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Abstract: In Automated Driving Systems (ADS), the function of detecting objects on the road assists vehicle traffic and improves
road safety. Deep Active Learning (DAL) is an advanced training method suitable for building robust Convolutional Neural Network
(CNN)-based on road object detection models. This method automatically selects and manually labels training samples that are
significantly less noisy, non-redundant and more useful. Depending on the complexity of detection task and the characteristics of urban
scenes, the batch selection in the conventional batch mode DAL can suffer from the impact of the correlation between frame labels
and batch size as well as variable labeling costs. This paper introduces a novel cost-effective-based training approach suitable for
CNN-based on-road object detector, where frames labeling and batch size are considered in the sample selection process. We propose
a batch sampling strategy that leverages the model prediction uncertainty along with dynamic programming to alleviate the selection
batch size issue. Additionally, we investigate the effects of classification uncertainty, regression uncertainty and batch size during
sample selection. Our approach was extensively validated on the Caltech Pedestrian dataset to fine-tune a pre-trained Tiny-YOLOv3 for
performing pedestrian detection task. Results showed that our approach, compared to basic methods, can build robust detection model
that keeps the detection error less than 57%, saving up 50% of the labeling effort and alleviating batch size dependency.

Keywords: autonomous driving, object detection, visual similarity, deep active learning, cost-effective training, pedestrian detection

1. Introduction
Over the past two decades, autonomous driving has

become a reality with the advent of the first self-driving car
projects. As can be seen today, Automated Driving Systems
(ADS) have emerged as future innovations in research
and industry fields. Although taking a step further on the
safety guarantee is already an important promise, the large-
scale deployment of such systems depends critically on the
effectiveness and robustness of their perceptual capability
to understand the surrounding scene in a non-deterministic
urban environment [1].

Several recent works have tackled object detection,
among other perception functions, focusing on deep learn-
ing approaches since their performance has significantly
improved real-world autonomous driving benchmarks [2].
However, these approaches are prone to detection errors as
they fail to identify and recognize the surrounding object.

As a functional safety concept for deep learning ap-
proaches, it is crucial to assess the safety risk by interpreting
the behavior of a DNN-based model [3]. In practice, build-
ing an efficient DNN-based object detector largely depends

on fully supervised training of such a model while assuming
the availability of a large, finely labeled training dataset.

Considering the dynamics, scalability and visual pattern
similarity of the real-world vehicular environment, the fully
supervised learning can easily become a drain on cost,
time, and computing resources. On the other hand, with the
presence of noisy samples in this learning paradigm, the
detection model can suffer from loss of robustness when
it comes to guarantee an accurate model. Moreover, high-
quality annotation of such a complex environment can only
be guaranteed if enough human effort and labor costs are
spent while exceeding the limited budget. In light of this,
delivering more safer ADS is problematic as the deployment
of the DNN-based on-road object detectors on embedded
hardware is hampered.

The easiest way to overcome the aforementioned issues
is to focus on training the deep detector networks using
a random subset of labeled data. Considering both scale
and visual similarity issues, a limited random subset may
lead to lower accuracy comparing to training the network
on the entire dataset [4]. Alternatively, other efficient strate-
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gies, such as Active Learning (AL), can reduce the heavy
annotation burden and the amount required of training data.

Active learning is a commonly-used paradigm designed
for shallow machine learning models to overcome the
limitations of traditional ”passive” supervised learning al-
gorithms. An active learning algorithm interactively selects,
based on the model’s current knowledge, the data from
which the model learns new knowledge that contributes
to achieving significant accuracy without extra annotation
and training costs [5], [6]. Recently, DAL has emerged to
deal with high-dimensional data and complex deep neural
networks (DNN) while retaining the powerful capabilities of
deep learning. Such a strategy explores DNN’s architecture
or their prediction outputs as useful cues to select informa-
tive samples for the labeling process [7], [8]. In contrast,
DAL algorithms for object detection are likely to become
a computational bottleneck. Especially when considering
related details regarding DNN-based object detector models
and public autonomous driving benchmarks, which are: (1)
architectural design, nature and granularity levels (coarse
to fine-grained) of outputs, and (2) high-dimensionality,
visual similarity, labeling cost variability, multi-modality
(images, videos, optical flow, LiDAR), intra-class variance
and imbalanced problems of data. In this context, a cost-
effective approach is necessary to save cost as much as
possible while considering the general deficiency related to
the excessive redundant examples query, limited annotation
budget, aggregation of multiple DNN outputs and bridge
the performance gap with other learning methods that could
deliver satisfactory performance.

This paper proposes a new Cost-Effective Deep Batch
Mode Active Learning framework (CEDBMAL) that con-
sists of a label-efficient learning algorithm. This labeling
algorithm aims to incrementally improve the performance of
a CNN-based object detector with less excessive retraining
on a small amount of labeled urban area frames.

Instead of fully supervised training on the entire se-
quence of frames, CEDBMAL provides a subset of useful
labeled training data, by performing a batch sampling
strategy and optimization technique, yet saving labeling
costs. More specifically, CEDBMAL implies an annotation
cost-based active selection strategy for querying manual
annotation of an optimal batch of more valuable unlabeled
frames, with minimal risk of redundant samples (as noisy
samples), imbalanced class distribution and annotation cost
wasted.

Accordingly, the main contributions of our work are
summarized as follows:

• We design an efficient and scalable batch sampling
strategy that deals with a large-scale sequence of
highly similar unlabeled data to fine-tune a CNN-
based object detector.

• We propose an annotation cost-based approach for

determining the optimal batch with an optimal size
that ensures a few outliers, balanced class distribution
and low similar frames that meet the annotation cost.

• For future deployment, we use a tiny version of an
object detector and estimate the annotation time in an
autonomous driving context.

• We evaluate our framework on the Caltech Pedestrian
dataset by performing pedestrian detection in static
images.

The rest of this paper is organized as follows: Section 2
presents the problem to be solved and the inadequacies
of the current approaches to solve the current problem.
Section 3 reviews the related work in deep active learning
for general object detection and specifically on-road object
detection. Section 4 illustrates in detail our proposed frame-
work by describing each component. Section 5 provides the
experiment setup and delivers the results. Finally, Section 6
presents the conclusion and the suggested future work.

2. Problem Statement andMotivation
In general, the main challenge facing deep learning

approaches for object detection in autonomous driving is the
requirement of a massive amount of training samples. The
usual approach to create such datasets consists of collecting,
from public traffic scenes, as many frames as possible and
manually drawing bounding boxes (labeling) for all objects
of interest in all frames. However, training samples collected
from non-deterministic urban scenes suffer from data im-
balance problems, such as class and scale imbalances, as
well as similar visual patterns (trees, cars, sky, etc.). These
issues are due to the diversity of classes (background and
foreground) and density (sparse and dense) distribution of
on-road objects across frames.

For a detection task in such a context, the labeling
and training costs are notably high and unequal especially
when similar samples are considered in training and samples
selection process. In order to reduce the aforementioned
costs in such a task, the primary hypothesis is to make use-
full annotation budget and training resources by selecting a
subset of informative samples that maximize performance
gain and minimize human labeling effort, with an increased
concern about capturing diverse visual patterns.

Using random sampling approach, the selected subset
does not guarantee that it will capture diverse visual patterns
[4]. Alternatively, the selection of one sample (frame) at
each DAL cycle, performed by traditional one-by-one DAL
query methods, for deep detection model retraining imposes
a higher annotation and training costs. In contrast, batch
mode query strategies select a batch of samples that provide
a balance between most informative and diverse samples
within a batch based on uncertainty and diversity measures.
Furthermore, labeling and then using such a batch as a mini-
batch can lead to retrain efficiently detection model without
extra burden. As a result, the batch mode DAL is more
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efficient and cost-effective for building CNN-based object
detection models [7], [8].

In recent years, existing works on batch mode DAL
have focused on the step of identifying useful measures
to select informative and representative batches while as-
suming a static batch size and a fixed labeling cost. In
a real-world applications such as autonomous driving, the
static specification of the batch size without looking at the
correlation between frames’ objects amount, estimated by
model’s output, and labeling cost may not lead to good
generalization accuracy, effective management of labeling
cost variability, practical batch size determination and low
redundancy ensuring. In other words, there is still a consid-
erable research gap when it comes to fulfilling the need for
cost-effective batch selection strategy in batch mode DAL
algorithms where batch samples are selected in an adaptive
and dynamic manner, at each DAL cycle, according to the
distribution of the most promising predicted objects and the
cost of labeling each batch sample given this distribution.
The objective of our paper is to fill this gap.

3. RelatedWork
A. Active Learning for Deep Architectures

With the advent of DNN models, various scenarios have
been widely explored in the field of deep active learning,
where CNNs are well-studied deep learning models. Key
differences between these approaches reside in different
aspects, including learning tasks, data and embeddings
distribution, deep model predictions, query strategy de-
sign, selection criteria quantification (uncertainty, diversity,
inconsistency, and label correlation), scoring level (pixel,
box, region or image) and metric measurement, aggregation
techniques, sampling granularity, labeling source, and data
accessibility.

Unlike the typical AL methods, advanced DAL-related
researches are not rich in terms of properly approaching dif-
ferent aspects of various DAL problems. In most heuristic-
based DAL approaches, Uncertainty Sampling (US) [4], [9],
[10], [11], [12], Query-by-Committee (QBC) [13], mutual
information [14], and expected model change [15] are most
heuristics used, as a single criterion, throughout the query
strategy to select a single instance at a time. However,
several researches have reported the invalidity of applying
a one-to-one query strategy to support the batch training
principle inherent in DL approaches. Furthermore, in the
supervised training scenario of deep model, access is only
allowed to the labeled data through the cycles of DAL,
without any assistance from the remaining unlabeled data.

To deal with these limitations, multiple selection cri-
teria are considered for enabling efficient CNN-based
model training across AL cycles. Therefore, hybrid-criteria,
mixture-criteria, multi-criteria [16] or batch-based sampling
[17], [18] query were proposed to select a substantial
amount of samples to be labeled at a time while attempting
to find a balance between the considered strategies.

Moreover, promising research directions have been ex-
plored to extend DAL algorithms regarding the integration
of different annotation granularity, abundant unlabeled data
and related supervision setting into active learning pipeline,
including multi-label [19], multi-view [20], multi-instance
[10], multi-instance multi-label (M2AL)[21], multi-view
multi-instance multi-label (M3AL) [22], and unsupervised
[23], [14] AL schemes. Among them, more attention has
been paid to address two aspects: the automatic design
of selection samples strategy [24] and the alleviation of
various problems, namely data-related problems such as
confidence and insufficient labeled sample, model-related
problems such as generalization ability, and domain-specific
problems such as domain shift, cold-start problem and class
imbalance.

Besides, serious researches have been conducted in
recent years to properly design cost-effective DAL frame-
works. The main idea is to adopt both query-driven and
data-driven cost-saving strategies. The query-driven ap-
proaches were based on gaining support from complemen-
tary techniques to perform query improvement, such as
optimization techniques, metrics learning [25], and alter-
native learning paradigms (one-shot, contrastive, federated,
goal-driven, domain adaptive...) [26], [27], [28], [29], [30].
On the other side, data-driven approaches were attempted
to address several data-level perspectives in terms of data
labeling supervision (weak, self, semi...) [11], [31], [32],
[33], labeling setting (open-set recognition) [34], [35] and
granularity [18], [21]. For further details please refer to
the survey papers [7], [8], [36]. In this paper, we describe
related work on the latest DAL approaches that employ
CNNs for object detection tasks in general and autonomous
driving applications in particular.

B. Active Learning for Deep Object Detection
An uncertainty-based active learning approach for object

detection in remote sensing images is presented in [9].
The authors argue that an efficient weighted combination
of classification and regression uncertainty could overcome
class imbalance and object densities variation difficulties.
Based on predictions (bounding box and classification prob-
ability) of a CNN-based detector on unseen, unlabeled
images, the high ranked image could be selected according
to the image-level uncertainty score aggregated by summing
each object uncertainty within unlabeled image. With the
low granularity level, the authors in [10] explored the
instance-level for object detection. Throughout a multiple
instance unsupervised active learning approach, the un-
labeled images are treated as instance bags and feature
anchors in images as instances where the image uncertainty
is estimated using an instance uncertainty learning and
instance uncertainty re-weighting modules. As result, the
high ranked images are used to train a constructed detector
based on RetinaNet. By adopting query by committee, Roy
et al. [13] formed a committee of classifiers by leveraging
extra detection head layers of the deep network architecture
(SSD). As selection criterion, the disagreement is mea-
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sured and aggregated by introducing the ‘margin’ for each
bounding box. By considering mAP improvement and class
imbalance between background and object categories, li et
al. [17] proposed WBetGS that enhance typical diversity
and uncertainty based batch sampling for batch mode ac-
tive learning in object detection. Nevertheless, inefficient
training of CNN-based detector, redundant data selection,
scalability handling and heavy burden of convergence time
are main shortcomings.

A review of existing research on cost-effective DAL
for object detection is relatively sparse. Most of these
works are built upon mixed supervised learning methods.
Leveraging access to both labeled and unlabeled data, a
supervised signal is provided which optimizes iterative DAL
cycles and reduces human annotator [11], [31], [32], [33].
Wang et al. [31] proposed an active sample mining (ASM)
framework for cost-effective training of object detectors.
Focusing on switchable sample selection mechanism, a
number of unlabeled samples are selected, according to
deep detector predictions, to automatically pseudo-label
via novel self-learning process. However, the remaining
samples are manually annotated via active learning process.
For cost-effective panicle detection in cereal crops, the
authors in [11] proposed an uncertainty-based active learn-
ing approach suitable for two-stage models. Only strong
labels (tight bounding boxes) are queried by considering
high uncertainty images picked from a constructed low-
cost weak labeled (object centre clicking) subset driven by
the oracle labeling knowledge. Alternatively, some works
focus on exploring other metrics, such as consistency and
entropy, to evaluate model predictions between the original
and augmented data [37], [38].

Prior to the success of deep active learning in computer
vision tasks for autonomous driving, numerous proposals of
active learning methods, involving hand-crafted features and
shallow classifiers, have targeted vehicle [39] and pedestrian
[40] detection. Recently, few works have described deep
active learning for on-road object detection. Aghdam et
al.[4] addressed pedestrian detection in images and video.
Based on CNN-based object detector predictions, pixel-
level scores are computed and aggregated as a single image-
level score. Thus, a fixed number of high ranked unlabeled
images is selected for querying. With the introduction of
temporal selection rules, the selection of high visual similar
video frames could be avoided. Furthermore, the authors in
[12] investigated LiDAR data and deep active learning for
3D object detection task. For training a LiDAR 3D object
detector, an uncertainty-based method queries informative
unlabeled samples from point cloud data, with the help of
the 2D region proposals in RGB images. Using the same
data format, the authors in [41] explored localization-based
uncertainty metric for selecting samples from feature space
extracted without any additional 2D input information.
The proposed DAL method is built upon a specific object
matching process and is suitable for a specific anchor-based
object detection architecture. Besides, Liang et al. [42]

tailored the diversity metric by proposing a novel spatio-
temporal diversity-based acquisition function that selects
frames from multimodal data pool. To ensure multi-view
vehicle detection, the authors in [43] proposed an active
learning algorithm to enhance the typical deformable part
model by selecting B more effective part samples for
query labeling by human annotator from multi-view vehicle
images. Consequently, labeled part samples are considered
as positive samples to retrain SVM model as learning part
model. However, the desired performance could not be
achieved unless the best samples to be labeled is determined
in terms of computational efficiency, low redundancy and
query and annotation cost saving.

Using the inherently more efficient and scalable batch
sampling strategy, we argue that the uncertainty of CNN-
based detector predictions, the diversity of learned represen-
tations, and the adaptive selection of the best batch size can
reduce the selection of redundant (noisy) samples, handle
the variable cost, speed up the annotation process and hence
constitute an effective training set for building a competitive
object detector while relaxing human supervision.

4. Cost-effective Deep Batch Mode Active Learning for
Object Detection: Our Proposal
In this section, we describe the proposed framework in

general, the underlying detection model and query strategy
in detail.

A. Overall Framework
CEDBMAL framework focuses on a pool-based setting

that consists of iterative selection/annotation process as
depicted in Figure 1. Given a large pool of unlabeled images
Uunann and a labeling budget, CEDBMAL firstly employs
the underlying pre-trained detection model to examine each
unlabeled image and then selects, using query strategy, a
batches of more valuable examples based on uncertainty
as informativeness measure and diversity as representa-
tiveness measure. Next, a batch with the best size value,
amongst the selected batches in the first step, is picked
out to be labeled manually by leveraging the information
from resolved 0-1 Knapsack problem according to the
existence of low redundant instances with more objects of
interest and less estimated annotation time. Once labeled
by an oracle(e.g., human annotator), labeled images pool
Uann is enlarged with this labeled subset which is retired
from Uunann. These accumulated actively-labeled images are
considered as training set to fine-tune the detector while
getting an updated model in the result. The cycle of above
steps is performed on the remaining unlabeled images, till
the process exhausts the labeling budget or the required
performance is achieved in a cost-effective manner. In the
next subsections, we describe the detection model followed
by the cost-effective active learning strategy performed by
our framework.

B. Detection Model
In this work, we focus on single stage CNN-based

object detector as the state-of-the-art object detector. Such
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Figure 1. Overview of the proposed deep active learning framework

model relies on baseline CNN model for performing feature
learning and extra head layers for performing classification
and bounding box regression. The overall deep architecture
is trained in end-to-end manner while a post-processing
method is performed to obtain the final detection outputs.
As detector prediction, the 2D map of probabilities per class
and bounding boxes coordinates are used to rank examples
in recent uncertainty-based deep active learning works [44].
For the reasons of reducing the training cost and exploring
the influence of domain-shift on the overall performance,
we prefer to fine-tune a pre-trained object detector using
transfer learning paradigm, instead of training from scratch.

C. Deep Active Learning for CNN-based Object Detector
To train the underling detection model, the active learn-

ing method should carefully employ a properly designed
query strategy for querying the labels while identifying the
cost of preforming the selection/annotation process. Inde-
pendently from the underlying detection model architecture,
our query strategies are performed as explained below.

1) Uncertainty-based Deep Active Learning
Despite the effectiveness of uncertainty based Deep

Active Learning for classification task, it needs to be revised
for object detection. Basically, these selection strategies
suffer from querying outliers and they are less efficient
in evaluating images data in autonomous driving datasets
when using only the label uncertainty of CNN-based model.
Thus, the pick of more valuable unlabeled images may fail,
with a negative impact on the detection performance. In

order to address these challenges, we suggest to incorporate
regression together with classification on an uncertainty
sampling strategy as explained bellow.

Classification uncertainty sampling: Given an exam-
ple x , CNN-based object detector estimates the probability
distribution of the label p(c|x) over C classes per detected
Bounding Boxes. Such predictions are evaluated by a scor-
ing function to measure the uncertainty metric and form a
detection-level scores for each detected object, while using
the uncertainty sampling for such purpose. For a given
bounding box Bb, its classification uncertainty UC(Bb) is
defined as UC(Bb) = 1 − Pmax(Bb) where Pmax(Bb) is the
highest probability distribution among all classes.

Regression uncertainty sampling: Since CNN-based
detector predicts bounding box coordinates, the regression
uncertainty could be measured by estimating distribution
probability density [9]. By adopting Gaussian Mixture
Model (GMM), each bounding boxes’ distribution probabil-
ity density (denoted L) is estimated in terms of calculated
log probability. Then the obtained L is clipped as Lb=min(-
99, L). Finally, the regression uncertainty (Ur) is calculated
using the following uncertainty formulation

Ur =

{
0.05 ∗ (Lb + 10) + 0.5, Lb ≥ −10
0.5 ∗ Lb+100

90 , Lb < −10
(1)

WCR Deep Active Learning: Inspired by [9],
our proposed weighted classification-regression (WCR)
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uncertainty-based deep active learning algorithm uses both
classification uncertainty Uc and regression uncertainty Ur
to perform the query strategy. However, an unlabeled image
could not selected for querying unless the WCR image-level
uncertainty, denoted as Us, was aggregated from detection-
level scores for each detected box (object) in it, as:

Us = agg(Uc(Bb) × Ur(Bb))

, where Bb ⊆ detected Bboxes. In our work, the aggregating
methods are performed as inspired by [44].

• Sum: given an unlabeled image x, the aggregate
score, from the detected bounding boxes D, can be
obtained as follows

vS um(x) =
∑

Bb⊆D

UC(Bb) (2)

• Average: with less sensitivity to the number of de-
tections, the main idea is averaging all detection-level
scores.

vAvg(x) =
1
|D|

∑
Bb⊆D

UC(Bb) (3)

• Maximum: the maximum of detection-level scores is
kept. Despite the robustness to zero valued detections
(as noise), a substantial information can be lost.

vMax(x) = max
Bb⊆D

UC(Bb) (4)

According to one-by-one query method, the query func-
tion can select a group of B unlabeled images with higher
WCR uncertainty while ignoring outliers. Our contribution
is highlighted in algorithm 1.

Despite its robustness, this solution could select redun-
dant images which are less effective in training process.
Thus, the visual patterns diversity in typical urban road
scenario cannot be captured. Also, the repetitive selection
procedure of one instance at time can lead to produce an in-
efficient and time consuming training process and therefore
an expensive burden is taken by the annotator expert. Other
issues are related to the impractical setting of B (ranging
from increasing time-to-completion to some sort of uniform
sampling of images) and the fixed assumption about the cost
of labeling. Meanwhile, to address the above noted issues,
one can attempt to incorporate our proposed uncertainty
measure in batch sample query strategy aiming at ensuring
a cost-effective training and labeling tasks, where a true
diversity within a group of instances is guaranteed.

2) Cost-effective Deep Batch-mode Active Learning
Two critical design points, namely batch query and batch

size selection, are carried out as explained below.

Deep Batch-mode Active Learning: Compared to one-
by-one query strategy, several Deep Batch Mode Active
Learning researches have shown the efficiency of hybrid
batch-based query strategy in training of a CNN-based

Algorithm 1 WCR deep Active Learning Implementation
Details
Require: annotated images pool Uann, unannotated images

pool Uunann, object detector OD, testset Utest, objects’
categories C

1: Uann ← ∅

2: OD← pre-trained object detector OD0
3: repeat
4: for each image x in Uunann do
5: Fed x into the object detector OD
6: Get bounding boxes Dx with corresponding pos-

terior probability p(c—Bb) and coordinates after post-
processing operation (NMS)

7: for each object Bb in Dx do
8: Use objects’ information to calculate Uc and Ur
9: end for

10: Calculate WCR uncertainty Us using each x ob-
ject’s Uc and Ur

11: end for
12: Sort Uunann (in descending order) using the assigned

WCR uncertainty Us scores
13: Select B high ranking images as queries for annota-

tion by an oracle
14: Uann ← Uann + B, Uunann ← Uunann–B
15: ODt ← ODt−1 fine-tuned on Uann
16: Test ODt using Utest
17: Evaluate the detection performance (detection loss)
18: until The required performance is reached or query

budge
Ensure: detector model parameters WF and the final de-

tector model ODF

object detector [7]. In such setting, the final score used for
ranking the unlabeled images and picking diverse samples
with high uncertainty is calculated as [45]

f inalS core = α×(1.0−similarityS core)+(1.0−α)×uncertaintyS core

, where the parameter α aims to weight the impact of each
factor as

α =
|Uunann|

|Uunann| + |Uann|

In our work, we investigate the previous presented WCR
uncertainty as informativeness criterion, while choosing
Euclidean distance as similarity measurement. This method
favors the selection of the furthest unlabeled sample xi from
its closest labeled neighbor where the distance between
them is computed as follows [46]

divi = min j=1,2,,,,n ||xi − x j||
2, xi ⊆ Uunann, x j ⊆ Uann

However, one of the fundamental issues in using a batch-
based query strategy lies in the batch size that might pro-
duce worse results and make the labeling effort inefficient
[45]. To relax this limitation, our contribution consists
of selection of diverse batch with optimal size at each
iteration under the constraint of a given budget and desired
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performance.

Cost-effective Deep Batch-mode Active Learning: In
autonomous driving context, the selection of optimal batch
of instances with positive impact on detection performance
is driven by determining the batch size, which ensures the
adaptive response to varied labeling time. Independently
from a particular batch size and inspired by [47], the optimal
batch size selection is reduces to the 0-1 Knapsack problem,
which maximizes the uncertainty, maintains the annotation
costs and can be solved with dynamic programming. First,
we pick a set of batches with size Qi from unlabeled images
pool, where Qi ⊆ 100 . . . | unlabeled images pool |. Given
such batches set, where each item have a weight Ti and
value Vi, one can formulate a 0-1 Knapsack problem. It’s
worth noting that the batch uncertainty Vi is defined by
summing the uncertainty of top-Qi images within the batch
i.e.

Vi =

Qi∑
j=1

Vi j

while its annotation time is estimated as annotation cost Ti.

Estimating annotation costs: As cited in [11], the
annotation time for baseline methods, given a batch of
queried images, is calculated using the following formula

Ti = 7.8 × Qi + 34.5 × bQi

where Qi is the batch size, bQi is the total objects in it and
Ti < T. In our work, bQi is the total number of the predicted
BBox within the batch.

As result, most useful instances with low redundant
information could be selected to label while improving the
performance at every iteration and saving immense amounts
of labeling loads given fixed budget. The overall operations
in our CEDBMAL is depicted in algorithm 2.

5. Experiments and Results
A. Experimental Setup

To study how our DAL framework could ensure a cost-
effective annotation and training processes while reducing
manual annotation effort and guaranteeing expected detec-
tion performance along over a dataset for autonomous driv-
ing, we use it to fine-tune a pre-trained Tiny-YOLOv3 for
detecting pedestrian (as uses case) on the Caltech Pedestrian
Detection Benchmark [48] while evaluating various setting
of B. In our experiments, we retain only training frames
labeled as “person” with a height taller or equal 20 pixels
which are used for simulating the oracle annotation and
approaching the safety risk assess of the trained model by
using partial specifications[3]. In addition, the test set is
used to evaluate the performance (detection loss) of the
detector using the Piotr’s Matlab Toolbox while providing
a fair and comprehensive comparison against two other
alternatives: transfer learning and random sampling. In such
case, the “Reasonable” scenario is preferred. For validation
purpose, we split the training set by 10% as validation set.

Algorithm 2 CEDBM Active Learning Implementation
Details
Require: annotated images pool Uann, unannotated images pool

Uunann, object detector OD, testset Utest, objects’ categories C
1: Uann ← ∅

2: OD← pre-trained object detector OD0

3: repeat
4: for each batch size Qi in 100 . . . —Uunann— do
5: for each image x in Uunann do
6: Fed x into the object detector OD
7: Get bounding boxes Dx with corresponding posterior

probability p(c—Bb) and coordinates
8: for each object Bb in Dx do
9: Use objects’ information to calculate Uc and Ur

10: end for
11: Calculate WCR uncertainty Us, as UncertaintyS corex,

using each x object’s Uc and Ur

12: Calculate similarityS corex using Euclidean distance
13: calculate scorex = α× (1.0 { similarityS corex) + (1.0
{ α) ×UncertaintyS corex

14: end for
15: Sort Uunann (in descending order) using the assigned

scoresx

16: Select a batch of instances BQi with largest scorex

17: bQi ← 0
18: Vi ← 0
19: for each image x in BQi do
20: bQi ← bQi + Dx

21: Vi ← Vi + UncertaintyS corex

22: end for
23: Estimate the annotation time Ti (as cost) using Qi and

bQi

24: end for
25: Estimate the optimal batch size by solving a 0-1 Knapsack

problem using Ti and Uncertainty Vi for each batch size
26: Select the batch Bbest, with the best batch size, as queries

for annotation by an oracle
27: Uann ← Uann + Bbest, Uunann ← Uunann–Bbest

28: Fine-tune ODt−1 using Uann to get ODt

29: Test ODt using Utest

30: Evaluate the detection performance (detection loss)
31: until The required performance is reached or query budge
Ensure: detector model parameters WF and the final detector

model ODF

In the following, we will discuss the details of target dataset,
the tiny version of the detection model and the alternative
sampling methods.

1) Dataset
The Caltech Pedestrian dataset [48] consists of ∼ 10

hours of 640x480 30Hz urban driving video with 350K
labeled bounding boxes whereas 2,300 unique pedestrians
were annotated. Over the 11 sessions, it results in 42,782
training images (set00-set05) and 4,024 test images (set06-
set10) sampled every 30th video frame. The log-average
miss rate is used to evaluate the detection performance and
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is calculated by averaging miss rate on false positive per-
image (FPPI) points where the relevant point is defined as
FPPI = 10−1. 4 testing scenarios which are “All”, “Rea-
sonable”, “Scale=near”, and “Scale=medium” are defined.
The statistics of the frames with bounding boxes are labeled
as “person” with a height of 20 pixels is summarized in
TABLE I.

TABLE I. “person” labeled frames statistics in train and test sets

# unlabeled frames “Person” label

Train Test # labeled images # Bounding Boxes

4250 4024 2006 4987

2) Tiny-YOLOv3
In this work, we focus on Tiny-YOLOv3, a simpli-

fied version of YOLOv3 [49]. Emphasis on the Darknet-
53 backbone, its low-complexity architecture motivates its
suitability for constrained environments with a significant
detection speed, but at the cost of some loss of the detection
accuracy. In our experiments, we use a pre-trained version
of the Tiny-YOLOv3 on COCO benchmark [50] which
contains 82 object categories. Also, we perform two training
scenarios. Firstly, we freeze the Darknet backbone layers
and fine-tune the other layers while setting the training
parameters as: learning rate: 1e−3 , number of iterations:
60, mini-batch size: 16. After that, we unfreeze all layers
wile fine tuning all of the layers using the following training
parameters: initial learning rate: 1e−4, initial number of
epochs: 60, number of epochs: 120, batch size: 16. For
the both scenarios, we use Adam as optimization algorithm
while the learning rate is decayed by a factor of 0.1.

3) Random Sampling
Random sampling, as passive learning, is a naive sam-

pling technique that aims to choose the frame to be
labelled uniformly at random from the unlabelled pool.
Thus, the selected frames are independent and not known
beforehand[51].

4) Transfer Learning
Generally applied in deep learning, the transfer learn-

ing focuses on the transfer of knowledge from source
domains to target domains while fine-tuning a pre-trained
deep model. Thus, the performance of deep model could
be improved by exploiting parameter sharing with low
dependence on a large number of data and a tedious training
process [52]. Incorporating this paradigm into our empiri-
cal experiments can allow us to provide a comprehensive
comparison in terms of the number of training examples
and iteration.

B. Results
1) Pre-trainted Tiny-YOLOv3 vs Transfer Learning

For further comparison with our method, we explore
the benefit of transfer learning in improving Tiny-YOLOv3

detection performance. Figure 2 shows the quantitative
results of the COCO pre-trained Tiny-YOLOYv3 versus the
fine-tuned model on the Caltech Pedestrian dataset, in terms
of miss rate and false-positive per image (FPPI).

Figure 2. Performance curves of Caltech Pedestrian fine-tuned Tiny-
YOLOv3 vs COCO pre-trained Tiny-YOLOv3

As shown in Figure 2, the transfer learning technique
reduced the detection loss of pre-trained Tiny-YOLOv3
by 9%. This observation is explained by the fact that
domain adaptation is achieved by training the pre-trained
model on a target fully labeled dataset. Using the visual
pattern knowledge learned from the COCO dataset as the
source domain, the output of Tiny-YOLOv3 model was
guided from the detection of various object classes to the
precise location of pedestrian objects in Caltech Pedestrian
dataset, as target domain, with high objectness score (from
multiclass to binary object detection). Some qualitative
examples of detection results on the Caltech test set, using
the two Tiny-YOLOv3 models, are shown in Figure 3 and
Figure 4.

2) Random Sampling
In this scenario, we investigate the random selection

technique to randomly sample B instances for query manual
labeling at each cycle, while setting B = 500 as indicated
in [4]. TABLE II illustrates that, starting from the 2nd

cycle, the updated model performs close to the pre-trained
and fine-tuned Tiny-YOLOv3 models. However, starting
from the 6th cycle, the updated model outperforms clearly
the both previous models (57% against the 69% and 60%
respectively) with only 3000 labeled frames. This is due to
more knowledge being gained from the Caltech Pedestrian
dataset by the trained model as the labeled frames in Uann
are increased.

In addition, one can observe a varied number of detected
bounding boxes from cycle to another. This is due to the
exploitation, by the model, of random knowledges from
the training set consisting of randomly selected informative
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Figure 3. Qualitative results of the pre-trained Tiny-YOLOv3 model
on the Caltech Pedestrian dataset (detect 80 object categories)

Figure 4. Qualitative results of the fine-tuned Tiny-YOLOv3 model
on the Caltech Pedestrian dataset(detect only pedestrian object)

samples.

3) Experiment on WCR
To further analyze the effectiveness of our DAL algo-

rithm, we carefully evaluated the classification and regres-
sion uncertainty based sampling strategy for selecting a
fixed B value, defined as in the previous experiment, of
informative samples while considering an equal annotation
cost for the overall unlabeled images.

TABLE II. Evaluation performance results for random sampling
experiment

cyc #SI #IBx #BxC #Bx FPPI

RS
B=500

1 500 218 486 486 85%
2 1000 442 601 1087 69%
3 1500 683 655 1742 62%
4 2000 930 637 2379 62%
5 2500 1163 547 2926 61%
6 3000 1411 605 3531 57%
7 3500 1637 579 4110 57%
8 4000 1875 583 4693 55%
9 4250 2006 294 4987 53%

PTY3 69%
TLTY3 4250 2006 4987 60%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-
Bboxes ,#BxC:Number-detected-Bboxes-per-cyc ,#Bx:Number-detected-
Bboxes#

• Experiment using classification uncertainty:

To provide short analysis of our classification uncer-
tainty selection strategy (Uc), we compare its overall per-
formance, in terms of miss rate and false-positive per image
(FPPI), to those of pre-trained and fine-tuned models, while
evaluating three aggregation methods, namely sum, avg and
max, for the earliest DAL cycles. Figure 5 and Figure 6
together provide the quantitative results.
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Figure 5. Performance curves of Pre-trained Tiny-YOLOv3 vs. TL-
fine-tuned Tiny-YOLOv3 vs. random selection vs. Actively-fine-
tuned Tiny-YOLOv3 (score function: Uc, aggregation method: sum,
max and avg) at different training cycles on the Caltech Pedestrian
dataset.

At the 1st and 2nd Uc-DAL cycles, the results demon-
strate the potential of the DAL strategy to yield the same
or lower detection loss with only a few labeled frames.
Besides, in contrast to labeled frames randomly sampled or
selected by sum and max aggregation methods at the 3thd

cycle, the miss rate is decreased to 57% when the 1500
labeled frames, selected by the avg method, are involved in
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Figure 6. Miss rate of random selection vs. variants of our UC DAL
method based on sum, max and avg aggregation method.

the detector’s training. This is mainly due to the ignorance
of outliers, as noisy samples, during samples selection.

Using a subset of more informative samples selected
during DAL cycles, the avg aggregation method is able to
build detector model with lower detection loss compared to
the transfer learning on the fully labeled Caltech Pedestrian
dataset and the other methods. This can be also seen
in Figure 6, showing the miss rate per cycle. However,
sum and max aggregation methods could achieve the same
performance but at the cost of more burden due to the
outliers’ influence and the visual similarity between the
selected frames.

Overall, we can claim that the DAL algorithm based on
classification uncertainty, is effective in training a detection
model that guarantees the expected performance with less
training effort and manual labeling. Yet, this comes at the
cost of the negative influence of both outliers and visual
similarity.

• Experiment using regression uncertainty incorporated
with classification uncertainty (WCR):

In this experiment, we analyze the exploration of model
awareness about the class and localization prediction in ad-
dressing the aforementioned issues. The high scoring frames
are selected according to weighted selection ”WCR” (Us)
criterion based on Uc and Ur. Keeping the same fixed value
of B, TABLE III to TABLE V show the results of miss rate
obtained with respect to the number of pedestrian instances
(instance-level labels) selected by every aggregation method
after completion of a WCR-DAL cycle.

Compared to ”sum” and ”max” aggregation methods,
the fine-tuning of the underling detector model using the top

TABLE III. Evaluation performance results for WCR deep active
learning experiment (with “sum” aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
sum

1 500 440 1764 1764 71%
2 1000 802 862 2626 61%
3 1500 1024 462 3088 60%
4 2000 1231 415 3503 57%
5 2500 1486 437 3940 58%
6 3000 1709 518 4458 56%
7 3500 1817 183 4641 56%
8 4000 1872 98 4739 54%
9 4250 2006 248 4987 55%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-
Bboxes ,#BxC:Number-detected-Bboxes-per-cyc ,#Bx:Number-detected-
Bboxes#, WCR-DAL: WCR-DAL training, agg func= ”Sum” , B=500

TABLE IV. Evaluation performance results for WCR deep active
learning experiment (with “avg” aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
avg

1 500 418 1405 1405 72%
2 1000 849 1337 2742 61%
3 1500 1062 453 3195 57%
4 2000 1263 428 3623 55%
5 2500 1479 347 3970 57%
6 3000 1652 265 4235 54%
7 3500 1746 152 4387 57%
8 4000 1863 245 4632 51%
9 4250 2006 355 4987 52%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-
Bboxes ,#BxC:Number-detected-Bboxes-per-cyc ,#Bx:Number-detected-
Bboxes#, WCR-DAL: WCR-DAL training, agg func= ”Avg” , B=500

TABLE V. Evaluation performance results for WCR deep active
learning experiment (with “max” aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
max

1 500 426 1632 1632 74%
2 1000 819 1004 2636 63%
3 1500 1049 483 3119 58%
4 2000 1282 506 3625 58%
5 2500 1502 369 3994 56%
6 3000 1631 200 4194 55%
7 3500 1733 168 4362 55%
8 4000 1874 306 4668 54%
9 4250 2006 319 4987 55%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-
Bboxes ,#BxC:Number-detected-Bboxes-per-cyc ,#Bx:Number-detected-
Bboxes#, WCR-DAL: WCR-DAL training, agg func= ”Max” , B=500

ranked labeled pedestrian instances according to the ”avg”
aggregation method is more accurate. �3195 labeled boxes,
collectively contained in 1500 frames selected by ”avg”
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method are more accurate (with 57% of detection loss) than
�3119 selected by ”max” method (with 58% of detection
loss) and �3088 selected by ”sum” method (with 60% of
detection loss). This can be explained by the effectiveness of
the ”avg” method in avoiding outlier selection, which is the
main issue of the uncertainty-based sampling strategy. As
a result, the selection of frames with sparse object density
can be avoided and more informative pedestrian instances
can be highly ranked in hopes of rapidly reducing detection
loss.

Moreover, one can note that the Uc scoring function
performs slightly close to WCR counterpart. Figure 5 and
Figure 6 illustrate this observation by comparing the miss
rate of the three aggregation methods. This is mainly due to
the failure of the sampling strategy in capturing the visual
patterns similarity in subsequent frames.

4) Experiment on CEDBMAL
In this experiment, we analyze the importance of in-

volving a dynamic batch selection to address the variable
annotation cost issue and improve the performance. To
this end, a group of frames, with best batch size B, is
sampled according to the labeling time cost of frames and
the distribution of objects over them.

TABLE VI shows the results of miss rate according to
“avg” aggregation function and the best B value selected
at each CEDBMAL cycle. It is observed that the miss
rate, in the 2nd cycle, is decreased to 57% with only 783
labeled frames that contain � 2226 pedestrians. The same
miss rate is obtained using random sampling method after 6
cycles (3000 selected frames for labeling containing � 3531
pedestrians as reported in TABLE II), and using WCR-DAL
method in 3thd cycle, but at the cost of more labeled frames
(1062 frames which contain � 3195 pedestrians) and a fixed
group size (see TABLE IV). Such observation is explained
by two reasons: (1) the picking up, in cost-aware manner,
of the best group with few important frames that contain
relatively diverse and fewer (but more informative) detected
pedestrians. (2) The integration of WCR uncertainty to
estimate pedestrian objects amount during batch sampling
and optimal batch size selection.

5) Comparisons with State of the Art Approaches
In the following parts, we compare the detection perfor-

mance of our proposed method with baseline pedestrian de-
tector and after that compare it with existing DAL technique
in the related literature for training pedestrian detector.

• Comparisons with baseline pedestrian detector:

In this part, we compare the results of using our DAL
strategy versus standard training strategies for building
pedestrian detector. The experiment is conducted using rep-
resentative shallow learning (handcrafted feature)-based and
deep (feature) learning-based pedestrian detectors whose
results are published on Caltech Pedestrian detection bench-
mark [53], [54]. All methods considered here were trained

TABLE VI. Evaluation performance results for CEDBMAL experi-
ment (with “avg” as aggregation method)

cyc #B #IBx #BxC #Bx FPPI

CEDBMAL

0 500 218 486 486 85%
1 900 707 1507 1993 61%
2 100 783 233 2226 57%
3 500 1025 670 2896 55%
4 500 1276 632 3528 56%
5 100 1399 159 3687 57%
6 500 1501 364 4051 57%
7 100 1600 147 4198 55%
8 500 1773 385 4583 55%
9 100 1828 108 4691 55%
10 100 1909 104 4795 55%
11 350 2006 192 4987 53%

cyc:cycles ,#B:Best-batch-size ,#IBx:Number-images-with-Bboxes
,#BxC:Number-detected-Bboxes-per-cyc ,#Bx:Number-detected-Bboxes#,
CEDBMAL: CEDBMAL training, agg func= ”Avg”

on fully labeled Caltech-USA and INRIA datasets without
referring to DAL algorithms.
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Figure 7. Pedestrian detection on the Caltech Pedestrian dataset.

Figure 7 provides quantitative results in terms of miss
rate and false-positive per image (FPPI). The result depict
that the deep learned features train a more accurate pedes-
trian detector than handcrafted features. This is due to the
fact of the model’s sensitivity towards the training strategy
and the amount of data used for knowledge learning.

Moreover, the results report that the subset of labeled
training data, actively selected and accumulated by our
proposed methods, is enough to yield the best performance
and outperforms some pedestrian detectors with more than
14% reduction in miss rate in the early DAL cycles (
57% MR of CEDBMAL with 2226 labeled pedestrian
objects against 57% MR of WCR-DAL with 3503 labeled
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TABLE VII. Listing of methods for pedestrian detection considered in comparison on Caltech-USA dataset

method Td Ts Fe Cl #LtD #Dp MR

ConvNet [55] INRIA Sot learning(Pixels) DeepNet 21845 - 0.77
TinyYOLOv3 WCRDAL 1avg(ours) Caltech AL + TL learning(Pixels) DeepNet 418 1405 0.72

TinyYOLOv3 COCO Pre learning(Pixels) DeepNet 165482 - 0.69
HOG [56] INRIA Scratch handcrafted LinearSVM � 14658 - 0.68
MLS [57] INRIA boosting handcrafted Adaboost � 14658 - 0.61

TinyYOLOv3 WCRDAL 2avg(ours) Caltech AL + TL learning(Pixels) DeepNet 849 2742 0.61
TinyYOLOv3 CEDBMAL 1(ours) Caltech AL + TL learning(Pixels) DeepNet 707 1993 0.61

TinyYOLOv3 TL Caltech TL learning(Pixels) DeepNet 2006 - 0.59
TinyYOLOv3 WCRDAL 3avg(ours) Caltech AL + TL learning(Pixels) DeepNet 1062 3195 0.57
TinyYOLOv3 CEDBMAL 2(ours) Caltech AL + TL learning(Pixels) DeepNet 783 2226 0.57
TinyYOLOv3 CEDBMAL 3(ours) Caltech AL + TL learning(Pixels) DeepNet 1025 2896 0.55

Katamari [53] Caltech scratch handcrafted - - - 0.22
TLL-TFA [58] Caltech scratch learning(Pixels) DeepNet � 42782 - 0.07

Td:Training-dataset ,Ts:Training-strategy ,Fe:Features ,Cl:Classifier ,#Ltd:Number-labeled-training-data ,#Dp:Number-detected-pedestrian ,MR:Miss-
Rate ,Sot:Stochastic online training ,TL:Transfer learning ,AL:Active learning ,Pre:Pre-trained ,CEDBMAL x: CEDBMAL training, agg func= ”Avg”,
cycle number= ”x” ,WCRDAL xavg: WCRDAL training, agg func= ”Avg”, cycle number= ”x”

pedestrian objects against 77% MR of ConvNet with fully
labeled dataset).

Beyond labeling cost awareness, we can claim that using
batch mode DAL together with TL could lead to efficiently
train a deep learning based approaches with less amount of
training data, less architecture complexity and less negative
effect of outlier, redundancy data and domain shift problem.

TABLE VII reports additional details on the training
data and the miss rate versus the labeled training data as
well as number of detected pedestrians.

• Comparisons with DAL-based pedestrian detector:

In this part, we evaluate our method compared to
published results of the related DAL technique [4] for
training pedestrian detector, while performing per-cycle
comparisons. In this comparison, we analyze the miss rate
by examining the importance of the number of detected
pedestrian and the batch size. Overall, the comparison set-
tings are summarized in TABLE VIII. Quantitative results
are reported in Figure 8 together with Figure 9.

As shown, the results indicate that the three DAL-based
methods outperform the random sampling strategy. Since
the first DAL cycle can mine hard instances, it contributes
the most in terms of reducing the miss rate compared to
randomly sampled instances (see Figure 8).
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Figure 8. Miss rate of random selection vs. WCR DAL avg (ours)
vs. CEDBMAL (ours) vs. Aghdam et al.[4] .

Nevertheless, at the end of 3thd cycle, the network
trained on the 1500 frames selected by the method [4] is
more accurate than the networks trained on same number
of selected frames by our DAL methods. From Figure 8
and Figure 9, we can see a reduction of miss rate about
15% under the cost of labeling � 1900 predicted pedestrian
instances against 15% with the cost of labeling � 3195 and
about 20% for a labeling cost of 2K predicted pedestrian
instances. This is due to the ability of the method [4] to
query the labeling of the most useful detected pedestrian
instances, which provide more knowledge about the target
object to the network.

Compared to per-instance sampling strategies, our pro-
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TABLE VIII. Comparison settings of our method to Aghdam et al.[4] .

method Td OD Qs #Cyc Bs B Sf Af

Aghdam et al.[4] CP, C, BD dDNa oBo 14 Fi 500 pSf, MC-D, En dAf
WCRDAL(ours) C TYv3 oBo 9 Fi 500 Un avg, max, sum

CEDBMAL(ours) C TYv3 Bat 11 Dy Dy Un and Di avg

Td:Training-dataset ,OD:Object-detector ,QS:Query-strategy ,#Cyc:DAL-cycles-number ,Bs:Batch-size-selection ,B:Batch-size ,Sf:Scoring-functuin
,Af:Aggregation-function ,dDNa:defined-Deep-Network-architecture ,dAf:defined-Aggregation-function ,MC-D:Monte Carlo-Dropout ,Fi:fixed (static)
,pSf:pixel-level Sf ,En:entropy ,oBo:one-by-one query method ,CP:CityPerson Pedestrian ,BD:BDD100K ,Un:Uncertainty ,Di:Diversity ,Bat:batch query
method ,CP:TinyYOLOv3 ,TYv3:TinyYOLOv3 ,Dy: dynamic ,C: Caltech ,CEDBMAL: CEDBMAL training
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Figure 9. Number of pedestrian instances in training set at each DAL
cycle

posed adaptive batch query strategy performs better than
our WCR-DAL method and exhibits a performance close to
the method reported in [4]. This observation is emphasized
by the gains in handling the bounding box distribution,
across DAL cycles, regardless of the underlying detector
architecture. Consequently, CEDBMAL’s dynamic selection
of batch size based on object amount not only helps to
effectively maintain the cost of data labeling, but also
reduces DAL selection cycles and naturally supports the
commonly used mini-batch training concept.

C. Discussion
As could be seen, the reported results on Caltech

Pedestrian dataset are very promising. However, the transfer
learning presented a worse performance. Such observation

can be explained by the fact that the taking into account
outliers and redundant data, during the training process,
degraded the detector model performance. Because it does
not suffer from these issues, the random sampling selection
technique, coupled with transfer learning, surpasses the
transfer learning method. Compared to previous methods,
our proposed DAL method effectively decreases the detec-
tion loss while minimizing the annotation and training costs
and dealing with the negative influence of noisy training
data. Regardless of the aggregation method being used, both
Uc and WCR query strategies can discover gradually more
knowledge from few frames, leading to min more informa-
tive boxes (hard examples) that provide good signal for fast
convergence and annotation cost reduction, while the overall
performance of both strategies remains close to each other.
Even thought WCR-DAL could select high uncertainty
frames with more pedestrian objects in early cycles, similar
object distribution in consecutive frames does not always
yield an improvement and yet decreases the performance
of the detector. Throughout the adaptive selection of best
batch according to its size, target object distribution and
annotation cost, it is clear that CEDBMAL cost-effectively
fine-tunes more robust CNN-based detection model and
conserves detection loss close to existing performance
results. This is due to maintain outliers’ selection and
diversity between selected frames, which is highly expected
to decrease the detection loss while saving annotation time
within a given budget. However, the success of our method
is a matter of critical factors, namely the underlying detector
architecture complexity, scoring functions and the query
strategy. Although existing object detection algorithms have
achieved good results, it is still a challenge to effectively
handle the correlation between sample selection criteria,
dynamic batch selection, and noisy data identification to
minimize the cost of data labeling.

6. Conclusions and FutureWork
In this paper, a novel, cost-effective deep active learning

framework for object detection was proposed. An adaptive
batch sampling strategy was designed. At the frame-level,
a set of batches, consisting of the top-ranked samples
within the batch, is actively selected based on both WCR
uncertainty and diversity. Afterward, an annotation cost-
based batch selection is performed considering detected
objects that provide training benefits. The results demon-
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strated that CEDBMAL framework contributes to a smaller
decrease in detection loss, but a greater reduction in manual
annotation effort, with less than 50% of labeled data, as
well as an effective avoidance of the impractical batch
size determination, the equal cost assumption and the
budget exceedance. In addition, providing a deeper insight
regarding cost-effective batch size selection by applying
optimization techniques, such as dynamic programming, in
DAL. However, its major shortcomings are the negative
influence of class imbalance and similar instances between
batches, as well as the increased learning time trigged by
the active learning cycle. As a future work, we will address
the consistency metric in minimizing labeling cost of batch
DAL. Furthermore, integrating other learning paradigms to
reduce human supervision.
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