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Abstract: Underground imaging equipment is a non-destructive technology for scanning of subsurface which is composed of 

transmitter and receiver antennae used for measuring underground resistivity. Real-time monitoring of output electrical parameters of 

the transmitted signals is required since these are significant in the computation of subsurface resistivity. This study aims to develop 

a digital measuring circuit for monitoring of transmitter antenna output current and voltage and to simulate prediction models that 

can be implemented in the circuit. Three neural network models-Elman recurrent neural network (ERNN), long short-term memory 

(LSTM), and gated recurrent unit (GRU) were explored to make prediction models for current and voltage of the transmitter circuit. 

The performance of the prediction models was assessed using mean squared error (MSE), which is reduced to its absolute lowest 

value. The result shows that the best-trained models both for current and voltage prediction are the ERNN models with 

configurations of 900-600-500 hidden neurons network with training MSE of 9.82 × 10-9 and the configured 1300-1000-900 hidden 

neurons with training MSE of 0.465, respectively. With the help of the prediction models, it would be possible to measure current 

and voltage output more precisely while avoiding the need for separate and bulky measuring devices. 

 

Keywords: transmitter antenna, digital measuring circuit, recurrent neural network, long short-term memory, gated recurrent unit, 

underground imaging 

 

1. INTRODUCTION  

Underground utility demand in the Philippines was 
projected to have an increasing trend as there is a 
constantly growing population rate from 1960 to 2021 
with 26.27 million to 111.05 million people, respectively 
[1]. Increasing population and industrial expansion both 
contribute to the establishment of various underground 
service utility lines such as pipes, water lines, electricity, 
and drainage [2]. With that, it introduces the exploration 
of utility and object detection through underground 
imaging technology to properly handle the web of utility 

lines. This has been a well-known strategy since it has a 
non-destructive approach to detecting underground 
utilities, reducing the pre-construction process's 
unpleasant effect [2]. A capacitive resistivity underground 
imaging system is composed of a configured transmitter 
and receiver antennas that are capacitively coupled in the 
ground [3-4] to measure the potential difference in 
resistivity readings [5]. The transmitter emits low-
frequency electromagnetic waves into the ground and the 
multi-receiver systems will detect the reflected signals 
generated by a conductive anomaly [6]. Thus, this concept 
conveys that penetration, resolution capabilities, and 
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frequency selection are incorporated into a well-
configured antenna design. 

Numerous designs of transmitter antennae appropriate 
for subsurface imaging have been developed over the 
years [7-8]. One study utilized a circular patch antenna 
with a half-defected ground plane operating from 500 
MHz to 2 GHz that is suitable for GPR application of 
buried object detection [9]. Another design utilized two 
Marx transistor-based pulse generators, a balun, and a 
Vivaldi antenna to make a high-power Gaussian 
monopulse ultrawideband transmitter for buried object 
detection [10]. Moreover, a transmitter unit which is a 
transverse electromagnetic flared (TEM) horn antenna 
with a pulse shaping circuit consisting of a crystal 
oscillator with an oscillation frequency of 10 MHz and an 
amplitude in the range of ±1 V has been developed for 
imaging of water pipelines [11]. Hence, in utilizing 
transmitter antenna design, one important factor is to have 
monitoring the current and voltage to verify the 
parameters of output signals that are essential for the 
calculation of the subsurface resistivity, and this can be 
done through a measuring device such as the digital 
multimeter. 

Digital multimeter (DMM) has various measuring 
capabilities such as Alternating Current (AC) /Direct 
Current (DC) voltage, current, resistance, power, and 
electric energy [12]. Since it is a functional electronic 
device, there are advancements employed to it in recent 
years. In [13], a digital multimeter was incorporated into 
the use of a dual-slope Analog-to-Digital Converter 
(ADC) and a designed algorithm that enabled an accurate 
determination of power and true Root Mean Square 
(RMS) voltage. Additionally, voltage and current were 
measured in a stroboscopic technique. Furthermore, one 
study has developed an automatic calibration system for a 
digital multimeter [14] while in [15] additional function 
was added to the DMM that can observe and record data 
in real time. Hence, through these innovations, DMM can 
have more reliable performance and high accuracy in 
measurement. However, it is crucial to further guarantee 
that the accurate and scientific process of current and 
voltage measurements is observed as this is functional in 
the electrical and electronic industry. 

There are many accounts that deep learning was 
applied in the generation of prediction models for voltage 
and current measuring models. In the study of [16], 
researchers compared neural network prediction models, 
support vector machine (SVM) for regression, and 
equation discovery for predicting the next voltage values 
without performing measurements. Another prediction 
modeling was employed through a convolutional neural 
network to recognize and classify welding current in order 
to construct an ERT imaging trailer and detect defects 
[17]. Additionally, a deep recurrent neural network was 
employed in forecasting electricity usage in medium to 
long-term periods [18]. Interestingly, researchers are 

exploring other neural network models for optimization 
and prediction applications such as recurrent neural 
networks which are appropriate for time-series data 
processing [19] and sequence analysis [20]. Thus, the 
most known recurrent architectures are the long short-
term memory (LSTM) [21] that enables each recurrent 
unit to control dependencies of different time scales [22]; 
and the gated recurrent unit (GCU) [23] which is 
commonly applied in sequential and temporal data [24]. 

In digital multimeters, it is important to consider the 
accuracy of electrical parameter readings to reduce and 
avoid deviation from their actual value. Additionally, 
there is a need for real-time checking of the generated 
current and voltage by a single-pair antenna transmitter 
subsystem for underground imaging to verify the 
parameters of output signals in comparison to received 
signals of the receiver subsystem which is essential in 
calculating the underground’s resistivity. 

With that, the study focuses on the development of a 
digital meter with improved accuracy of displayed 
electrical outputs suitable for underground imaging 
applications. Three neural network models-Elman 
recurrent neural network (ERNN), long short-term 
memory (LSTM), and gated recurrent unit (GRU) were 
explored to create time-series prediction models for 
current and voltage outputs of the transmitter circuit. To 
determine whether the developed measuring device's 
performance is acceptable, mean squared error (MSE) was 
reduced to its absolute minimum using the different neural 
network models. Thus, this allowed simultaneous data 
acquisition through a single connection from the 
transmitter of a single-pair antenna system for 
underground imaging. These prediction models 
contributed to providing a more accurate output reading of 
current and voltage which avoids the utilization of a 
separate, bulky, and multiple connection measuring 
device. 

2. MATERIALS AND METHOD 

This research involves five major steps in the 

prediction and optimization of a current-voltage digital 

meter for monitoring of transmitter subsystem for 

underground imaging (Fig. 1). It starts with the 

construction of the transmitter antenna circuit with 

current-voltage measuring circuit, then simulation of the 

circuitry for the collection of measured current and 

voltage data based on measured DC input voltage (Vdc) 

and set operating frequency (fo), followed by the 

development of the different neural network models 

specifically ERNN, LSTM, and GRU to predict the 

current and voltage. After that, training, validation, and 

testing of neural network models were conducted, and 

lastly, the selection of the best neural network model with 

the lowest MSE and comparison of its results with the 

measured values. 
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Figure 1.  Step-by-step process of the prediction and optimization of 

current-voltage digital meter for monitoring of transmitter subsystem 
for underground imaging using recurrent neural network, long short-

term memory, and gated recurrent unit. 

 

A. Construction of Measuring Circuit and Digital Signal 

Processing for Arduino Data Collection 

This study's transmitter circuit to be monitored was 
designed to operate at frequencies from 3.5 KHz to 18.5 
KHz. Its signal generator made the transmitter capable of 
having outputs of two sine, triangular or rectangular 
waveforms. The range of output voltage is from 500 Vpk 
to 1500 Vpk with a minimum power of 2 W and a 
maximum power of 20 W. To achieve a 10 W output 
power, its corresponding output voltage must be 10 W. 
While at maximum power output, the maximum current is 
close to 15 mA. 

Electrical parameters required for proper measurement 
and analysis of the resistivity of underground imaging 
using the capacitive resistivity technique are the 
transmitter’s output current and voltage, and the receiver’s 
reading voltage and phase difference. These electrical 
measurements are essential for the computation of the 
ground equivalent resistance using Ohm’s Law [25]. The 
digital multimeter (Fig. 2), designed in this study, focused 
on acquiring measurements from the transmitter 
subsystem, therefore with readings of the output current 
and voltage. The process includes analog signal 
processing from the output of the transmitter and digital 
signal processing from the output signal of the measuring 
circuit to the Arduino. The main purpose of the 
transmitter measuring circuit is to extract a signal from the 
output of the transmitter and convert it into signals that 
are within the input threshold of Arduino or any 
microcontroller, usually 0-3 V. The designed measuring 
circuit using Proteus simulation software is composed of a 
500 μΩ  shunt resistor for current extraction from the 
output of the transmitter, represented by a current source 
for isolated simulation. Its corresponding voltage at the 
shunt resistor is amplified with a gain of around 322641 
using a 3-stage cascaded amplifier. The amplified AC 
signal is converted to a DC signal using a peak detector 
circuit which is an input in the A1 ADC pin of the 
Arduino. A parallel connection was made from the output 
of the cascaded amplifier connected to a comparator for 
pulse generation that has an output of 0 to 2.5 Vpk-pk. This 
pulse signal is the other input to Arduino using an A0 
ADC pin. 

The DC voltage at the A1 10-bit ADC pin is measured 
and needed to be converted to its equivalent transmitter 
peak current, thus simulations were performed to compile 
relationships between the input current and the measured 
DC voltage. 

 

 

 

Figure 2.  Transmitter Monitoring System (Digital Multimeter) designed using Proteus Simulation Software. Contains the Measuring Circuit, 

Arduino Uno, and an LCD Display. 
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To consider the effect of the coupling and parasitic 

capacitances acting as filters varying the frequency 

response of the measuring circuit, different input 

frequencies were also listed in the dataset representing 

the transmitter output current as a function of the 

measured DC signal and operating frequency that is 

measured from the pulses at the input of A0 ADC pin. 

The resulting 139-row dataset contains operating 

frequencies ranging from 3.178 KHz to 18.5 KHz, 0.487 

VDC to 2.5 VDC, and a current of 4 mA to 15 mA. With 

the established dataset for model training for current 

prediction, the next step is to acquire the relation of the 

transmitter output peak voltage to be defined by the 

predicted current. Simulations were performed with the 

transmitter circuit, and it was observed that the 

relationship between the output voltage and current was 

not perfectly linear, therefore there is a need to create 

another dataset for peak voltage prediction to lessen the 

error compared to an MSE of 62 from multiplying the 

current with the average computed load of 102.54 Ω. The 

second dataset is composed of 419 rows of relationships 

of the transmitter peak currents and voltages ranging 

from 4 mA to 15 mA and 411 Vpk to 1485 Vpk, 

respectively. 

 

B. Recurrent Neural Network 

Recurrent neural networks (RNNs) are an advanced 
deep learning prediction and classification method that are 
particularly well suited to handling time-series data and 
other sequential data [26] that performs well and most 
sophisticated method for machine learning, and natural 
language processing [19]. Typically, an RNN’s hidden 
state ℎ𝑡  dynamics given an input sequence 𝑥 =
𝑥1, 𝑥2, … , 𝑥𝑡  may be expressed as: 

 

            ℎ𝑡 = {
0               𝑖𝑓(𝑡 = 0)

∅(ℎ𝑡−1, 𝑥𝑡),      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
          () 

 

where ∅ is a non-linear function while the updated 

recurrent hidden state is stated as follows: 

 

                       ℎ𝑡 =  𝜎(𝑊𝑥𝑡  + 𝑈ℎ𝑡−1)                          (2) 

 

 

where 𝜎 is a hyperbolic tangent function, 𝑊 is the input 

neuron weight, and 𝑈 is the recurrent neuron weight. 

Thus, the output Z at time t is calculated as: 

 

 

                        𝑍𝑡 =  (𝑊ℎ𝑦  ∙ ℎ𝑡)                              (3) 

 

where 𝑊ℎ𝑦  is the corresponding weight at the output 

layer.  

In this study, the prediction of the current level has 
been performed specifically using the Elman recurrent 
neural network (ERNN) architecture presented in Fig. 3 
whereas there are two inputs (DC input voltage and 
operating frequency), three hidden layers, and one 
expected output for predicted current. 

 

 

Figure 3.  The designed Elman recurrent neural network architecture 

for current signal prediction. 

C. Long Short-Term Memory 

The LSTM model was created to address the 
inadequacies of RNNs, for the purpose of capturing long-
term information and improving performance on long 
sequence data [27], To overcome the problems of 
disappearing gradients and gradient expansion, LSTM 
introduces input gates and forget gates [28]. 

The LSTM layers are comprised mainly of four gates 
that manipulate the cell-state data. The first is referred to 
as the "forget gate," which recognizes and omits data that 
is optional and not necessary. Furthermore, the sigmoid 
function also defines which from the old output can be 
eliminated. It is followed by the input gate, where the 
sigmoid function defines whether the data will be written 
or ignored. The next layer is the candidate gate with the 
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tanh functions that weigh the importance of the data and 
control what to write in the cell state. Finally, the output 
gate specifies what data should be sent as the output 
concealed state ℎ𝑡  through filtering with the sigmoid 
function multiplied by the new values created by the tanh 
layer from the cell state 𝑐𝑡  [29]. The cell state is in charge 
of adding or eliminating previous data based on its 
relevance and importance in making the forecast [27]. 

 

                          𝑖𝑡 = 𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖)                       (4)           

                         𝑓𝑡 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓)                       (5)           

                        𝑜𝑡 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜)                       (6)  

 

   In (4) to (6), 𝑖𝑡 , 𝑓𝑡 , and 𝑜𝑡  represent the input gate, 

forget gate, and output gate where 𝜎  is the sigmoid 

function, 𝑥𝑡  is the input given, 𝑈𝑖 , 𝑈𝑓 , and 𝑈𝑜 represent 

the weight of the input in the input, forget, and output 

gates respectively, ℎ𝑡−1 holds the data from the preceding 

terms, while 𝑊𝑖, 𝑊𝑓, and 𝑊𝑜 are the weights of the data 

from the preceding terms in the input, forget, and output 

gates. Then, the cell state 𝑐𝑡 is given to tanh function and 

multiplied to 𝑜𝑡 to get the updated hidden state ℎ𝑡. 

D. Gated Recurrent Unit 

The gated recurrent unit is a specific kind of optimized 
LSTM-based recurrent neural network that keeps the 
LSTM immunity to the vanishing potential problem. 
Updating the internal states requires less work since the 
underlying structure is simpler and easier to train. The 
reset port decides whether the current state should be 
coupled with the prior information, while the update port 
governs how much of the state data from the last instant is 
maintained in the present condition. GRU requires less 
memory and is quicker than LSTM. However, when 
working with datasets that comprise longer sequences, 
LSTM is accurate to a greater extent [28]. GRU's input 
and output structures are identical to those found in a 
standard RNN, while its internal structure is comparable 
to an LSTM [28]. A typical GRU is composed of reset 
gate 𝑟 and update gate 𝑧 which can be calculated as: 

 

                    𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟)                        (6)   

                   𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧)                         (7)   

  

where 𝜎 is the sigmoid function, 𝑥𝑡 is the given input, 𝑊𝑟 
and 𝑊𝑧 are the weights in the input of the reset and update 
gate, respectively, ℎ𝑡−1  holds the data of the preceding 
units while 𝑈𝑟  and 𝑈𝑧  represent the weights of the 
preceding units in the reset and update gate, accordingly. 

Finally, the hidden state ℎ𝑡 is calculated using the hidden 
state of time 𝑡 − 1 and input time series value 𝑥𝑡.  

Additionally, the LSTM and GRU architecture for 
current prediction used in this study is presented in Fig. 4. 
It represents two inputs (DC input voltage and operating 
frequency), three hidden layers, a fully connected layer, 
and one expected output for predicted current. 

 

Figure 4.  The designed LSTM and GRU network architecture for 

current signal prediction. 

E. Peak Voltage and Peak Current Prediction using 

ERNN, LSTM, and GRU 

The ERNN, LSTM, and GRU were coded and 
performed using MATLAB Software. The ERNN was 
modeled using the hyperparameters presented in Table 1 
while LSTM and GRU are shown in Table 2.  Each of the 
three neural network models is composed of three hidden 
layers wherein in hidden layer 1, the simulated number of 
neurons was set to 500, 700, 900, 1100, and 1300, in 
hidden layer 2 was 200, 400, 600, 800, 1000, and in 
hidden layer 3 was 100, 300, 500, 700, 900. The number 
of training epochs for the three models was set to 500, 
1000, 1500, 2000, and 2500.  

The logarithmic transfer function ‘logsig’ has been 
used as the activation function for each of the three 
hidden layers in the optimum network architecture in 
ERNN, linear transfer function ‘purelin’ has been used in 
the output layer, while ‘trainrp’ is used as the network 
training function by which in accordance with the 
resilient backpropagation method, it adjusts the weight 
and bias values. 

To update the network learnable parameters in a 
custom training loop in LSTM and GRU model for 
current prediction, the stochastic gradient descent with 
momentum (SGDM) algorithm was applied. On the other 
hand, for voltage prediction, the adaptive moment 
estimation optimizer (ADAM) was employed. Lastly, an 
initial learning rate of 0.01 and a minibatch size of 128 
were also used in LSTM and GRU models. 
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TABLE I.  HYPERPARAMETERS FOR CURRENT AND VOLTAGE 

PREDICTIONS USING ERNN 

Hyperparameter Value 

Number of Neurons for Hidden 
Layer 1 

500, 700, 900, 1100, 1300 

Number of Neurons for Hidden 

Layer 2 
200, 400, 600, 800, 1000 

Number of Neurons for Hidden 
Layer 3 

100, 300, 500, 700, 900 

Number of Training Epochs 500, 1000, 1500, 2000, 2500 

Activation Function for Hidden 

Layer 1 
Logsig 

Activation Function for Hidden 

Layer 2 
Logsig 

Activation Function for Hidden 

Layer 3 
Logsig 

Output Layer Activation 

Function 
Purelin 

Training Function Trainrp 

 

TABLE II.  HYPERPARAMETERS FOR CURRENT AND VOLTAGE 

PREDICTIONS USING LSTM AND GRU 

Hyperparameter Value 

Number of Neurons for Hidden 
Layer 1 

500, 700, 900, 1100, 1300 

Number of Neurons for Hidden 

Layer 2 
200, 400, 600, 800, 1000 

Number of Neurons for Hidden 
Layer 3 

100, 300, 500, 700, 900 

Number of Training Epochs 500, 1000, 1500, 2000, 2500 

Optimizer/Training Function SGDM/ADAM 

Initial Learning Rate 0.01 

Minibatch Size 128 

 

The mean squared error (MSE) between the actual 
and predicted values for each output node in relation to 
network training was used to measure the performance of 
the three neural networks. It is expressed mathematically 
as: 

 

                       𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

𝑛
𝑖=1                            (8) 

where 𝑛 is the data points number, 𝑌𝑖 is the actual values, 

and �̂�𝑖 is the predicted values. 

 

3. RESULTS AND DISCUSSION 

A. Relationship of the Electrical Antenna Parameters 

To ascertain the degree of relationship between the 
transmitter antenna operating frequency, DC input 
voltage, and the resulting antenna current, a Pearson 
correlation analysis with a 95% confidence level was 
carried out. In the Minitab platform, two parallel 
coordinate charts were created to clarify the non-linear 

relationships of the relevant antenna electrical 
characteristics (Fig. 5). The peak current and peak voltage 
ratings have an extremely positive correlation (R2 = 1) and 
the antenna transmitter DC input voltage (VDC) has a very 
strong positive correlation with the output current (R2 = 
0.956) which suggests that VDC is a highly significant 
input parameter that could potentially alter the receiver 
voltage readings, especially with composite air and 
biomaterials as dielectric. On the other hand, the operating 
frequency of the transmitter has weak negative (R2 = -
0.134) and weak positive (R2 = 0.129) impacts on VDC and 
output current which confirmed that it is only responsible 
for the degree of resolution in the receiver side, however, 
it should be properly calibrated to assure capacitive 
resistivity operation. 

 

 

Figure 5.  Parallel coordinate plots (a) between peak current and 

voltage ratings, and (b) among operating frequency, DC input voltage, 

and output current of the transmitter antenna. 

 

B. Simulations of Recurrent Neural Network, Long 

Short-Term Memory, and Gate Recurrent Unit 

Models 

The simulated current prediction models in MATLAB 
Software using ERNN, LSTM, and GRU are shown in 
Table 3. In this paper, 25 configurations of ERNN current 
prediction models have been trained. To train the different 
model combinations, The 139 patterns input-output 
dataset was separated into three distinct sets at random: a 
training data set, which makes up 56% of the data, a 
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validation data set, which makes up 24% of the data, and a 
test data set, which makes up 20% of the data. The input 
data used for current prediction is the measured DC input 
voltage of the transmitter circuit and set operating 
frequency ranging from 3.5 KHz to 18.5 KHz and the 
output data is the measured current from the measuring 
circuit. The training target error performance was set to 
1e8. It can be observed that the trained model with hidden 
neuron combination of 500-200-100 and some of the 
trained configurations have a rapid elapsed time of less 
than 100 seconds due to the vanishing or exploding 
gradient descent encountered during training by which it 
is evident that one of the drawbacks of RNN is that when 
the network is unfolded for an excessive number of time 
steps or when it is processing the lengthy sequential data 
used in this study, the gradient of some of the weights 
tends to become overly small or big [30]. Since the 
gradient changes the weight, if the weight is set too low, 
the gradient will disappear, and the hidden layer next to 
the input layer will stop learning. On the other hand, a 
weight that is too large will cause the gradient to suddenly 
increase. RNN lacks long-term memory, so it is sensitive 
to time steps and will be impacted by short-term memory 
[28]. Moreover, six out of the 25 trained ERNN models 
have almost met the performance criterion of 1 × 108. For 
the current prediction ERNN model, the combination of 
900-600-500 hidden neuron network models with training 
epochs of 2,500 has the lowest MSE during training. 

Another 25 configured networks of LSTM models 
have been trained also for the current prediction. The 
simulated current prediction models using LSTM are 
presented (Table 3). For the input-output dataset, the 139 
rows of sequential data for current prediction are divided 
into three: 80% for the training data, 10% as validation 
data, and the remaining 10% as testing data. The ‘SGDM’ 

optimizer performed well as the training function for the 
current prediction dataset because it aids in accelerating 
gradient vectors in the right directions leading to faster 
converging for short sequential data. From the perspective 
of the training time, the average running time of the 
LSTM model for the current prediction is 444.48 seconds. 
Although there are networks with less than 100 seconds of 
elapsed time, the LSTM models have solved the issue of 
vanishing or exploding gradient descent [28]. All the 
configured networks completed the learning process. 
Thus, the combination of 900-600-500 hidden neurons 
with 2500 training epochs achieved the lowest training 
MSE for the LSTM network. 

The GRU models for current prediction are comprised 
also of 25 different networks presented in Table 3. Similar 
to LSTM, the input-output dataset included 139 rows of 
sequential data that were split into 80% training data, 10% 
data for validation, and the other 10% of data for testing. 
Since GRU is also proven to address concerns with 
exploding or vanishing gradient descent. All network 
models were learned with an average running time of 
763.56 seconds. This shows that the GRU models have a 
slower average training time than the LSTM because the 
simulated networks are comprised of a complex and larger 
number of parameters. Hence, the 500-200-100 hidden 
neuron network with 1500 training epochs attained the 
lowest training MSE since GRU is more accurate and 
faster with less training parameters and a smaller dataset. 
Additionally, taking into account the model principle, 
GRU can disremember and pick memories with just one 
gate, while considering the fact that there are less neurons 
in a 500-200-100 hidden neuron network with shorter 
training epochs makes it accomplish the task with greater 
efficiency and precision than the other configurations. 
[28]. 

 

TABLE III.  SIMULATED CURRENT PREDICTION MODELS USING ERNN, LSTM, AND GRU 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 
Epochs 

ERNN LSTM GRU 

Training 

MSE 

Elapsed 

Time (s) 

Training 

MSE 

Elapsed 

Time (s) 

Training 

MSE 

Elapsed 

Time (s) 

500 200 100 500 4.41 × 10-4 23 1.910 55 0.861 73 

500 200 100 1000 1.39 × 10 -7 51 0.897 107 0.877 135 

500 200 100 1500 1.28 × 10-5 74 0.933 162 0.795 203 

500 200 100 2000 4.21 × 10 -5 97 0.985 156 0.990 278 

500 200 100 2500 9.90 × 10 -8 49 0.847 222 0.938 338 

700 400 300 500 2.83 × 10 -5 57 1.030 107 0.892 187 

700 400 300 1000 1.19 × 10 -5 114 1.020 227 0.942 312 

700 400 300 1500 3.32 × 10 -6 166 0.906 224 0.796 429 

700 400 300 2000 9.98 × 10 -8 194 1.030 334 0.870 597 

700 400 300 2500 3.13 × 10 -6 274 0.988 384 0.798 644s 

900 600 500 500 2.52 × 10 -5 107 0.981 136 0.932 228 

900 600 500 1000 2.43 × 10 -6 219 0.875 181 0.898 471 

900 600 500 1500 6.08 × 10 -5 312 1.080 415 0.807 631 

900 600 500 2000 9.98 × 10 -8 326 0.949 537 0.933 782 

900 600 500 2500 9.82 × 10 -9 354 0.845 592 0.978 1130 

1100 800 700 500 6.63 × 10 -2 178 1.060 179 0.861 362 

1100 800 700 1000 1.18 × 10 -4 347 1.210 200 0.949 694 

1100 800 700 1500 6.04 × 10 -6 532 0.959 513 1.030 1066 
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1100 800 700 2000 1.80 × 10 -4 725 1.030 717 0.881 1414 

1100 800 700 2500 6.13 × 10 -7 873 0.966 905 0.834 1825 

1300 1000 900 500 9.03 × 10 -5 259 0.883 270 0.989 496 

1300 1000 900 1000 5.31 × 10 -5 561 1.020 598 0.849 1026 

1300 1000 900 1500 9.95 × 10 -8 581 0.895 870 0.868 1512 

1300 1000 900 2000 6.38 × 10 -4 1047 0.860 1191 0.961 1850 

1300 1000 900 2500 9.99 × 10 -8 998 0.917 1830 7.710 2424 

 

On the other hand, the simulated voltage prediction 
models using ERNN, LSTM, and GRU are presented in 
Table 4. There are also 25 configured networks for each 
of the ERNN, LSTM, and GRU. In order to forecast the 
voltage using ERNN, 419 series of measured current from 
the transmitter circuit's output are used as training data, 
and the matching 419 series of measured voltage is 
utilized as the output dataset. These 419 datasets were 
divided into 56% for training, 24% for validation, and 
20% for testing. Similar to the current ERNN prediction 
models, the training target error performance was set to 1 
× 108 and all the ERNN combinations of 500-200-100 
hidden neurons and other trained configurations also 
experienced a rapid training elapsed time because of the 
vanishing gradient descent wherein to calculate the 
gradients with respect to the features in the hidden layers 
of the preceding time step should need an extensive 
amount of computation [30]. However, the ERNN 
combination of 1300-1000-900 hidden neurons with 2000 
training epochs met the lowest training MSE for this 
network. 

Furthermore, the simulated voltage prediction models 
using LSTM are given in Table 4. In the following 
networks, the same as ERNN, the 419 input-output 

datasets were also applied for the training, validation, and 
testing. These 419 rows are divided into 80% training 
data, 10% validation data, and 10% testing data. The 
average running time of the training period for voltage 
prediction using LSTM is 775.6 seconds. Also, the chosen 
‘ADAM’ optimizer for voltage prediction worked well as 
the training function since it is appropriate for the 
optimization of larger dataset [31]. The problem with 
vanishing or exploding gradient descent of RNN voltage 
prediction models was also addressed by the LSTM 
voltage prediction models.  Therefore, the 900-600-500 
hidden neuron combination of 2500 training epochs 
attained the lowest possible training MSE. 

Lastly, the simulated GRU voltage prediction models 
are shown in Table 4. The 419 input-output datasets were 
also applied for the training, validation, and testing. These 
419 rows are divided into 80% training data, 10% 
validation data, and 10% testing data. The average 
running time of the training period for voltage prediction 
using GRU is 1189.09 seconds which is slower than the 
LSTM, but the best GRU network is the same results as 
the LSTM current prediction model which is the 500-200-
100 hidden neuron combination of 1500 training epochs. 

 

TABLE IV.  SIMULATED VOLTAGE PREDICTION MODELS USING ERNN, LSTM, AND GRU 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 
Epochs 

ERNN LSTM LSTM 

Training 

MSE 

Elapsed 

Time (s) 

Training 

MSE 

Elapsed 

Time (s) 

Training 

MSE 

Elapsed 

Time (s) 

500 200 100 500 8.23 × 104 4 5.69 × 104 91 1.02 × 105 134 

500 200 100 1000 7.84 × 104 5 335 197 8.34 × 104 165 

500 200 100 1500 7.59 × 104 4 163 289 8.12 × 104 206 

500 200 100 2000 8.37 × 104 4 112 290 8.06 × 104 327 

500 200 100 2500 7.55 × 104 4 112 376 2.12 × 103 407 

700 400 300 500 3.230 85 182 139 7.93 × 104 198 

700 400 300 1000 2.210 168 283 317 7.98 × 104 372 

700 400 300 1500 1.410 256 98 473 7.99 × 104 557 

700 400 300 2000 1.460 332 21 641 8.89 × 104 670 

700 400 300 2500 1.940 471 31 744 8.37 × 104 944 

900 600 500 500 2.890 177 244 234 8.02 × 104 320 

900 600 500 1000 5.770 330 51 467 8.28 × 104 655 

900 600 500 1500 1.550 569 27 623 8.74 × 104 984 

900 600 500 2000 1.730 12 27 1017 8.32 × 104 1252 

900 600 500 2500 1.190 898 16 1175 8.03 × 104 1739 

1100 800 700 500 1.720 272 89 391 8.47 × 104 535 

1100 800 700 1000 6.900 600 53 698 7.97 × 104 1168 

1100 800 700 1500 0.523 889 54 1050 8.24 × 104 1788 

1100 800 700 2000 0.834 1243 23 1278 8.24 × 104 2219 
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1100 800 700 2500 1.160 47 24 1802 8.25 × 104 2700 

1300 1000 900 500 1.210 380 153 512 8.19 × 104 830 

1300 1000 900 1000 0.717 808 36 971 8.34 × 104 1683 

1300 1000 900 1500 0.909 63 134 1458 1.10 × 105 2319 

1300 1000 900 2000 0.465 552 33 1852 8.14 × 104 3346 

1300 1000 900 2500 0.915 1053 31 2305 8.09 × 104 4209 

 

C. Evaluation of Recurrent Neural Network, Long Short-

Term Memory, and GRU Model Performance 

The best network models for each of the simulated 

ERNN, LSTM, and GRU for current and voltage 

prediction were consolidated in Table 5 and Table 6, 

respectively. After training the different networks, the 

selected best models were validated and tested. For the 

prediction of current, it can be seen from the results 

(Table 5) that the ERNN of 900-600-500 hidden neuron 

combination of 2500 training epochs outperformed the 

LSTM and GRU models with the lowest training MSE of 

9.82 × 10-9 and a validation MSE of 1.26 × 10-8 which is 

lower than the test MSE of 0.587. Therefore, this 

configuration is selected as the best-trained model in 

predicting the current for the current measuring circuit of 

the transmitter antenna applied in underground imaging. 

This also shows that the ERNN provides better accuracy 

than the two other models due to the training 

hyperparameters and length of data samples. 
Same with predicting the voltage, the best-simulated 

models for ERNN, LSTM, and GRU are shown in Table 
6. From that, it has been proven that the ERNN has also 
bested the LSTM and GRU results. The ERNN model of 
1300-1000-900 hidden neuron combination with 2000 
training epochs has the lowest training MSE of 0.465, 
validation MSE of 0.659, and test MSE of 0.751, thus, it 
is selected as the best-trained model for the application of 
this study in predicting the voltage for measuring circuit 
of transmitter antenna used in underground imaging. 

 

TABLE V.  BEST MODELS FROM SIMULATED ERNN, LSTM, AND GRU NETWORKS FOR THE CURRENT PREDICTION 

Model 
Hidden Layer 

1 

Hidden Layer 

2 

Hidden Layer 

3 
Epoch Train MSE Validation MSE Test MSE 

ERNN 900 600 500 2500 9.82 × 10 -9 1.26 × 10 -8 0.587 

LSTM 900 600 500 2500 0.845 1.06 1.51 

GRU 500 200 100 1500 0.795 1.42 1.42 

 

TABLE VI.  BEST MODELS FROM SIMULATED ERNN, LSTM, AND GRU NETWORKS FOR VOLTAGE PREDICTION 

Model 
Hidden Layer 

1 

Hidden 

Layer  

2 

Hidden Layer  

3 
Epoch Train MSE Validation MSE Test MSE 

ERNN 1300 1000 900 2000 0.465 0.659 0.751 

LSTM 900 600 500 2500 1.60 1.36 1.49  

GRU 500 200 100 1500 2120 1690 2860 

 

To compare the actual current from the transmitter 
antenna and the predicted current generated by the 
selected best-trained ERNN model (900-600-500 hidden 
neuron network of 2500 training epochs), the results are 
plotted in Fig. 6 as well as in Fig. 7 for the comparison of 
actual output peak voltage from the transmitter and 
predicted voltages produced by the chosen optimum 
trained ERNN model (1300-1000-900 hidden neuron 
network of 2000 training epochs). It shows that the 
selected ERNN models have the minimum MSE and 
better accuracy closer to the actual value of current and 
voltage signals which is essential compared to manual 
computations of output parameters through Ohm’s Law 
and it is proven that RNN works effectively as presented 
in [16, 18] by its ability to estimate reference voltage for 
monitoring purposes without actually performing any 

measurements and in predicting electrical parameters. 
Compared with LSTM and GRU, the ERNN model has 
the ultimate advantages of fast training speed and lower 
predictive error in this application. The parameters that 
are selected and the overall amount of data may have an 
impact on the outcomes since RNN often works better on 
large datasets and with complex training 
hyperparameters, as prior research publications have 
demonstrated, and because its structure comprises 
feedback connections/weights that induce its memory 
attribute [32]. This also implies that the selected model 
can be implemented on the Arduino-based current 
measuring circuit, however, the implementation of the 
ERNN model has a significant impact on the 
computational cost given that it is a huge network that 
needs higher computational processing. With that, the 
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MATLAB Software was also not able to convert the 
ERNN code into its corresponding MEX function and 
Arduino language for execution purposes. For future 
studies, the researchers would like to consider exploring 
other deep learning approaches and changing the 
microcontroller with a better hardware interface, high 
resolution, and more powerful processing capabilities. 

 

 

 

Figure 6.  The plot of the actual current from the transmitter antenna 

circuit versus the predicted current by the configured 900-600-500 

hidden neuron network of 2500 training epoch-ERNN network. 

 

 

 

Figure 7.  The plot of the actual voltage from the transmitter 

antenna circuit versus the predicted voltage by the configured 1300-

1000-900 hidden neuron network of 2000 training epoch-ERNN 

network. 

 

 

4. CONCLUSION 

A digital meter with improved accuracy of electrical 
parameter readings for a single-pair antenna system of 
underground imaging device is developed in this study. 
Different neural network models are explored to predict 

the output current and peak voltage of the transmitter 
circuit designed in Proteus Software. These three neural 
network models are Elman recurrent neural network 
(ERNN), long short-term memory (LSTM), and gated 
recurrent unit (GRU) which are designed and simulated in 
MATLAB software. For the current prediction, the dataset 
is composed of 139 rows. The input data used are the 
measured DC input voltage from the measuring circuit 
and the operating frequency of the transmitter antenna 
ranging from 3.5 KHz to 18.5 KHz while the output 
datasets are the measured transmitter output current. On 
the other hand, in forecasting the output peak voltage of 
the transmitter system, the input and output dataset is 
composed of 419 rows of relationships of the transmitter 
peak currents and voltages ranging from 4 mA to 15 mA 
and 411 Vpk to 1485 Vpk, respectively. There are 25 
simulated configurations designed for each of the ERNN, 
LSTM, and GRU networks with different combinations of 
hidden neurons in three hidden layers and various training 
epochs. Based on the lowest MSE, the performance of the 
prediction models was evaluated. The results show that 
the ERNN models both for current and voltage prediction 
provide the optimum accuracy with the lowest MSE. The 
ERNN model with a 900-600-500 hidden neuron network 
of 2500 training epochs outperformed the LSTM and 
GRU models with the lowest training MSE of 9.82 × 10-9 
and a validation MSE of 1.26 × 10-8 which is lower than 
the test MSE of 0.587 in the prediction of output current. 
Additionally, the ERNN has also bested the LSTM and 
GRU results in predicting the output peak voltage of the 
transmitter antenna. The configured 1300-1000-900 
hidden neuron network ERNN model with 2000 training 
epochs has the lowest training MSE of 0.465, validation 
MSE of 0.659, and test MSE of 0.751. The chosen best-
trained models are deemed to be acceptable and offered a 
more precise output reading of current and voltage, 
avoiding the use of a separate, large, and multiple 
connection measuring device. Additionally, this enables 
simultaneous data acquisition through a single connection 
from the single-pair antenna system's transmitter for 
subsurface imaging. The next stage for this study is the 
actual implementation of the selected best models for the 
microcontroller used. However, it is also advisable to 
increase the optimization for the forecasts in real 
implementation by exploring other deep learning 
approaches and microcontrollers other than Arduino with 
higher power computational capabilities. 
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