KSA, NSF, and

Bahrain. Dr. Yasser served in the organizing committee of 2013

IEEE International Conference on Electronics, Circuits, and

Systems (ICECS2013). His research of interest includes video

processing, digital signal processing, Robotics, RFID,

Localization, VLSI, FPGA, wireless communication systems,

and low power embedded systems.

https://webmail.cacs.louisiana.edu/src/read_body.php?mailbox=INBOX&passed_id=5700&startMessage=1

