
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Sep-2023)

http://dx.doi.org/10.12785/ijcds/140179

PROCTOR: A Robust URL Protection System Against
Fraudulent, Phishing, and Scam Activities

Abdul Azzam Ajhari1, Dimas Febriyan Priambodo2, Radifa Hilya Paradisa3 and Henny Yulianti4

1,4Department of Informatics, Universitas Siber Asia, Jakarta, 12550, Indonesia
2Cyber Security Engineering,National Cyber and Crypto Polytechnic, Bogor, 16120, Indonesia

3National Cyber and Crypto Agency, Depok, 16511, Indonesia

Received 16 Jul. 2023, Revised 15 Sep. 2023, Accepted 18 Sep. 2023, Published 20 Sep. 2023

Abstract: Changes in internet usage patterns and behavior that have become increasingly massive since the COVID-19 pandemic
have made hackers have various cybercrime ways to trick their victims. Some of the methods that are still used by hackers are fraud
by utilizing user data with fake websites (phishing) that resemble the original website. The appearance and URL of the website that
deceives the target or potential victim is a scam trick to gain the trust of the target. Therefore, we decided to research by building
a URL detection system with the characteristics of fraud, phishing, and scam website-based using machine learning. Because this
system is preventive in the form of protection, a user-friendly name was created, namely Protective URL Detector (PROCTOR).
PROCTOR uses 52 standard features of website security protocols and is trained to leverage fraud, phishing, and scam data in
Indonesia with random forest (RF) machine learning models. After training, the model is tested and evaluated with new data using the
confusion matrix classification evaluation method. The most optimal model is achieved by the RF model with a training accuracy of 99.91

Keywords: Cybercrime, Machine Learning, Phishing, Random Forest, Scam

1. INTRODUCTION
In the phishing activity trend report, global phishing

cases continued to increase during 2021 [1]. Indonesia Anti-
Phishing Data Exchange [2] reports that at least 3,180 cases
of phishing occurred in Indonesia in the first quarter of
2022. Hackers trick their victims to access data with short-
lived, evasive, malicious URLs, usually hiding behind an
automatically running redirect network. So that users as
potential victims believe that the appearance of this website
is safe (scam). The data is usually obtained by hackers in
the form of financial data, personal information, usernames,
and passwords which will then be used for illegal things
(fraud). Indonesia is the biggest target for hackers because
internet users in Indonesia in January 2022 reached 204.7
million or about 73.7% of the total population of Indonesia
[3].

Therefore, we need a method to detect unsafe URLs
(fraud, phishing, and scam) that can prevent and reduce the
risk for users. There are several methods used, whitelist or
blacklist by [4], [5], [6], Deep Learning with Deep Neural
Network (DNN), Long Short-Term Memory (LSTM), and
Convolution Neural Network (CNN) used in research [7].
CNN is also used by research [8], [9] and besides that, there
is a Gated Recurrent Neural Network used in research [10].
In addition to whitelisting, blacklisting, and deep learning

methods, current developments also lead to machine learn-
ing (ML), especially using URL-based, including research
from [11] and using the random forest (RF) method [12]
and more in-depth using feature extraction on URLs by [13]
and additional 30 feature extraction by [14].

With so many ways to detect URLs, this research tries to
use the point of view of an artificial intelligence (AI) system
as a protective url detector (PROCTOR). Based also on the
comparison of [15], [16] so to bring together the concept
of AI with more comprehensive features this research was
conducted. ML as a branch of AI has developed rapidly
and has been used in various fields, including cybersecurity.
Classification is one of the supervised machine learning
techniques that identify classes by learning features in a
dataset. It can be applied to classify the types of malicious
or legitimate websites [17].

In a previous study [18] phishing detection of emails has
also been using the K-Nearest Neighbor (KNN) algorithm
model. This model can effectively distinguish normal, spam,
and phishing emails, and has the highest accuracy of up
to 95.27%. Its research was able to beat other studies [19]
which only yielded an accuracy of 85.08% with the optimal
number of neighbors being 10.

E-mail: abdulazzam@lecturer.unsia.ac.id, dimas.febriyan@poltekssn.ac.id, radifa.hilya@bssn.go.id https:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140179
https://journals.uob.edu.bh

1014 AA Ajhari, et al.: PROCTOR: A Robust URL Protection System Against Fraudulent, Phishing, and Scam..

In the research conducted by [20], a combination of
Support Vector Machine (SVM) and Logistic Regression
(LR) was carried out using Lexical features based on
predefined malicious URL detection. The model was able
to work better with the highest accuracy rate reaching 98%.
A similar study conducted by [21] proposed the use of
Random Forest (RF) with 30 parameters which resulted in
the greatest accuracy of 99.36% and is still more robust
compared to existing research algorithms beating the com-
bined RF study with BLSTM [14]. Thus, the results of this
study make an important contribution to the development
of more accurate and reliable malicious URL detection
methods.

In this study, several algorithm models used were eval-
uated to detect unsafe website URLs. The purpose of this
evaluation is to obtain an algorithm with optimal perfor-
mance. This research compares the KNN, SVM, and RF
[21] models that have been used in previous research with
the proposed RF algorithm model plus the addition of 52
additional features or parameters. The addition of these
features or parameters is expected to improve the ability
to detect unsafe websites. By comparing the performance
results of these models, this research aims to identify the
most effective and accurate algorithm model for detecting
malicious website URLs.

2. DATA
A. Data acquisition

Process of obtaining data to improve the accuracy of
machine learning models. In this study, the data used
consisted of a website address (URL) and a label stating
whether the URL was valid (good) or unsafe (bad). The
dataset is collected from several sources as follows.

1) Dataset of valid Indonesian government website
URL links collected by the National Cyber and
Crypto Agency (BSSN) in 2020;

2) Dataset valid URL link for payment system licensing
and money management obtained from Bank Indone-
sia on October 15, 2021;

3) Dataset valid URL website of Electronic System
Operator (PSE) obtained from the Directorate of
Aptika Governance, Ministry of Communication and
Information (Menkominfo) of the Republic of In-
donesia on October 15, 2021;

4) Data collection indicated safe and unsafe obtained
from SMS/Email of each research team;

5) Test data set jointly conducted by the community in
December 2021.

The total dataset is 45,987 data, consisting of 9,325
good, 14,955 bad, and 21,667 malformed. The dataset
labeled malformed is ignored because the website URL is
no longer active, so the data used is 24,320 datasets with
9,325 labeled good and 14,995 labeled bad.

In machine learning, 2 data are needed to be used
as training data and test data based on several references

for dividing a dataset by [22], [23], [24], this study has
similarities such as [21] uses the proportion of data split
80:20. The total dataset of 24,320 is then separated into
two parts, for training data with a proportion of 80% or
around 19,460 data. testing data using a proportion of 20%
for the evaluation of the test or about 4,865 data.

B. Preprocessing
The process of getting data ready for a machine learning

model to analyze. This paper is divided into three subpro-
cesses, such as data cleaning by equating its characteristics
and format using domain and top-level domain (TLD),
feature extraction, and normalization.

Typically, website URLs generally consist of several
website security protocols such as the use of SSL certificates
and certificate authorities. These features may not reveal the
legitimacy of a website, but combining multiple features
increases the likelihood of detecting potentially malicious
website URLs. There are at least 52 experimental param-
eters or features used in this study in Table I, with some
previous parameters from malicious URL detection research
[14], [20] and phishing site inspection [25], [26], [27].

The normalization standardization technique used is the
Z-score normalization (ZN) technique, a simple transform-
ing operation at the feature level, can offer an effective
solution [28]. This results in a normally distributed feature
with a mean value of 0 and a standard deviation of 1. The
normalization formula is written mathematically in Formula
1, where Z is the normalized data value, X is the initial data
value, ϕ the initial value of the feature average value, and
θ the initial standard deviation of features.

Z =
X − ϕ
θ

(1)

C. Classification techniques
1) K-Nearest Neighbors (KNN)

KNN is one of the machine learning algorithms
used for classification and regression. The algorithm
works by comparing new data with existing data in
the training set. To find the close or far distance be-
tween points in class k is usually calculated using the
Euclidean distance. In addition, choosing the right K
value is very important as it affects the classification
performance. This can be done by calculating the
distance between the test set q and all training sets
p, where n is the number of features. The distances
are then sorted in ascending order to identify features
based on K data and classify new data. The formula
for calculating the Euclidean distance between two
points in two dimensions is as Formula 2.

d(x1, x2) =

√√ n∑
i=1

(x1 − y1)2 (2)

https:// journals.uob.edu.bh

https://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No.1, 1013-1021 (Sep-2023) 1015

TABLE I. Additional 52 Feature

No Features Name Description Pseudo Code

1 Protocol “http” or “https”
Feature 1-0: if

(
Shorten link∈{find deep link}→legitimate

Otherwise→suspicious

)
Feature 1-1: if

(
HTTPS link→legitimate
Otherwise→suspicious

)
Feature 1-2: if

(
SSL valid→legitimate
Otherwise→suspicious

)
2 Top-level domain (TLD) the last part of the domain name such as “.com”, “co. id”, . . . Feature 2: if

(
TLD valid→legitimate
Otherwise→suspicious

)
3 Len URL full the length of the URL Feature 3: if

(
(Length URL<50)→legitimate

Otherwise→suspicious

)
4 Len Alphabet full the no. of alphabet characters in the URL Feature 4: if

(
(Alphabet URL>10)→legitimate

Otherwise→suspicious

)
5 Len Non-alphabet full the no. of non-alphabet characters in the URL Feature 5: if

(
(Non-Alphabet URL<3)→legitimate

Otherwise→suspicious

)
6 Len Spec-character full the no. of special characters in the URL Feature 6: if

(
(Special URL=0)→legitimate

Otherwise→suspicious

)
7 Count At full the no. of “@” in the URL Feature 7: if

(
(At URL=0)→legitimate
Otherwise→suspicious

)
8 Count Dot full the no. of “.” in the URL Feature 8: if

(
(Dot URL<3)→legitimate

Otherwise→suspicious

)
9 Count Dash full the no. of “-” in the URL Feature 9: if

(
(Dash URL<3)→legitimate

Otherwise→suspicious

)
10 Count UnderScore full the no. of “ ” in the URL Feature 10: if

(
(Underscore URL=0)→legitimate

Otherwise→suspicious

)
11 Count Slash full the no. of “/” in the URL Feature 11: if

(
(Slash URL<5)→legitimate

Otherwise→suspicious

)
12 Count Question Mark full the no. of “?” in the URL Feature 12: if

(
(QMark URL=0)→legitimate

Otherwise→suspicious

)
13 Count Equal full the no. of “=” in URL Feature 13: if

(
(Equal URL=0)→legitimate

Otherwise→suspicious

)
14 Count Ampersand full the no. of “&” in the URL Feature 14: if

(
(Ampers URL=0)→legitimate

Otherwise→suspicious

)
15 Count Comma full the no. of “,” in the URL Feature 15: if

(
(Comma URL=0)→legitimate

Otherwise→suspicious

)
16 Count Asterisk full the no. of “*” in the URL Feature 16: if

(
(Asterisk URL=0)→legitimate

Otherwise→suspicious

)
17 Count Hastag full the no. of “#” in the URL Feature 17: if

(
(Hashtag URL=1)→legitimate

Otherwise→suspicious

)
18 Count Semicolon full the no. of “;” in the URL Feature 18: if

(
(Semicolon URL=0)→legitimate

Otherwise→suspicious

)
19 Len domain the length of the domain Feature 19: if

(
(Length domain<20)→legitimate

Otherwise→suspicious

)
20 Len Alphabet full the no. of alphabet characters in the domain Feature 20: if

(
(Alphabet domain>4)→legitimate

Otherwise→suspicious

)
21 Len Non-alphabet domain the no. of non-alphabet characters in the domain Feature 21: if

(
(Non-Alphabet domain<3)→legitimate

Otherwise→suspicious

)
22 Len Spec-character domain the no. of special character in the domain Feature 22: if

(
(Special domain=0)→legitimate

Otherwise→suspicious

)
23 Count At domain the no. of “@” in the domain Feature 23: if

(
(At domain=0)→legitimate

Otherwise→suspicious

)
24 Count Dot domain the no. of “.” in the domain Feature 24: if

(
(Dot domain=0)→legitimate

Otherwise→suspicious

)
25 Count Dash domain the no. of “-” in the domain Feature 25: if

(
(Dash domain<3)→legitimate

Otherwise→suspicious

)
26 Count UnderScore domain the no. of “ ” in the domain Feature 26: if

(
(Underscore domain=0)→legitimate

Otherwise→suspicious

)
27 Count Slash domain the no. of “/” in the domain Feature 27: if

(
(Slash domain=0)→legitimate

Otherwise→suspicious

)
28 Count Question Mark domain the no. of “?” in the domain Feature 28: if

(
(QMark domain=0)→legitimate

Otherwise→suspicious

)
29 Count Equal domain the no. of “=” in domain Feature 29: if

(
(Equal domain=0)→legitimate

Otherwise→suspicious

)
30 Count Ampersand domain the no. of “&” in the domain Feature 30: if

(
(Ampers domain=0)→legitimate

Otherwise→suspicious

)
31 Count Comma domain the no. of “,” in the domain Feature 31: if

(
(Comma domain=0)→legitimate

Otherwise→suspicious

)
32 Count Asterisk domain the no. of “*” in the domain Feature 32: if

(
(Asterisk domain=0)→legitimate

Otherwise→suspicious

)
33 Count Hastag domain the no. of “#” in the domain Feature 33: if

(
(Hashtag domain=0)→legitimate

Otherwise→suspicious

)
34 Count Semicolon domain the no. of “;” in the domain Feature 34: if

(
(Semicolon domain=0)→legitimate

Otherwise→suspicious

)
35 Len subdomain the length of the subdomain Feature 35: if

(
(Length subdomain<15)→legitimate

Otherwise→suspicious

)
36 Len Alphabet subdomain the no. of alphabet characters in the subdomain Feature 36: if

(
(Alphabet subdomain>4)→legitimate

Otherwise→suspicious

)
37 Len Non-alphabet subdomain the no. of non-alphabet characters in the subdomain Feature 37: if

(
(Non-Alphabet subdomain<2)→legitimate

Otherwise→suspicious

)
38 Len Spec-character subdomain the no. of special character in the subdomain Feature 38: if

(
(Special subdomain=0)→legitimate

Otherwise→suspicious

)
39 Count At subdomain the no. of “@” in the subdomain Feature 39: if

(
(At subdomain=0)→legitimate

Otherwise→suspicious

)
40 Count Dot subdomain the no. of “.” in the subdomain Feature 40: if

(
(Dot subdomain=0)→legitimate

Otherwise→suspicious

)
41 Count Dash subdomain the no. of “-” in the subdomain Feature 41: if

(
(Dash subdomain<2)→legitimate

Otherwise→suspicious

)
42 Count UnderScore subdomain the no. of “ ” in the subdomain Feature 42: if

(
(Underscore subdomain=0)→legitimate

Otherwise→suspicious

)
43 Count Slash subdomain the no. of “/” in the subdomain Feature 43: if

(
(Slash subdomain=0)→legitimate

Otherwise→suspicious

)
44 Count Question Mark subdomain the no. of “?” in the subdomain Feature 44: if

(
(QMark subdomain=0)→legitimate

Otherwise→suspicious

)
45 Count Equal subdomain the no. of “=” in subdomain Feature 45: if

(
(Equal subdomain=0)→legitimate

Otherwise→suspicious

)
46 Count Ampersand subdomain the no. of “&” in the subdomain Feature 46: if

(
(Ampers subdomain=0)→legitimate

Otherwise→suspicious

)
47 Count Comma subdomain the no. of “,” in the subdomain Feature 47: if

(
(Comma subdomain=0)→legitimate

Otherwise→suspicious

)
48 Count Asterisk subdomain the no. of “*” in the subdomain Feature 48: if

(
(Asterisk subdomain=0)→legitimate

Otherwise→suspicious

)
49 Count Hastag subdomain the no. of “#” in the subdomain Feature 49: if

(
(Hashtag subdomain=0)→legitimate

Otherwise→suspicious

)
50 Count Semicolon subdomain the no. of “;” in the subdomain Feature 50: if

(
(Semicolon subdomain=0)→legitimate

Otherwise→suspicious

)
51 ratio url path the ratio of URL and path Feature 51: if

(
(ratio<3)→legitimate

Otherwise→suspicious

)
52 ratio digit url the ratio of digits in URL and URL Feature 52: if

(
(ratio<0.5)→legitimate
Otherwise→suspicious

)

https:// journals.uob.edu.bh

https://journals.uob.edu.bh

1016 AA Ajhari, et al.: PROCTOR: A Robust URL Protection System Against Fraudulent, Phishing, and Scam..

2) Support Vector Machine (SVM) SVM is a ma-
chine learning algorithm used for classification
and regression [29]. It works by finding the best
line or hyperplane that can separate two classes
of data. Suppose the data set, D, is given as
{(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi is the set of
training tuples with corresponding classes labeled yi.
Each yi can take one of two values, either +1 or
−1, corresponding to the class ’malicious website’
or ’legitimate website,’ respectively. The SVM finds
the best decision to separate these two classes by
using a hyperplane, h, [30] which can be defined as
Formula 3.

h(x) = W · X + b =
N∑

i=1

αiyi(xi, x) + b (3)

Where W is the weight, b is the bias, N is the
number of features in the dataset, xi is the set of
training tuples, and αi is the Lagrange multiplier.
When dealing with non-linear data, we can apply the
RBF (Radial Basis Function) kernel to transform the
data into a higher-dimensional space. This allows us
to use a linear model to separate the transformed
data.

3) Support Vector Machine (SVM) Random Forest is
a machine learning algorithm used to classify or
regress large data sets. Because of its functionality,
it can be used for many dimensions with vari-
ous scales and high performance. This classification
is done by merging trees in a decision tree by
training the dataset. Suppose RF(x) is the result
of Random Forest prediction for data x, where
{P1(x), P2(x), . . . , Pn(x)} are the predictions of each
decision tree the Equation as Formula 4.

RF(x) = mode(P1(x), P2(x), . . . , Pn(x)) (4)

3. MODELLING
Since some classifiers cannot be trained on categorical

data, the dataset needed to be transformed and converted
through pre-processing, where all nominal values were
converted to numerical values. The same conversion model
was used to map nominal data to numerical data across
the dataset. In addition, the dataset went through a feature
scaling process to make the data normally distributed with
zero as the mean and standard deviation of 1. This process
can reduce the processing time for some classifiers as
well as avoid any mismatch issues that may arise. The
performance evaluation of the algorithm is done using
several metrics: confusion matrix and mean absolute error
(MAE).

The confusion matrix is a two-dimensional matrix with
rows indicating actual URL label values and columns indi-
cating predicted URL label values. The confusion matrix
is used to evaluate the performance of the classification
model by comparing the model’s predictions with the actual

reality. In the confusion matrix, TP, FP, FN, and TN are used
to calculate evaluation metrics such as accuracy, precision,
sensitivity, and specificity [31]. The following steps are
to formulate a confusion matrix in Table II for accuracy
prediction in a standard way using only Positives and
Negatives [32], [33] shown in Formula (5), (6), (7), and
(8).

TABLE II. Confusion Matrix

Predicted

Yes No

A
ct

ua
l Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative (TN)

Accuracy =
T P + T N

T P + T N + FP + FN
(5)

Precision =
T P

T P + FP
(6)

Recall =
T P

T P + FN
(7)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

In addition, the calculation of the mean absolute error
(MAE) in equation (9) is used to compare the performance
of several models to measure the accuracy of a model
evaluation [34] in making predictions. MAE calculates the
absolute difference between each pair of predicted and true
values and then takes the average of all the differences.
MAE gives an idea of the extent to which the model
predictions deviate from the true values. The lower the
MAE value, the smaller the prediction error, which indicates
better performance. The most suitable and optimal model
in evaluation is compiled into the pickle module (.pkl) to
be applied at the deployment stage.

MAE =
1
n

n∑
i=1

|yi − ŷi| (9)

In comparing the performance of RF with 52 additional
parameters or features, we conducted several experiments
with other algorithms, namely KNN and SVM. Three mod-
els were trained using the best hyperparameters and 80%
data proportion in Table I. The accuracy of the proposed RF
model shows better performance than the other algorithms,
resulting in an optimal model result with a training accuracy
of 99.91% and an MAE result of 0.0093 as seen in Table III.
Thus, it can be concluded that RF is an effective choice in
predicting outcomes with a high degree of accuracy.

The confusion matrix test is carried out after the training
process from 20% of the data that is not used in the training
and is presented in Table IV, Table V, and Table VI.

https:// journals.uob.edu.bh

https://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No.1, 1013-1021 (Sep-2023) 1017

TABLE III. Train Evaluation Result

No Models Hyperparameter Train accuracy MAE

1 KNN n-neighbors=4 99.19% 0.0081

2 SVM kernel=rbf, degree=0.3 99.03% 0.0097

3 RF n tree=50 99.91% 0.0093

Table IV with the KNN model, explains that predictions
that are misclassified should be bad into good is 25 data,
while classifications that should be good into bad are 17
data. Then Table 5 with the SVM model, explains that the
predictions that are misclassified should be bad into good
are 29 data, while the classification that should be good
into bad is 16 data. In Table 6 with the RF model 52
parameters or features explain that the predictions that are
misclassified should be bad into good are 17 data, while for
the classification that should be good into bad as much as
13 data. This model shows that RF is more optimal than
other models.

TABLE IV. KNN Testing Evaluation Result

Predicted Label
Bad Good

True Label
Bad 2982 17

Good 25 1840

TABLE V. SVM Testing Evaluation Result

Predicted Label
Bad Good

True Label
Bad 2983 16

Good 29 1836

TABLE VI. RF Testing Evaluation Result

Predicted Label
Bad Good

True Label
Bad 2986 13

Good 17 1848

Table VII presents the evaluation of the test performance
on the confusion matrix and MAE. The RF model has
the best performance among the other two models with
a 99.38% accuracy and the smallest MAE of 0.0062.
So, the RF model is compiled into a pickle module to
be implemented at the model implementation stage. The
proposed model has a slightly better improvement as shown
in Table VIII with the addition of 52 features.

4. DEPLOYMENT
The best model, RF was then implemented using Python

version 3.10.6 on a Docker container with a Flask API

Figure 1. Deployment Method Process

web service as the user/client system website interface.
Docker is a technology that combines applications, related
dependencies, and organized system libraries to be built
in containers. Flask is a micro web framework written in
Python and based on the WSGI toolkit and Jinja 2 template
engine that allows developers to build web applications
quickly [35] as you can see in Figure 1. This combination
is perfect for the stage of developing AI models for a web
application as a PROtective url deteCTOR (PROCTOR).

At this stage, the system uses the Flask method process
and several additional features. Before implementing the
best AI model into the user interface, we need to convert
the model into a library named pickle (.pkl). The additional
features describe as follows.

A. Algorithm
There are several algorithms in the program created.

Several algorithms are made to get plain URLs so that they
can be analyzed further. Algorithm 1 is intended to process
URLs with the https prefix and algorithm 2 is intended
for URL processing with the http format. Algorithm 3 is
intended to perform URL checks as in additional feature 1
as the initial stage of checking. Subsequent checks use more
url plans so a parsing algorithm is needed as in algorithm
4. The next feature up to 52 features can be exemplified in
algorithm 5. Algorithm 6 is a new feature for connecting
TrustPositive “internet positif” from The Indonesia Ministry
of Communication and Informatics. This algorithm also
gave validation this application suitable for Indonesian.

B. Scenario
1) The user receives a short message in this case in

Bahasa or Indonesian language via social media or
email accompanied by a website URL as shown in
Figure 2. No need to open a suspicious URL, the user
just copies the website URL https://bit.ly/30BXEOu.

2) Paste the previously copied link into the input box in
the interface PROCTOR website system as shown in

https:// journals.uob.edu.bh

https://bit.ly/30BXEOu
https://journals.uob.edu.bh

1018 AA Ajhari, et al.: PROCTOR: A Robust URL Protection System Against Fraudulent, Phishing, and Scam..

TABLE VII. The Best Testing Evaluation Result

No Models Name Overall Accuracy Precision Recall F1-score MAE

1 KNN 99.14% Bad = 99.17%
Good = 99.08%

Bad = 99.43%
Good = 98.66%

Bad = 99.30%
Good = 98.87% 0.0086

2 SVM 99.07% Bad = 99.04%
Good = 99.14%

Bad = 99.47%
Good = 98.45%

Bad = 99.25%
Good = 98.79% 0.0093

3 RF 99.38% Bad = 99.43%
Good = 99.30%

Bad = 99.57%
Good = 99.09%

Bad = 99.50%
Good = 99.19% 0.0062

Algorithm 1: Check Error
1 def check url(url):
2 ERROR URL = f’https://url’
3 try:
4 ERROR URL = urlparse(ERROR URL)
5 connection = HTTPConnection(ERROR URL.netloc, timeout=2)
6 connection.request(’HEAD’, ERROR URL.path)
7 if connection.getresponse():
8 return True
9 else:

10 return False
11 except:
12 return False

Algorithm 2: check http url
1 def check http url(url):
2 HTTP URL = f’http://url’
3 try:
4 HTTP URL = urlparse(HTTP URL)
5 connection = HTTPConnection(HTTP URL.netloc)
6 connection.request(’HEAD’, HTTP URL.path)
7 if connection.getresponse():
8 return True
9 else:

10 return False
11 except:
12 return False

Algorithm 3: check https url
1 def check https url(url):
2 HTTPS URL = f’https://url’
3 try:
4 HTTPS URL = urlparse(HTTPS URL)
5 connection = HTTPSConnection(HTTPS URL.netloc)
6 connection.request(’HEAD’, HTTPS URL.path)
7 if connection.getresponse():
8 return True
9 else:

10 return False
11 except:
12 return False

Figure 2. Deployment Method Process

TABLE VIII. Research Accuracy Comparison

Research Models Accuracy

Previous RF with additional 30 features [14] 99.38%
Proposed RF with additional 52 features 99.36%

Algorithm 4: base url
1 def base url(url, with path=False):
2 parsed = urlparse(url)
3 path = ’/’.join(parsed.path.split(’/’)[:-1]) if with path else ”
4 parsed = parsed. replace(path=path)
5 parsed = parsed. replace(params=”)
6 parsed = parsed. replace(query=”)
7 parsed = parsed. replace(fragment=”)
8 return parsed.geturl()

Figure 3 and press predict button to get the website
URL classification result.

3) The PROCTOR system will analyze website URLs
by checking HTTP error codes, SSL certificates,
and sites blocked by the Indonesian government
on TrustPositive. After being analyzed, the website
URL will be processed by ML by studying its 52
characteristics.

4) The prediction and classification results will bring
up two classifications, namely indicated safe

Algorithm 5: feature
1 def fitur(df):
2 sy = [’’,’.’,’-’,’ ’,’/’,’?’,’=’,’&’,’,’,’%’,’hastag’,’;’]
3 sl = [”,’A-Za-z’,’0-9’,’.- /?=&,%hastag;’]
4 nm = [’At’,’Dot’,’Dash’,’UnderScore’, ’Slash’, ’Question’, ’Equal’,

’Ampersand’, ’Comma’, ’Percent’, ’Hastag’, ’Semicolon’]
5 ln = [’URL’, ’Alphabet’, ’Non-alphabet’, ’Spec-character’]
6 en = [’Website’,’domain’,’subdomain’]
7 for j in range(len(en)):
8 for k in range(len(sl)):
9 if k==0:

10 df[’Len ’+ln[k]+’ ’+en[j]] = df[en[j]].str.len()
11 else:
12 df[’Len ’+ln[k]+’ ’+en[j]] = df[en[j]].str.count(’[’+sl[k]+’]’)
13 for i in range(len(sy)):
14 df[’Count ’+nm[i]+’ ’+en[j]] = df[en[j]].str.count(’[’+sy[i]+’]’)
15 prediksi.append(en.inverse transform([np.argmax(y pred)])[0])
16 print(prediksi)
17 run program([’http://google.com’], ’model’)

https:// journals.uob.edu.bh

https://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No.1, 1013-1021 (Sep-2023) 1019

Algorithm 6: Trust Positive/Internet positif feature
1 for i in range(len(df test))::
2 link.append(protocol check((df test[’Website’])[i])[0])
3 #print(link)
4 protocol.append(protocol check((df test[’Website’])[i])[1])
5 try:
6 link[i] = requests.get(link[i], timeout=10).url
7 deep url = requests.get(link[i], timeout=10).raise for status()
8 #print(link[i])
9 print(’1’)

10 print(link[i])
11 if ’mercusuar’ in requests.get(link[i], timeout=10).url:
12 nb = ’URL tidak ditemukan’
13 base.append(nb)
14 deep.append(link[i])
15 elif ’aduankonten’ in requests.get(link[i], timeout=10).url or

’internetpositif’ in requests.get(link[i], timeout=10).url:
16 print(’ii’)
17 nb = ’AKSES KE SITUS INI DIBLOKIR OLEH PEMERINTAH

INDONESIA’
18 base.append(nb)
19 deep.append((df test[’Website’])[i])
20 else:
21 #link[i] = requests.get(link[i], timeout=10).url
22 base.append(base url(link[i]))
23 deep.append(link[i])

Figure 3. Interface PROCTOR website system

“terindikasi aman” and indicated unsafe “terindikasi
tidak aman” with a probability accuracy. But, if the
website URL is inactive, it will display the results
of the site not being found “situs tidak ditemukan”.

5) Another problem is the SSL certificate error, when
the website is damaged in the SSL certificate like
https://bit.ly/30BXEOu with the original URL https:
//programhadiah-bripoin.blogspot.com, the informa-
tion ”SSL Certificate Verification Error” will appear
as shown in Figure 4 .

Different test scenarios were carried out on another short
URL, bit.ly/shopeebigsale662, and displays the information
as shown in Figure 5 . The classification also shows
”terindikasi tidak aman” with the original URL, https:
//shopeebigsale662.blogspot.com, but with the addition of
99.98% prediction probability information.

Figure 4. PROCTOR prediction and classification SSL Verification
Error

Figure 5. PROCTOR prediction and classification SSL Verification
Error

5. Conclusions and FutureWork
Three models are trained and tested on the dataset. A

parametric study is performed for each model, and the best
results are forwarded for evaluation. For KNN, high accu-
racy was given by the neighbor parameter corresponding to
4, resulting in a training accuracy of 99.19% and a testing
accuracy of 99.14%. For SVM, high accuracy was reported
with the radial basis function (RBF) kernel with 99.03%
training accuracy and 99.07% testing accuracy. As for the
proposed model, RF with 52 parameters, high accuracy was
achieved resulting in a training accuracy of 99.91% and a
testing accuracy of 99.38%.

Therefore, the proposed model enables fast and accurate
detection of malicious website URL attacks. In addition, this
system can be additional security from sites that are not
registered on trustpositif / ‘internet positif’ owned by the
Ministry of Communication and Informatics of the Republic
of Indonesia. There are still many shortcomings in this study
and it is hoped that improvements can be made in future
research. Several improvements can be made by adding a
Term Frequency Inverse Document Frequency (TF-IDF) or
word vector to determine the frequency value of a word
in a URL. Use of the time factor to analyze the efficiency

https:// journals.uob.edu.bh

https://bit.ly/30BXEOu
https://programhadiah-bripoin.blogspot.com
https://programhadiah-bripoin.blogspot.com
bit.ly/shopeebigsale662
https://shopeebigsale662.blogspot.com
https://shopeebigsale662.blogspot.com
https://journals.uob.edu.bh

1020 AA Ajhari, et al.: PROCTOR: A Robust URL Protection System Against Fraudulent, Phishing, and Scam..

and performance of an algorithm. The last thing that can be
added is to use the latest model algorithm for processing.

References
[1] Anti-Phishing Working Group (APWG), “Phishing Activity Trends

Report 4th Quarter 2021,” Tech. Rep. February, 2022. [Online].
Available: https://apwg.org/trendsreports.

[2] Indonesian Anti-Phising Data Exchange, “Laporan Aktivitas Phising
Domain .id,” Indonesian Anti-Phising Data Exchange, Tech. Rep. 1,
2022.

[3] Global Digital Insights, “DataReportal – Global Digital Insights.”
[Online]. Available: https://datareportal.com/

[4] Y. Cao, W. Han, and Y. Le, “Anti-Phishing Based on Automated
Individual White-List,” in Proceedings of the 4th ACM Workshop
on Digital Identity Management, ser. DIM ’08. New York, NY,
USA: Association for Computing Machinery, 2008, pp. 51–60.

[5] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “PhishNet:
Predictive Blacklisting to Detect Phishing Attacks,” in 2010 Pro-
ceedings IEEE INFOCOM, 2010, pp. 1–5.

[6] A. K. Jain and B. B. Gupta, “A novel approach to protect
against phishing attacks at client side using auto-updated white-
list,” EURASIP Journal on Information Security, vol. 2016,
no. 1, p. 9, 2016. [Online]. Available: https://doi.org/10.1186/
s13635-016-0034-3

[7] M. Somesha, A. R. Pais, R. S. Rao, and V. S. Rathour, “Efficient
deep learning techniques for the detection of phishing websites,”
Sādhanā, vol. 45, no. 1, p. 165, 2020. [Online]. Available:
https://doi.org/10.1007/s12046-020-01392-4

[8] A. Al-Alyan and S. Al-Ahmadi, “Robust URL phishing detection
based on deep learning,” KSII Transactions on Internet and Infor-
mation Systems, vol. 14, no. 7, pp. 2752–2768, 2020.

[9] A. Aljofey, Q. Jiang, Q. Qu, M. Huang, and J. P. Niyigena,
“An effective phishing detection model based on character level
convolutional neural network from URL,” Electronics (Switzerland),
vol. 9, no. 9, pp. 1–24, 2020.

[10] J. Zhao, N. Wang, Q. Ma, and Z. Cheng, “Classifying Malicious
URLs Using Gated Recurrent Neural Networks BT - Innovative
Mobile and Internet Services in Ubiquitous Computing,” L. Barolli,
F. Xhafa, N. Javaid, and T. Enokido, Eds. Cham: Springer
International Publishing, 2019, pp. 385–394.

[11] H. Alaskar and T. Saba, “Machine Learning and Deep Learning:
A Comparative Review BT - Proceedings of Integrated Intelligence
Enable Networks and Computing,” K. K. Singh Mer, V. B. Semwal,
V. Bijalwan, and R. G. Crespo, Eds. Singapore: Springer Singapore,
2021, pp. 143–150.

[12] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri,
“Machine learning based phishing detection from URLs,”
Expert Systems with Applications, vol. 117, pp. 345–357,
2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0957417418306067

[13] R. S. Rao and A. R. Pais, “Detection of phishing websites using
an efficient feature-based machine learning framework,” Neural
Computing and Applications, vol. 31, no. 8, pp. 3851–3873, 2019.
[Online]. Available: https://doi.org/10.1007/s00521-017-3305-0

[14] M. G. Hr, A. Mv, S. Gunesh Prasad, and S. Vinay, “Development of
anti-phishing browser based on random forest and rule of extraction
framework,” Cybersecurity, vol. 3, no. 1, pp. 1–14, 2020.

[15] N. Sharma, R. Sharma, and N. Jindal, “Machine Learning and Deep
Learning Applications-A Vision,” Global Transitions Proceedings,
vol. 2, no. 1, pp. 24–28, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2666285X21000042

[16] C. Janiesch, P. Zschech, and K. Heinrich, “Machine
learning and deep learning,” Electronic Markets, vol. 31,
no. 3, pp. 685–695, 2021. [Online]. Available: https:
//doi.org/10.1007/s12525-021-00475-2

[17] R. D. Prayogo and S. A. Karimah, “Optimization of Phishing
Website Classification Based on Synthetic Minority Oversampling
Technique and Feature Selection,” in 2020 International Workshop
on Big Data and Information Security (IWBIS), 2020, pp. 121–126.

[18] D. Xiao and M. Jiang, “Malicious Mail Filtering and Tracing System
Based on KNN and Improved LSTM Algorithm,” Proceedings -
IEEE 18th International Conference on Dependable, Autonomic and
Secure Computing, IEEE 18th International Conference on Perva-
sive Intelligence and Computing, IEEE 6th International Conference
on Cloud and Big Data Computing and IEEE 5th Cybe, pp. 222–
229, 2020.

[19] T. A. Assegie, “K-Nearest Neighbor Based URL Identification
Model for Phishing Attack Detection,” Indian Journal of Artificial
Intelligence and Neural Networking, vol. 1, no. 2, pp. 18–21, 2021.

[20] A. Saleem Raja, R. Vinodini, and A. Kavitha, “Lexical features
based malicious URL detection using machine learning techniques,”
Materials Today: Proceedings, vol. 47, no. xxxx, pp. 163–166, 2021.
[Online]. Available: https://doi.org/10.1016/j.matpr.2021.04.041

[21] A. K. Jain and B. B. Gupta, PHISH-SAFE: URL features-based
phishing detection system using machine learning. Springer
Singapore, 2018, vol. 729.

[22] K. M. Kahloot and P. Ekler, “Algorithmic Splitting: A Method for
Dataset Preparation,” IEEE Access, vol. 9, pp. 125 229–125 237,
2021.

[23] V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis
and Data Mining, vol. 15, no. 4, pp. 531–538, 2022.

[24] A. Nurhopipah and U. Hasanah, “Dataset Splitting Techniques
Comparison For Face Classification on CCTV Images,” IJCCS (In-
donesian Journal of Computing and Cybernetics Systems), vol. 14,
no. 4, p. 341, 2020.

[25] R. S. Rao, T. Vaishnavi, and A. R. Pais, “CatchPhish:
detection of phishing websites by inspecting URLs,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11, no. 2,
pp. 813–825, 2020. [Online]. Available: https://doi.org/10.1007/
s12652-019-01311-4

[26] K. L. Chiew, C. L. Tan, K. Wong, K. S. C. Yong, and W. K.
Tiong, “A new hybrid ensemble feature selection framework for
machine learning-based phishing detection system,” Information
Sciences, vol. 484, pp. 153–166, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020025519300763

[27] M. Korkmaz, O. K. Sahingoz, and B. DIri, “Detection of Phishing
Websites by Using Machine Learning-Based URL Analysis,” 2020

https:// journals.uob.edu.bh

https://apwg.org/trendsreports.
https://datareportal.com/
https://doi.org/10.1186/s13635-016-0034-3
https://doi.org/10.1186/s13635-016-0034-3
https://doi.org/10.1007/s12046-020-01392-4
https://www.sciencedirect.com/science/article/pii/S0957417418306067
https://www.sciencedirect.com/science/article/pii/S0957417418306067
https://doi.org/10.1007/s00521-017-3305-0
https://www.sciencedirect.com/science/article/pii/S2666285X21000042
https://www.sciencedirect.com/science/article/pii/S2666285X21000042
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1016/j.matpr.2021.04.041
https://doi.org/10.1007/s12652-019-01311-4
https://doi.org/10.1007/s12652-019-01311-4
https://www.sciencedirect.com/science/article/pii/S0020025519300763
https://www.sciencedirect.com/science/article/pii/S0020025519300763
https://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No.1, 1013-1021 (Sep-2023) 1021

11th International Conference on Computing, Communication and
Networking Technologies, ICCCNT 2020, 2020.

[28] N. Fei, Y. Gao, Z. Lu, and T. Xiang, “Z-Score Normalization,
Hubness, and Few-Shot Learning,” Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 142–151, 2021.

[29] Y. Arjoune, F. Salahdine, M. S. Islam, E. Ghribi, and N. Kaabouch,
“A Novel Jamming Attacks Detection Approach Based on Machine
Learning for Wireless Communication,” in 2020 International Con-
ference on Information Networking (ICOIN), 2020, pp. 459–464.

[30] F. Salahdine, Z. E. Mrabet, and N. Kaabouch, “Phishing Attacks
Detection A Machine Learning-Based Approach,” in 2021 IEEE
12th Annual Ubiquitous Computing, Electronics & Mobile Commu-
nication Conference (UEMCON), 2021, pp. 250–255.

[31] A. Luque, A. Carrasco, A. Martı́n, and A. de las Heras, “The
impact of class imbalance in classification performance metrics
based on the binary confusion matrix,” Pattern Recognition, vol. 91,
pp. 216–231, 2019. [Online]. Available: https://doi.org/10.1016/j.
patcog.2019.02.023

[32] G. Zeng, “On the confusion matrix in credit scoring and its
analytical properties,” Communications in Statistics - Theory and
Methods, vol. 49, no. 9, pp. 2080–2093, 2020. [Online]. Available:
https://doi.org/10.1080/03610926.2019.1568485

[33] D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label
Classifier Performance Evaluation with Confusion Matrix,” pp. 01–
14, 2020.

[34] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute
error (MAE): when to use them or not,” Geoscientific Model
Development, vol. 15, no. 14, pp. 5481–5487, 2022.

[35] A. M. Potdar, D. G. Narayan, S. Kengond, and M. M.
Mulla, “Performance Evaluation of Docker Container and Virtual
Machine,” Procedia Computer Science, vol. 171, no. 2019, pp.
1419–1428, 2020. [Online]. Available: https://doi.org/10.1016/j.
procs.2020.04.152

Abdul Azzam Ajhari is a Lecturer at Uni-
versitas Siber Asia (UNSIA) and an Infor-
matics Expert at the National Cyber and
Crypto Agency in the Republic of Indonesia.
He received his master’s degree from Bina
Nusantara University majoring in computer
science in 2022 with a thesis about Aircraft
Flight Movement Anomaly Detection using
Automatic Dependent Surveillance Broad-
cast. He has been certified ISO 27001 Lead

Auditor Information Security Management Systems (ISMS). He
also has certification from NVIDIA Deep Learning Institute. He
can be contacted at email: abdulazzam@lecturer.unsia.ac.id.

Dimas Febriyan Priambodo is a lecturer
at National Cyber and Crypto Polytechnic.
He received his master’s degree from Ga-
jah Mada University majoring in computer
science in 2018 with a thesis about resource
utilization on multicore servers. His research
concentrates mainly on operating systems,
cybersecurity, electronics, and IT education.
He is a Certified Ethical Hacker or CEH
from EC Council. He is one of a joint

research team in 5G security with the latest book “Tinjauan
Strategis Keamanan 5G” as a reference for National Cyber and
Crypto Agency. His research on the topic cross border payment
receives a grant from the Central Bank of Indonesia. He can be
contacted at email: dimas.febriyan@poltekssn.ac.id.

Radifa Hilya Paradisa is an employee of
the National Cyber and Crypto Agency. Her
educational background is a bachelor’s and
master’s degree in mathematics from Uni-
versitas Indonesia. The basis of her research
during college was in the fields of compu-
tational mathematics, data science, and arti-
ficial intelligence, especially machine learn-
ing or deep learning. She has international
papers that have been published with more

than 200 citations since 2021. Now her area of interest is starting
to branch out into the areas of cybersecurity and cryptography.
She can be contacted at email: radifa.hilya@bssn.go.id.

Henny Yulianti is the Head Department of
the Informatics program and a Lecturer of
Data Science at Universitas Siber Asia (UN-
SIA). She has two master’s degrees from
Budi Luhur University majoring in manage-
ment in 2004 and computer science in 2022.
She also has a lot of experience in computer
science areas such as Data Science and Ar-
tificial Intelligence. She can be contacted at
email: hennyyulia@lecturer.unsia.ac.id.

https:// journals.uob.edu.bh

https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1080/03610926.2019.1568485
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1016/j.procs.2020.04.152
https://journals.uob.edu.bh

	INTRODUCTION
	DATA
	Data acquisition
	Preprocessing
	Classification techniques

	MODELLING
	DEPLOYMENT
	Algorithm
	Scenario

	Conclusions and Future Work
	References
	Biographies
	Abdul Azzam Ajhari
	Dimas Febriyan Priambodo
	Radifa Hilya Paradisa
	Henny Yulianti

