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Abstract: High-impedance fault (HIF) detection is crucial for maintaining the reliability and resiliency of microgrid systems. This 

research presents an adaptive machine learning approach to enhance HIF detection and improve resiliency against the outage of 

optimally placed phasor measurement units (PMUs) in microgrids. PMUs are strategically positioned in limited numbers across the 

microgrid, considering their cost-effectiveness. When one of these PMUs encounters an outage, HIF detection becomes more complex 

due to the critical information loss from the affected area. The proposed approach utilizes a combined framework of correlation 

modelling, feature extraction using Hilbert-Huang Transformation (HHT), and Analysis of Variance (ANOVA). By leveraging 

machine learning algorithms, the approach selects the most relevant features derived from Hilbert spectral analysis (HSA) to perform 

tasks such as PMU outage detection, HIF detection, and classification during optimally placed PMU outage scenarios. The effectiveness 

of the approach in enhancing resiliency for high-impedance fault (HIF) detection during PMU outage scenarios is demonstrated through 

simulation studies conducted in MATLAB Simulink on microgrid systems. 

 

Keywords: Microgrid, SCADA, PMU, Huang Hilbert Transformation, ANOVA, Protection Devices, Machine Learning. 

1. INTRODUCTION  

Phasor measurement units (PMUs) are intelligent 

electronic devices (IEDs) crucial for controlling and 

monitoring power networks in microgrid setups and provide 

synchronized phasors time tagged with the global positioning 

system (GPS) clocks[1]. While it would be optimal to install 

PMUs on every bus for comprehensive system monitoring, the 

high installation costs and limited communication 

infrastructure render this approach economically and 

practically unviable. To minimize expenses, PMUs are 

strategically placed on specific buses. These PMUs monitor 

and analyze data not only from their own bus but also from 

neighboring buses where PMUs are not deployed[2], [3]. 

However, in the event of a malfunction or damage to one of 

these PMUs, there is a risk of losing data from all 

interconnected buses, which can significantly impact the 

effectiveness of the centralized protection scheme. 

 

In addition to the challenges posed by PMU deployment, 

high impedance faults (HIFs) further complicate the reliable 

operation of microgrids. Traditional fault detection methods 

often fail to detect HIFs due to their high impedance and low 

fault currents[4]. The situation becomes even more complex 

when HIFs occur on buses where a PMU is not deployed. 

Detecting such faults becomes challenging as the distance to 

the nearest PMU is greater, and the fault magnitude is already 

very low. Researchers have recently focused on applying 

machine learning algorithms to improve fault detection 

accuracy.  

Several methods have been presented in the literature for 

solving the optimal PMU placement (OPP) problem such as 

genetic algorithm[5]–[10], particle swarm optimization 

(PSO)[11]–[13]imperialistic competition algorithm[14], 

chemical reaction optimization[15], TABU search [16] and 

Teaching–learning based optimization[17]. All of the 

approaches mentioned above have primarily focused on the 

optimal placement of PMUs, but no research work has, 

however, been validated by associating it with the detection 

and mitigation of high impedance faults (HIFs) during PMU 

outages. 
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Multiple research studies such as  [4], [18]–[22],  have 

examined the detection of high impedance faults (HIFs). 

However, these studies solely concentrate on HIF detection 

and have not addressed the crucial task of validating their 

effectiveness in detecting and mitigating HIFs during PMU 

outages. Therefore, there is currently no research that 

establishes a connection between HIF detection and effective 

fault mitigation in PMU outage scenarios. 

The PMU data, on the other hand, may suffer from 

contamination by quasi-noise, which can lead to inaccurate 

results when used in power system applications by a phasor 

data concentrator (PDC). Additionally, there may be instances 

where data from PMUs to PDCs is missing[23]. In the NASPI 

design[24], measurements obtained from multiple PMUs are 

merged at PDCs, which then transmit the measurements to 

subsequent PDCs or the central control unit. Consequently, this 

disruption can result in either the control centre not receiving 

real-time data or raising suspicions about the validity of the 

measures. These factors undermine the observability and 

effectiveness of the centralized protection scheme [25]. To 

tackle these challenges, the proposed research aims to develop 

an innovative machine learning-based protection scheme. This 

scheme will provide resilience against misleading PMU data 

or system noise, as well as detect HIF in the system. 

The proposed research work aims to enhance the effectiveness 

of microgrid protection using the Hilbert-Huang Transform 

(HHT) as a signal-processing technique for feature extraction 

and fault identification. To improve the efficiency of feature 

selection, a protection scheme combines the HHT with the 

Analysis of Variance (ANOVA) approach. This combined 

framework helps identify the most efficient features derived 

from the HHT, enabling accurate estimation of estate in Phasor 

Measurement Units (PMUs), specific fault detection, and 

section identification in the outage zone. To address the 

challenges of fault identification in complex scenarios, the 

proposed research incorporates machine learning-based 

algorithms. While a Decision Tree (DT) is a commonly used 

machine learning approach, it may not provide satisfactory 

performance for complex datasets. Hence, the research work 

explores the use of ensemble techniques to overcome this 

limitation. By employing an ensemble of decision trees, known 

as Bagging, the research work aims to improve classification 

and regression outcomes. Bagging combines individual 

Decision Tree results through a polling approach, where the 

majority of votes are considered for classification tasks, and 

mean values are used for regression tasks. 

The following summarizes the important contributions/ 

highlights of the proposed research work. 

• Development of a combined framework of HHT and 
ANOVA to select the most efficient features for 
various scenarios, such as estate estimation of PMUs, 
specific fault detection, and section identification in 
the outage zone. 

• Development of a robust protection mechanism for a 
microgrid to provide resiliency against optimally 
placed PMU outage scenarios. 

• Uncertain data from optimally placed PMUs are 
analyzed quantitatively using empirical 
decomposition (EMD) and Hilbert spectral analysis 
(HSA) functions, providing insights into data 
characteristics. 

• The suggested protection technique is rigorously 
evaluated and compared to existing machine learning 
approaches, demonstrating its effectiveness across 
diverse situations. 

The remainder of the paper is arranged as follows: Section 

2 discusses the proposed protection methodology for the 

microgrid system. Section 3 focuses on the performance 

evaluation of the microgrid system. Lastly, Section 4 

concludes the work. 

 

2. PROPOSED PROTECTION METHODOLOGY FOR THE 

MICROGRID SYSTEM  

Figure 1 illustrates a schematic representation of the 
microgrid 34.5 kV, 60 Hz system, simulated using 
MATLAB/Simulink. In islanded operation, both Zone-I and 
Zone-II are efficiently powered by two main sources of 
renewable energy: the 9.2 MW Photo Voltaic DG (PVDG2) at 
bus B7, along with a synchronous DG (SDGII) at bus B6, and 
PVDG1 located at bus B1, together with another synchronous 
DG (SDGI) at bus B3. These power generation systems are 
equipped with power conditioning units featuring a DC-DC 
converter, VSI, and phase-locked loop (PLL), ensuring a stable 
and reliable power supply to all the loads in their respective 
zones. Sections S1, S3, S5, and S7 span a length of 8 
kilometres each, while Sections S2, S4, and S6 cover a distance 
of 12 kilometres each. The loads denoted as L1, L2, L3, L4, 
L5, L6, L7, and L8 represent the power consumption. PMUs 2 
and 3 are optimally placed in zone I on buses B5 and B7, while 
PMU 1 is installed on bus B1. The GPS clock synchronizes all 
three PMUs. These PMUs gather comprehensive system 
information and transmit it to the PDC, which subsequently 
transfers the data to the central processing unit. 
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Fig 1. Microgrid Model 

Figure 2 illustrates the PMU current data, including 
magnitude, angle, and frequency, measured at bus B1 (in red) 
and bus B7 (in green). A fault is introduced at 0.2 second in 
section 1 (S1). Notably, when measuring the current magnitude 
using the PMU1 at bus B1, it is significantly larger (shown in 
red); conversely, the magnitude is lower when measured by the 
PMU3 at bus B7 (shown in green). In case of a High 
Impedance Fault (HIF) at section S1 during PMU1 outage or 
in the presence of deceptive PMU data, the central protection 
unit is intelligently designed to utilize the joint framework 
model of PMU 2 and 3 to track PMU 1 estate estimation, fault 
detection, classification, and other related functionalities. 

Some faults, like HIF and symmetrical faults (LLL and 
LLLG), are difficult to identify due to their similar current 
characteristics. Conventional relaying methods are ineffective 
in detecting these faults. The challenge becomes even more 
significant when trying to detect HIF faults from a considerable 
distance in another PMU zone, refer to Figure 3 for a visual 
depiction of the nonlinear characteristics associated with HIF. 

 

Fig 3. Nonlinear characteristics associated with HIF. 

 

Both Figure 4 and Figure 5 exhibit fault current patterns 
that are remarkably similar, presenting significant challenges 
for their identification through conventional relaying 
approaches. Figure 5 shows the phase A fault current variation 
during faults at the PVDG2 in section S5 and the distribution 
line fault (AG fault) in section S3 with Rf = 22 ohms. The 
measurements were captured using PMU3 at bus B7. Notably, 
both fault locations in the microgrid exhibit a similar fault 

current profile, as clearly depicted in the figure. Similarly, In 
Figure 4, the Microgrid shows similar fault current patterns for 
symmetrical faults like LLLG fault and LLL fault in section S3 
measured at bus B7. Detecting these similar fault 
characteristics can be challenging, especially if the PMU in 
that zone is damaged. In such cases, it becomes more difficult 
to locate the fault using data from other PMUs. 

 

Fig. 2. PMU current data such as (a) magnitude (b) angle and (c) frequency 

measured at bus B1 is shown in red, while data measured at bus B7 is shown 

in green. 

 

 
Fig. 4.  Microgrid similar characteristic of LLL and LLLG fault in section S3 

measured at bus B7 (a) ABCG fault (b) ABC fault 

 
Fig. 5.  Microgrid similar fault current profile of phase A measured at bus B7 

during (a) PV array (PVDG2) fault in section S5 (b) Distribution line fault 
(AG fault) in section S3. 

A. Protection Schemes Flowchart 

Figure 6 illustrates a flowchart outlining a proposed 
protection scheme for microgrid systems. The raw time-
domain three-phase instantaneous voltage and current data 
have been recorded by all the PMUs connected to the system. 
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The PMUs' acquired data signals will undergo a two-step 
decomposition using empirical mode decomposition (EMD) 
techniques and Hilbert-Huang Transformation (HHT). This 
process yields six parameters: intrinsic mode function 1 and 2 
(IMF1 and IMF2), instantaneous frequency 1 and 2 (INSF1 
and INSF2), and instantaneous energy 1 and 2 (INSE1 and 
INSE2), as depicted in Figures 7 and 8.  

The decomposition process is iteratively applied to various 
circumstances, encompassing multiple fault scenarios, 
outages, PMU misleading data, and varying irradiance levels, 
with the results data being saved. Subsequently, essential 
characteristics of the signal, including mean, RMS, standard 
deviations (SD), shape factor, kurtosis, skewness, crest factor, 
impulse factor, clearance factor, peak value, SN ratio, THD, 
SINAD, and others, will be extracted. Among these, the 
ANOVA method will be employed, considering the specific 
circumstances, to identify the top 18 features for the state  

Fig. 6. Proposed protection schemes flowchart 

estimation of PMUs. These features include SNR, THD, 
KURTOSIS for cuuent Ia, Ib, Ic and THD, Clearance Factor and 
SINAD for voltage Va, Vb, and Vc. Following this, machine 
learning techniques will be utilized to determine the state of 
PMUs, such as outage, healthy status, misleading data, noise 
in the data, and more. 

After receiving outage information, the top 18 features 
extraction process is repeated using ANOVA technique to 
identify the fault type and fault section within the outage PMU 
zone. The features considered include STD, SKEWNESS, and 
THD for phases Ia, Ib, Ic, and voltages Va, Vb, and Vc. 
Subsequently, an ensemble bagging tree machine-learning 
algorithm is employed to accurately determine the exact fault 
type and fault section from adjacent PMUs. 

 

B. Feature extraction by using the combined framework of 

EMD, HHT and ANOVA Technique 

The signal decomposition technique known as HHT 
utilizes the EMD method to decompose the signal into intrinsic 
mode functions (IMFs). Subsequently, the Hilbert spectral 
analysis (HSA) is applied to these IMFs, resulting in the 
generation of instantaneous frequency (INSF) and 
instantaneous energy (INSE) data [26]. HHT is specifically 
designed to effectively handle nonstationary and nonlinear 
data. Moreover, Fourier transformations can be employed for 
preprocessing and decomposing data into mono-component 
elements. However, it is important to note that a limitation of 
this approach is that the Fourier transform only yields 
physically relevant components when the data exhibits 
linearity, stationarity, or absolute periodicity. 

 

C. Empirical Mode Decomposition (EMD) 

The EMD approach is employed to convert large-scale 

datasets into a collection of IMFs, which are then subjected to 

Hilbert spectral analysis. IMFs represent fundamental 

oscillatory modes, with each IMF exhibiting varying 

amplitude and frequency along the time axis, rather than a 

constant amplitude and frequency like a simple harmonic 

component. The process of obtaining an IMF is referred to as 

sifting [26]. The following outlines the sifting procedure: 

 

a) Identify all of the local extrema in the signal data set. Fit an 

envelope through maxima, which is generally referred to as 

the upper envelope, and another envelope through minima, 

which is referred to as the lower envelope. The fitting is often 

performed using cubic spline functions. 

Maxima: 𝐸𝑚𝑎𝑥(𝑡)   (1) 

Minima: 𝐸𝑚𝑖𝑛(t)    (2) 

 

b) Find the average of the upper and lower envelopes’ mean 

value denoted by Smean (t). 

𝑆𝑚𝑒𝑎𝑛(𝑡) = 𝐸𝑚𝑎𝑥(𝑡) + 𝐸𝑚𝑖𝑛(𝑡)    (3) 
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c) Determine a residual value by subtracting the mean 

envelope from the original signal. 

𝑅𝑒𝑠𝑖+1(𝑡) = 𝑅𝑒𝑠𝑖(𝑡) − 𝑆𝑚𝑒𝑎𝑛(𝑡)    (4) 

 

d) Verify the stop criterion: Huang et al. provided this 

criterion in 1998. It is identical to the Cauchy convergence 

test, and the sum of the differences, SD, is defined as 

 

𝑆𝐷 = ∑(𝑡) =  
(𝑅𝑒𝑠𝑖+1(𝑡)−𝑅𝑒𝑠𝑖(𝑡))2

𝑅𝑒𝑠𝑖
2(𝑡)

  (5) 

 

The sifting operation is then terminated when the SD is less 

than a certain threshold value. The process is reiterated using 

the residual until the stopping requirement is satisfied. 

Following that, the first IMF decomposition (IMF1) is 

achieved. Repeat the process using the updated version of the 

original signal to generate the second decomposition of IMF 

(IMF2), and so on. The IMF fluctuates near zero, Only the 

non-zero mean component is the remaining residual, denoted 

by Res by (4). EMD provides IMFs as well as residuals. 

Higher mode numbers have higher scales and lower 

frequencies. The original signal is represented by the sum of 

all modes and the remaining residual is represented by (6). 

EMD for LLLG fault is depicted as shown in Figure 8, where 

n is the no. of modes. 

 

Original Signal = ∑𝑖𝑚𝑓𝑛 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙    (6) 
 

D. Hilbert Spectral Analysis 

After obtaining the IMFs components, the Hilbert transform 

can be used to calculate the instantaneous frequency. After 

applying the Hilbert transform to each IMF component, the 

original data may be described as the real portion, Real, as 

follows: 

𝑋(𝑡) = 𝑅𝑒𝑎𝑙 ∑ 𝑎𝑗(𝑡)𝑒𝑖 ∫ 𝑤𝑗(𝑡)𝑑𝑡     
(7) 

 

E. Hilbert spectral analysis for LLLG fault, Instantaneous 

frequency and instantaneous energy as illustrated in 

Figure 7 One-Way Analysis of Variance (ANOVA) 

The one-way ANOVA is used to identify the best features 

from a large set of options such as kurtosis, signal to noise 

ratio (SNR), clearance factor, impulse factor, THD, standard 

deviation etc. It evaluates the mean value of all extracted 

features and analyzes if any of those means are significantly 

different from each other. It specifically examines the null 

hypothesis: 

 

Ho = µ1 = µ2 = µ3 = ⋯ = µ 

. 

 
Fig. 7. Hilbert spectral analysis for LLLG fault 

 

 

Where µ is the mean of the group and 1,2,3 is the number of 

features, the alternative hypothesis (HA), which asserts that 

the means of at least two features significantly differ from 

each other. 

 
Fig. 8.  Empirical Mode Decomposition for LLLG fault 

3. PERFORMANCE EVALUATION FOR THE 

MICROGRID GRID SYSTEM 

A. PMU Estate Estimation 

Table I showcases the performance of the proposed PMU 
estate estimation training module I for the microgrid system. 
In the event of any misleading or noise in the PMU data, the 
central protection scheme will detect and isolate the respective 
faulty PMU. However, if there are only load fluctuations or the 
PMU readings are accurate, the central protection scheme 
remains unaffected and does not require modification. 
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TABLE I: RESPONSE OF PROPOSED TRAINING MODULE I IN THE 

OCCURRENCE OF A PMU1 OUTAGE OR MISLEADING DATA IN THE 

MICROGRID SYSTEM  
Operating 

scenario 
Training Response 

 Type of 

deceived data 

(applied on 

PMU1) 

The output of 

Training 

Module I 

(Data Type)  

Protection Action 

Sawtooth 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

Square 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

Ramp 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

3rd Harmonics 

Variation 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

5th Harmonics 

Variation 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

7th Harmonics 

Variation 

PMU 

misleading 

data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

Random 

Noise in the 

Data 

The CPU will generate a deceptive 

data warning and remove PMU1 

from the protection scheme. 

No signal Outage 

PMUs 2 and 3 are used to take 

further protective measures. 

Missing Data Outage 

PMUs 2 and 3 are used to take 

further protective measures. 

No Addon Healthy 

The central protection scheme will 

stay unchanged 

 

B. Fault Detection and Section Identification 

Figure 9 illustrates the confusion matrix for fault detection 
and classification in Zone II (PMU 1 Outage Zone), 
highlighting the training performance of the ensemble bagging 
tree classifier with overall efficiency of 99.5%. This 
comparison between actual and expected faults during testing 
is based on the provided dataset. The class labels '1' denote the 
AB Fault, '2' corresponds to the ABCG Fault, '3' represents the 
ABC Fault, '4' indicates the AG Fault, and '5' signifies load 
variation or a healthy condition.  

Likewise, Figure 10 depicts the confusion matrix for 
section identification in the PMU1 Outage Zone. If a fault 
occurs in Zone II while PMU1 is disabled, PMU3 on Bus 7 can 
be utilized to diagnose the faulty section S1. Zone II consists 
of two sections, with class labels '1' denoting a fault in section 
1 and class labels '2' representing a fault in section 2. 

 

 

TABLE II: RESPONSE OF PROPOSED TRAINING MODULE II SCHEME AGAINST 

VARIOUS FAULTS AND LOAD VARIATION FOR MICROGRID SYSTEM 
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Fig. 9. Confusion matrix for fault detection and classification in a microgrid 

system. 

 
Fig. 10. Confusion matrix for identifying fault sections in the PMU outage 

zone (zone II) of a microgrid system. 
 

C. Fault Detection and Section Identification: Response of 

Training Module II to Various Fault and Loading 

Conditions, and the Associated Action 

Table III showcases the effectiveness of the proposed 
training module II, illustrated in Figure 6, across various 
aspects, including fault types, load fluctuations, section 
identification, response time, and relaying actions In 
microgrids with dynamic loading, the occurrence of sudden 
load fluctuations often leads to misinterpretations. Especially 
during an outage, accurately detecting faults from a 
considerable distance away, beyond the range of another PMU 
zone, poses a significant challenge. Figure 10 presents a 
notable scenario where a nonlinear load switching event takes 
place at t=0.12 sec, followed by an AB fault at t=0.2 sec in the 
S1 section. Despite variations in the current profile, the 
tripping signal for nonlinear loading is not generated. 
However, the AB fault with nonlinear loading is promptly 
identified at 0.2113 sec, demonstrating the robustness of the 
fault detection system. 

The performance evaluation of the proposed HHT-Ensemble 

Bagging Tree-based protection scheme, in comparison to other 

classifiers, was conducted to gauge its effectiveness. The 

results of this comparative assessment can be found in Table 

III, which includes the evaluation of Support Vector Machine 

(SVM) and Decision Tree (DT) classifiers as well. 
 

TABLE III: COMPARATIVE STUDY BETWEEN ENSEMBLE BAGGING TREE 

CLASSIFIER, SUPPORT VECTOR MACHINE AND DECISION TREE 
 

Type of classifier 
Bagging 

Tree  

Support 

Vector 

Machine 

(SVM) 

Decision 

Tree (DT) 

Number of test 

cases 

Total 4307 4307 4307 

PMU Estate 

Estimation 
816 816 816 

Fault 

Detection 
2465 2465 2465 

Section 

Identification 
1026 1026 1026 

Classification 

Accuracy 

PMU Estate 

Estimation 
100.00% 98.12% 99.54% 

Fault 

Detection 
99.55% 96.48% 97.66% 

Section 

Identification 
99.51% 97.23% 98.34% 

 

 

Fig. 10. Nonlinear load switching at t=0.12 s, followed by an AB fault at t = 

0.2 s in the S1 section 
 

For a comprehensive comparison, a total of 4307 test cases 
were meticulously analyzed, encompassing 816 PMU Estate 
Estimation cases, 2465 Fault Detection cases, and 1026 
Section Identification cases. Remarkably, the proposed 
Ensemble Bagging Tree-based classifier achieved an 
outstanding classification accuracy of 99.5%, surpassing the 
results of both the SVM and DT classifiers. This clearly proves 
the proposed protection approach is highly effective and 
proficient in fulfilling its intended task. 

4. CONCLUSION 

This research paper introduces a highly effective adaptive 
machine learning approach that significantly enhances high-
impedance fault (HIF) detection during PMU outages in 
microgrids, thereby strengthening the overall resilience of the 
microgrid. The combined framework of HHT and ANOVA 
offers an efficient feature selection method for precise PMU 
outage detection, HIF detection, and fault classification, 
showcasing the potential of machine learning in improving 
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microgrid protection. Simulation studies in MATLAB 
Simulink demonstrate the approach's effectiveness in 
enhancing HIF detection during PMU outages. The proposed 
protection scheme accurately identifies HIFs and faulty PMUs 
even under various misleading data or noise conditions. 
Furthermore, the proposed approach outperforms DT and 
SVM-based methods, achieving a remarkable 99.5% overall 
accuracy during training with the Ensemble Bagging Tree-
based classifier. 
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