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Abstract: Despite the growing potential of deep learning in diagnosing Atrial Fibrillation (Afib), challenges such as overfitting and
limited generalizability continue to persist. These limitations are accentuated in single-lead ECGs generated from wearable devices,
which frequently suffer from inadequate annotation and substantial data variability. This study seeks to address these challenges by
enhancing both the accuracy and generalizability of Afib detection algorithms. We introduce Afib-CNN, a specialized Convolutional
Neural Network engineered for 9-second, single-lead ECGs. The architecture comprises ten convolutional blocks and three fully
connected layers, focusing on computational efficiency. To mitigate data variability, we apply advanced pre-processing techniques like
Moving Average by Convolution Filter (MAConv) and Minimum-Maximum Normalization. Further dataset refinement is achieved using
z-score normalization and a shifted-length overlapping technique. The effectiveness of our model is rigorously validated across three
distinct ECG databases, demonstrating robust intra- and inter-patient generalizability. Employing 10-fold stratified cross-validation,
Afib-CNN exhibits exemplary performance, achieving mean F1 scores of 98%, 97%, and 99% on the CinC2017, CPSC2018, and
MIT-AFIB datasets, respectively. The model also attains an F1 score of 98% on the CinC2017 test set. Comparative analyses demonstrate
that Afib-CNN successfully balances high performance, computational efficiency, and robust generalization. These characteristics render
it well-suited for practical clinical deployment.

Keywords: Convolutional neural network (CNN) , Arrhythmia classification , Short single-lead ECG recordings , ECG Data Variability
, Overfitting , Wearable ECG.

1. INTRODUCTION
Cardiac arrhythmias, notably atrial fibrillation (Afib),

represent a significant cause of heart-related morbidity
and mortality, challenging the conventional diagnostic
paradigms [1]. The traditional reliance on the 12-lead
Electrocardiogram (ECG) for assessing cardiac electrical
activities, while effective, falls short in continuous, real-
time monitoring [2], [3]. The emergence of wearable tech-
nologies has been a game-changer, offering continuous
single-lead ECG monitoring capabilities, thus opening new
avenues for real-time arrhythmia detection.

Recent advancements in wearable ECG monitoring de-
vices have shown promising results in improving the de-
tection and management of atrial fibrillation (Afib). These
devices enable prolonged monitoring, increasing the like-
lihood of detecting transient arrhythmic events that might
be missed during a standard ECG exam [4]. Despite their
potential, the accuracy of wearable devices in diagnosing
complex arrhythmias and their integration into clinical

practice remain areas of ongoing research [5], [6].

The technological evolution in the field has been
significantly supported by the application of deep learning
techniques, such as Convolutional Neural Networks
(CNNs) [7], [8], [9], [10], [11], Recurrent Neural Networks
(RNNs) [12], [13], and hybrid models like Convolutional
Recurrent Neural Networks (CRNNs) [14], [15], [16].
These advancements have propelled Afib classification
from single-lead ECG recordings to new heights. The
ability of these models to extract meaningful features
from ECG signals has led to significant improvements in
classification accuracy [17].

In a notable study, Rahul and Sharma [18] introduced
a comprehensive approach for Afib detection utilizing both
1-D electrocardiogram signals and their time-frequency rep-
resentation, achieving remarkable accuracy through sophis-
ticated preprocessing and normalization techniques, along-
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side classification with a Bi-directional Long Short-Term
Memory (Bi-LSTM) network . Similarly, Zhang et al. [19]
explored innovative training strategies to address overfitting
in deep learning models for Afib detection, focusing on
binary classification between normal and Afib ECG signals,
and utilizing wearable ECG data for model training.

However, despite these advancements, the field con-
fronts significant challenges, particularly data scarcity and
ECG variability, which complicate feature extraction and
model training, often leading to overfitting [20]. The vari-
ability inherent in single ECG recordings—due to factors
such as respiratory sinus arrhythmia, patient movement,
and autonomic tone changes—poses substantial hurdles in
achieving reliable arrhythmia detection. This variability,
both within and between recordings, challenges the gen-
eralization of machine learning models to unseen data,
impeding the algorithms’ ability to generalize effectively
[21], [19].

Addressing these challenges, this paper introduces the
“AFIB-CNN” model, a novel approach combining advanced
preprocessing techniques with a custom-developed CNN ar-
chitecture to enhance arrhythmia classification from single-
lead ECG signals. Our contributions are as follows:

• Advanced Pre-processing Techniques: Employing
sophisticated preprocessing methods like the Moving
Average by Convolution Filter (MAConv), minimum-
maximum normalization, and z-score normalization
to mitigate signal variability and enhance data quality.

• Addressing Data Imbalance and Overfitting: Uti-
lizing a shifted-length overlapping technique to aug-
ment the dataset and balance arrhythmia class rep-
resentation, thereby improving model robustness and
mitigating overfitting.

• Customized CNN Architecture: Optimizing the
AFIB-CNN architecture for short, single-lead ECG
recordings, addressing the unique challenges of ar-
rhythmia detection, and balancing computational ef-
ficiency with diagnostic accuracy.

• Comprehensive Validation: Extensively testing our
methodology across multiple independent datasets
(CINC2017, CPSC2018, and MIT-AFIB), demon-
strating robustness and reliability in intra- and inter-
patient scenarios.

The remainder of this paper is structured to provide a
detailed exploration of our methods and findings. Section 2
elaborates on the materials and methods employed in our
study, Section 3 presents and discusses the experimental
results, and Section 4 concludes the paper, highlighting the
significant contributions of our work and outlining avenues
for future research.

2. Materials and methods
A. Overview of the approach

Our study employs a structured methodology to classify
arrhythmias from ECG data, utilizing three major steps
illustrated in Figure 1. We detail our approach by focusing
on dataset utilization, data preparation techniques, and the
specifics of model development and evaluation.

• Data Preparation : We leverage three independent
datasets (CINC2017, CPSC2018, and MIT-BIH) for
a diverse representation of arrhythmias. The data
undergo partitioning into training/validation (90%)
and test (10%) sets. Preprocessing includes noise
reduction and normalization, with a shifted-length
overlapping technique for augmentation and balanc-
ing in the training/validation set. The test set employs
non- overlapping segmentation for ensuring realistic
evaluation scenarios. Each segment is accurately re-
labeled to match its original classification.

• Model Development: The Afib-CNN model was
fine-tuned through an optimization process, targeting
efficient arrhythmia classification from single-lead
ECGs. We conducted a grid search to adjust input
lengths, kernel sizes, and layer configurations, aim-
ing to reduce complexity and enhance performance.
This effort led to an optimized model that balances
classification accuracy with computational efficiency,
ensuring practical applicability.

• Training, Validation, and Testing: We adopt a strat-
ified cross-validation approach for training and vali-
dation, ensuring a balanced representation of classes.
The model’s performance is then rigorously evaluated
on the test set, focusing on accuracy, and F1 score to
assess its classification efficacy comprehensively.

Figure 1 presents a flowchart of our ECG rhythm
classification paradigm, from data preprocessing to model
evaluation, encapsulating the study’s structured approach.

B. Data description
The variability inherent in ECG recordings—such

as differences in quality, amplitude, duration, sampling
rates, arrhythmia types, and the number of leads—poses
significant challenges in ECG classification. To address
these challenges, we adopted a consistent framework for
ECG data evaluation, focusing on single-lead recordings
with a standardized sampling rate of 300 Hz and segment
lengths of 9 seconds (equivalent to 2700 samples).

Our selection of datasets—CinC2017, CPSC2018, and
MIT-AFIB—was guided by their comprehensive represen-
tation of arrhythmias, including atrial fibrillation, which
is of particular interest to our study. These datasets are
recognized for their reliability and diversity, making them
ideal for developing and validating our model. Below, we
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Figure 1. Flowchart of the proposed ECG rhythms classification
paradigm. ECG: Electrocardiogram; CNN: Convolutional neural
network.

outline the datasets used, emphasizing their relevance to our
objectives.

1) PhysioNet Computing in Cardiology Challenge 2017
(CinC2017) [22] :
• Source: AliveCor healthcare device
• Sampling rate: 300Hz
• Leads: 1 (single-lead or lead I)
• Original number records: 8528
• Duration: 9-60 seconds
• Classes: include 4 categories (N: Normal; AF:

Atrial fibrillation; P: Noisy; O: Other rhythms).
2) 2018 China Physiological Signal Challenge

(CPSC2018)[23]:
• Source: china Hospitals
• Sampling rate: 500Hz
• Leads: 12 ( all leads)
• Original number records: 6877
• Duration: 6-144 seconds
• Classes: include 9 categories(N: Normal; AF:

Atrial fibrillation; I-AVB : First-degree atri-
oventricular block ; LBBB: Left bundle
brunch block; RBBB: Right bundle brunch
block; PAC: Premature atrial contraction; PVC:
Premature ventricular contraction; STD: ST-
segment depression; STE: ST segment ele-
vated).

3) MIT-BIH Atrial Fibrillation Database (MIT-
AFIB)[22]:
• Source: Boston’s Hospital
• Sampling rate: 250Hz
• Leads: 2 (lead I & lead II)
• Original number records: 25
• Duration: 10 hours
• Classes: include 2 categories( N: Normal; AF:

Atrial fibrillation ).

Our methodological approach, including data prepara-
tion and model development, was designed to accommodate
the specific characteristics of these datasets, ensuring a
robust and adaptable solution to ECG classification across
diverse arrhythmia presentations.

C. Data pre-processing
Electrocardiogram (ECG) data, especially when col-

lected via wearable devices, frequently present with sig-
nificant noise and variability. Addressing this challenge
necessitates sophisticated preprocessing techniques aimed
at enhancing signal quality and ensuring consistency across
recordings.

The preprocessing journey begins with the application
of a bandpass filter across each ECG recording. This filter,
set with a pass-band of 3-45 Hz, plays a pivotal role
in addressing baseline drift issues and minimizing high-
frequency noise— factors that can significantly mask the
actual ECG signal.

After the initial filtering, the variability within
recordings—stemming from factors like respiratory sinus
arrhythmia, patient movements, and autonomic tone
fluctuations— becomes our next frontier. To combat this,
we deploy the Convolution-Moving Average (Conv-MA)
technique. This approach is engineered to smooth out ECG
signals by dampening short-term fluctuations, all while
preserving the integrity of the underlying physiological
data.

Noise in ECG signal processing comes in various forms:
baseline wander, high-frequency disturbances, muscle arti-
facts, and noise from electrode movements are but a few
[24], [25]. Our preprocessing strategy is carefully designed
to tackle each of these noise types head-on, ensuring a
cleaner signal for analysis.

a) Eliminating Baseline Wander:
Through the strategic setting of the bandpass filter’s

pass-band, we effectively remove low-frequency shifts
caused by patient motions or breathing—commonly known
as baseline wander. This removal is facilitated by filtering
out frequencies below 3 Hz, which, being largely non-
physiological, tend to distort the ECG waveform.

b) Reducing High-frequency Noise:
Electrical interference— whether from external sources

or equipment—falls under high-frequency noise, which the
bandpass filter curtails by setting its upper cutoff at 45
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Hz. This adjustment ensures that only frequencies pertinent
to the ECG’s physiological signals are maintained, thereby
improving signal clarity and interpretability.

c) Mitigating Muscle Artifacts and Electrode Move-
ments:

The Conv-MA method is instrumental in smoothing the
ECG signal, significantly mitigating the effects of muscle
artifacts and electrode movements. By averaging the signal
across a window of 24 samples (corresponding to 0.08
seconds at a 300 Hz sampling rate), this method reduces
transient noise without obscuring the ECG’s diagnostic
features.

The foundation of the MAConv filter’s operation is
captured in the following mathematical expression:

y(t) =
1
M

M−1∑
n=0

x(t − n) ∗ h(n) (1)

Here, y(t) denotes the output or the smoothed signal, M
the number of points within the moving average window,
x(t − n) the input ECG signal at time t − n, and h(n) the
impulse response of the Hamming window employed in the
convolution process [26], [27], [28]. This method ensures
a smoother signal, reducing noise and variability while
maintaining essential waveform characteristics crucial for
accurate arrhythmia detection.

To further standardize the ECG signals and tackle inter-
recording variability, we apply a minimum-maximum nor-
malization technique. This process scales the signal ampli-
tude to a standard range between 0 and 1. Moreover, each
ECG recording is subjected to z-score normalization before
segmentation, aligning morphological differences between
segmented snippets and their original recordings.

Figure 2 visually summarizes the extensive preprocess-
ing steps undertaken, illustrating the transformation of
ECG recordings through each noise reduction and signal
standardization stage.

D. Data balancing and augmentation
Following the initial stages of data preprocessing and

the individual standardization of each electrocardiogram
(ECG) recording, our methodology incorporates a shift-
length overlapping technique to fulfill three critical objec-
tives, thereby enhancing the performance and robustness
of our one-dimensional convolutional neural network (1D-
CNN) model. This technique is pivotal in standardizing
the length of ECG recordings, augmenting the dataset, and
balancing the class distribution to avert model bias towards
the majority class.

1) Rationale and impact
The decision to employ the shift-length overlapping

technique is grounded in its ability to address several
challenges inherent in the processing of ECG data for

machine learning applications. ECG recordings, by their
nature, vary significantly in length and exhibit imbalances
in class distribution, representing different cardiac condi-
tions. These variances can lead to substantial challenges
in training machine learning models, such as overfitting
and bias towards more frequently represented classes. The
shift-length overlapping technique directly addresses these
challenges through the following mechanisms:

• Standardization of ECG Lengths: By dividing each
ECG recording into segments of a uniform length,
this technique ensures that the input to the 1D-
CNN is consistent, facilitating more effective learning
and generalization. This standardization is crucial for
capturing the temporal dynamics of cardiac signals
within a fixed-dimensional input space.

• Augmentation of the Dataset: Data augmentation
is a widely recognized approach to enhance the
robustness of machine learning models by artificially
increasing the diversity of training data. The shift-
length overlapping method augments the dataset by
creating multiple, slightly shifted segments from each
ECG recording. This process not only expands the
dataset but also introduces variations that help in
reducing overfitting, as the model learns to recognize
cardiac patterns across slightly different segments.

• Balancing Class Distribution: Imbalanced datasets
can lead to models that are biased towards the major-
ity class, impairing their ability to accurately identify
less represented classes. By adjusting the overlap be-
tween segments, this technique allows for a controlled
increase in the representation of minority classes,
thereby balancing the class distribution. This balance
is crucial for developing a model that performs well
across all classes of cardiac conditions.

Additionally, the overlapping technique ensures the
preservation of continuity between adjacent ECG segments,
maintaining morphological consistency within individual
recordings. This continuity is essential for retaining the
contextual integrity of cardiac signals, allowing the model
to better learn and generalize from the temporal patterns
present in ECG data.

The impact of employing the shift-length overlapping
technique is quantitatively illustrated in Table I, which
details the significant increase in data size and the im-
provement in class balance for the CinC2017 dataset. This
balanced distribution is further supported by Shannon en-
tropy calculations, providing a comprehensive measure of
the dataset’s uniformity across different classes.

2) Selecting the fit parameters for ECG data segmentation
To estimate the class distribution, we initially base our

calculations on fixed-length segments. This is necessary as
the original recordings have variable lengths, which could
affect the real estimate of the distribution. The formula used
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Figure 2. Illustration of the preprocessing steps applied to ECG signals from the CinC2017 dataset, demonstrating the transformation of recordings
from Normal (N), Atrial Fibrillation (AF), Other rhythms, and Noisy categories. Panels (A) show the original ECG recordings. Panels (B)
illustrate the effect of filtering and reducing intra-recording variations, showcasing the signal smoothing and noise reduction. Panels (C) depict
the process of reducing inter-recording variations, standardizing the signal amplitude across different recordings. Finally, panels (D) demonstrate
the discrimination of the morphology of each ECG recording, highlighting the morphological consistency achieved before segmentation. These
visualizations collectively underscore the comprehensive preprocessing strategy employed to enhance signal quality and consistency for subsequent
analysis.

TABLE I. The size and distribution of the data before and after employing the shifted-length overlapping technique for the CinC2017 dataset.

Recordings class Original number recordings Not-overlapping segments ShiftLen overlapping segments

N 5050 21077 27794
Afib 783 3078 25185
O 2456 10832 26191
P 284 936 14760
Total 8528 35923 93930
Balance 0.71 0.70 0.98
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to calculate the number of fixed-length segments for each
class ck ∈ {c1, c2, c3, . . . , cm} is given by:

Number S egmentsck =

n∑
i=1

RecordLeni

WindowLen
(2)

Here, RecordLeni is the original length of the i-th
recording, and WindowLen = 2700 samples corresponds
to a fixed length of 9 seconds.

After calculating the number of segments for each class
without overlap, we estimate the optimal overlap length
ShiftLenck for each category to maintain class balance.

S hi f tLenck = rnd(WindowLen − (1 −
NumberO f S egmentsck∑m

j=1 NumberO f S egmentsc j
)) (3)

To calculate the number of overlapping segments for
each class, we use:

S hi f t Number S egmentsck =

n∑
i=1

RecordLeni − shi f tlenck

WindowLen − shi f tlenck
(4)

Finally, the balance of the data is evaluated using
Shannon entropy (H).

Balance =
H

log2(k)
=

−
∑k

j=1(
Number S egmentsck∑m

j=1 Number S egmentsc j
)log2(

Number S egmentsck∑m
j=1 Number S egmentsc j

)

log2(k))
(5)

As indicated in Table I, using the overlapping technique
has enlarged the dataset and balanced the different cate-
gories with a balance ratio of 0.98.

3) ECG data segmentation
As illustrated in Figure 3, the optimized parameters for

the shift length (S hi f tLen) are applied to each category in
the dataset. The continuous ECG signals are then segmented
into fixed overlapping windows of 9 seconds in duration,
which equates to 2700 samples at a sampling rate of
300Hz. Each segmented window is subsequently relabeled
in accordance with its root recording.
For segments that are shorter than 9 seconds, zero-padding
is employed to reach the fixed window size. On the contrary,
segments that exactly match the fixed window size undergo
no modifications. The segmentation algorithm is elaborated
further in (appendixA).

E. Deep convolutional network architecture
The primary objective of this study is to design a highly

efficient and low-complexity deep neural network for the
classification of rhythm categories in short, single-lead ECG
records.
Given the experimental nature of deep learning, various
hyperparameters were empirically tested to identify a con-
figuration that maximizes accuracy while minimizing com-
plexity.
The final architecture, referred to as Afib-CNN, is outlined
in Table II. The model accepts as input a 1D timeseries
vector consisting of 2700 ECG samples (corresponding
to 9 seconds of data). The architecture comprises ten

convolutional blocks each followed by a max-pooling layer,
and then three fully connected layers for classification.
The model is trained to classify ECG recordings into
one of several categories from three independent datasets:
Cinc2017 (4 classes), CPSC2018 (9 classes), and MIT-
AFIB (2 classes).
To mitigate the risk of overfitting and reduce computational
complexity, three dropout layers with a dropout rate of
50% are incorporated into the architecture. These layers
effectively prune a random subset of nodes during training,
thereby simulating a variety of network structures and
making the model more robust.
Additionally, the architecture utilizes a total of 1,984 feature
maps with an overall capacity of 242,592 and an optimized
number of 1,641,796 parameters. After each convolutional
layer, a max-pooling layer condenses the feature maps,
preserving only the most significant features essential for
arrhythmia classification.
During the training phase, the Rectified Linear Unit (ReLU)
function serves as the activation function for each convo-
lutional block to prevent the vanishing gradient problem.
For the fully connected layers, two dense layers activated
by ReLU are employed, while the output layer uses the
Softmax function for classification.

F. Deep model training and evaluation
As previously stated, this study incorporates three

widely recognized arrhythmia datasets: CinC2017,
CPSC2018, and MIT-AFIB. To rigorously evaluate the
proposed model, the data was partitioned into two subsets
before any preprocessing steps: 90% of the data was
allocated to the training/validation set, and the remaining
10% was designated as the test set.
Subsequently, each subset underwent independent
preprocessing to remove noise and standardize ECG
signals, employing techniques like moving average filtering,
min-max normalization, and z-score normalization for each
recording.

1) Model training and validation
The model training and validation process consists of

the following five stages:

1) Application of the shifted-length overlapping tech-
nique to standardize the length of all ECG recordings
to 9 seconds while also balancing and augmenting
the dataset.

2) Utilization of the stratified k-fold cross-validation
strategy for data partitioning into ten mini train-
test subsets (k-folds). The model iteratively trains on
(k − 1) folds, validating against the remaining fold.

3) Implementation of the Adam optimizer over 300
epochs with a batch size of 30 and a constant
learning rate of 0.001. The model’s loss and accuracy
metrics, derived from cross-entropy, are assessed
after each epoch on both the training and validation
datasets, as illustrated in Figures 5 and 6.

4) Performance evaluation of the model using metrics
such as the confusion matrix, accuracy, and F1 score.
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Figure 3. Illustration of ECG signal segmentation.

TABLE II. Optimized 1D-CNN architecture for cardiac arrhythmias classification based on short single lead ECG recordings.
Convolution(padding=”valid”, bais = True, activation function = ReLu) ; MaxPooling1D padding=”valid”;Dropout rate = 0.5.

Layer Input nodes Filter number Kernel size/pool size Output nodes Parameters Feature interpretation

Input 2700,1 ECG amplitude for one segment
Convolution 1 2700,1 32 3×1,stride 1 2698×32 128 32 feature map
Maxpooling 1 2698×32 2×1,stride 0 1349×32 Feature reduction (1349 nodes for one episode)
Convolution 2 1349×32 32 3×1,stride 1 1347×32 3104 32 feature map
Maxpooling 2 1347×32 2×1,stride 0 673×32 Feature reduction (673 nodes for one episode)
Convolution 3 673×32 64 3×1,stride 1 671×64 6208 64 feature map
Maxpooling 3 671×64 2×1,stride 0 335×64 Feature reduction (335 nodes for one episode)
Convolution 4 335×64 64 3×1,stride 1 333×64 12352 64 feature map
Maxpooling 4 333×64 2×1,stride 0 166×64 Feature reduction (166 nodes for one episode)
Convolution 5 166×64 128 3×1,stride 1 164×128 24704 128 feature map
Maxpooling 5 164×128 2×1,stride 0 82×128 Feature reduction (82 nodes for one episode)
Convolution 6 82×128 128 3×1,stride 1 80×128 49280 128 feature map
Maxpooling 6 80×128 2×1,stride 0 40×128 Feature reduction (40 nodes for one episode)
Dropout 1 complexity reduction (eliminating 50 % of nodes)
Convolution 7 40×128 256 3×1,stride 1 38×256 98560 256 feature map
Maxpooling 7 38×256 2×1,stride 0 19×256 Feature reduction (19 nodes for one episode)
Convolution 8 19×256 256 3×1,stride 1 17×256 196864 256 feature map
Maxpooling 8 17×256 2×1,stride 0 8×256 Feature reduction (8 nodes for one episode)
Dropout 2 complexity reduction (eliminating 50 % of nodes)
Convolution 9 8×256 512 3×1,stride 1 6×512 393728 512 feature map
Maxpooling 9 6×512 2×1,stride 0 3×512 Feature reduction (3 nodes for one episode)
Dropout 3 complexity reduction (eliminating 50 % of nodes)
Convolution 10 3×512 512 3×1,stride 1 1×512 786944 512 feature map
Flatten 512 Dot product between 1 nodes and 512 feature map
Dense 1 512 128 65664 Weight params
Dropout 4 complexity reduction (eliminating 50 % of nodes)
Dense 2 128 32 4128 Weight params
Output 32 2 / 4 / 9 132 Class

Total capacity of features map : 242.592
Total number of parameters : 1,641,796
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5) Repetition of steps 1-4 for each of the three ECG
datasets after adjusting parameters like sampling rate
to 300Hz and the number of output classes in the
convolutional network to match each dataset.

2) Model testing
Model testing involves the following four steps:

1) Segmentation of the continuous ECG recording into
N fixed-length segments, each lasting 9 seconds.

2) Classification of each ECG segment using the final
selected Afib-CNN model. The predicted classes
belong to the set {cseg1, cseg2, cseg3, . . . , csegN}.

3) Final class determination for each recording based
on the predicted classes of its constituent segments.
The rule is as follows: if the segments contain
both normal and abnormal classes, the recording is
labeled as abnormal; if multiple types of arrhythmias
appear, the most frequent one is selected; and if
multiple arrhythmias occur with equal frequency, the
one appearing first is chosen.

4) Construction of a confusion matrix using the final
selected classes and evaluation of the model’s per-
formance through the F1 score metric.

3) Model evaluation
To assess the efficacy of our model in classifying

arrhythmias from short, single-lead ECG recordings, we
rely on the confusion matrix to summarize the model’s
predictions. We also benchmark our results against those in
the existing literature by utilizing two key metrics: accuracy
and mean F1 score.

The accuracy metric calculates the ratio of correctly
predicted observations to the total number of observations.
On the other hand, the F1 score is a balanced metric that
computes the weighted average of precision and recall.
Specifically, precision is the ratio of true positive observa-
tions to the total number of predicted positives, while recall
measures the ratio of true positives to all observations that
actually belong to the positive class [29].

The overall performance of our classifier is quantified by
averaging the F1 scores for each class within each dataset.
For example, for the CinC2017 dataset, which has four
classes, the averaged F1 score is computed as shown in
Equation 6. Likewise, the process is repeated for the CPSC
dataset, which comprises nine classes, and for the MIT-
AFIB dataset, which includes two classes.

F1CinC2017 =
F1N + F1A f ib + F1P + F1O

4
(6)

3. Results and discussion
This section presents our key experimental findings. We

begin by discussing the steps taken to mitigate overfitting
and to select the optimal deep classifier for detecting

Afib and other arrhythmias using the CinC2017 dataset.
Next, we delve into the analysis and generalization phase,
employing confusion matrices to examine the performance
of our proposed method across three independent ECG
datasets (CinC2017, CPSC2018, and MIT-AFIB). Finally,
we compare our results with existing works in the literature,
focusing on the accuracy and F1 score metrics.

A. Process of selecting the optimized Afib-CNN model
1) Reducing model parameters

To minimize the model’s complexity, we conducted
a grid search based on three key hyperparameters: input
length, kernel size, and number of layers.

Selection of Input Length: We evaluated three different
input lengths:

• 60 seconds: The maximum record length in the
CinC2017 dataset.

• 30 seconds: Clinically recognized as the gold standard
for detecting atrial fibrillation (AF) [30].

• 9 seconds: The shortest record length in the CinC2017
dataset that still provides a meaningful context for
rhythm classification.

Selection of Kernel Size: We executed two experiments
to find the optimal kernel size, as summarized in Tables III
and IV. In these experiments, we set the kernel sizes to 3
and 5 across all convolutional layers.

Selection of Number of Layers and Filters: We
explored models with varying layers, where the number of
filters for each layer configuration was as follows:

• 10-layer model: [32, 32, 64, 64, 128, 128, dropout,
256, dropout, 256, 512, dropout, 512].

• 9-layer model: [32, 32, 64, 64, 128, 128, dropout,
256, dropout, 256, 512, dropout].

• 8-layer model: [32, 32, 64, 64, 128, 128, dropout,
256, dropout, 256].

• 7-layer model: [32, 32, 64, 64, 128, 128, dropout,
256, dropout].

2) Improving model accuracy
In our quest to identify the most effective yet

parsimonious model for arrhythmia classification, we
scrutinized all lower-complexity models identified in
the preceding section. The outcome of this exercise is
summarized in Table V.

Overfitting and Input Length: Our findings reveal
that utilizing a longer ECG input length (60 seconds)
resulted in overfitting. Interestingly, we found a direct
correlation between ECG input length and overfitting; the
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TABLE III. Grid search for reducing deep model parameters with fixed the kernel size of (3) for all convolutional layers.

Input length number layers
7 8 9 10

60s 4,720,708 2,623,812 2,952,004 3,607,876

30s 2,426,948 1,476,932 1,772,356 2,428,228

9s 821,316 657,732 985,924 1,641,796

TABLE IV. Grid search for reducing deep model parameters with fixed the kernel size of (5) for all convolutional layers.

Input length number layers
7 8 9 10

60s 4,784,260 2,818,436 3,343,236 4,392,324

30s 2,490,500 1,671,556 2,163,588 3,212,676

9s 884,868 852,356 1,377,156 unworkable

shorter the input, the better the model was at avoiding
overfitting.

Trade-Off between Complexity and Performance:
We observed that certain models with a lower number
of parameters did not offer satisfactory performance.
For instance, the model labeled model9 s 3 k 8 l
demonstrated an accuracy of 96% on both the training and
validation sets while having a total of 657,732 parameters.

Optimal Model: The highest performance was attained
by the model designated as model9 s 3 k 10 l, which
had a total of 1,641,796 parameters. This model achieved
an impressive accuracy of 99% on the training set and
98% on the validation set.

Test Set Performance: Moreover, the Afib-CNN model
(model9 s 3 k 10 l) testing on the CinC2017 dataset
showcases a remarkable average F1 score of 98%, as
detailed in Figure 4. This performance underscores the
model’s precision in atrial fibrillation detection, achieving a
perfect F1 score of 100%. The confusion matrix highlights
the model’s effectiveness across all categories, including a
99% for normal rhythms, 93% F1 score for other rhythms
and a 100% score for noisy signals, demonstrating its
overall classification strength.

3) Improving generalization and tackling overfitting
In this study, we successfully mitigated the problem of

overfitting and enhanced the generalization capabilities of
our ECG-based classifier by adopting two novel training
strategies: data preprocessing and data segmentation.

As illustrated in Table VI, we evaluated the effectiveness
of each strategy separately using the optimal architecture
previously identified (model9 s3 k10 l). Initially, Model

Figure 4. Confusion matrix for the Afib-CNN model predictions on
the test set of Cinc2017; F1N = 99%; F1A f ib = 100%; F1O = 93%;
F1Noisy = 100%.

0 was trained without any of these improvement strategies.

During the data preprocessing phase, we minimized the
wide-ranging variations within and between ECG record-
ings by employing a Moving Average by Convolution
(MAConv) filter and the min-max normalization method.
Additionally, we utilized z-score normalization to further
differentiate the morphology of each ECG recording. These
preprocessing techniques significantly reduced overfitting
and enhanced generalization, as evidenced by Model 1,
which showed a decrease in the overfitting ratio to 7% and
8% for the validation and test sets, respectively.
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TABLE V. Grid search for selecting the optimal deep model for arrhythmias classification. Signature Meaning of Model Name ( Model: Input
length + kernel size + number of convolutional layers).

Model name Number parameters Training acc Validation acc Optimal epoch

model60s3k8l 2,623,812 99 82 46
model60s5k8l 2,818,436 99 84 28

model30s3k8l 1,476,932 99 96 71
model30s5k8l 1,671,556 99 97 31

model9s3k7l 821,316 96 92 205
model9s3k8l 657,732 96 96 288
model9s3k9l 985,924 96 96 297
model9s3k10l 1,641,796 99 98 295
model9s5k7l 884,868 99 97 285
model9s5k8l 852,356 98 97 280
model9s5k9l 1,377,156 98 97 283

The second strategy involved the application of a
shifted-length overlapping technique to balance and increase
the size of the input ECG data. Model 2 , trained with this
strategy, exhibited a reduction in the overfitting ratio to 1%
for the validation set, although it did not generalize as well
to the test set.

Finally, Model 3, which combined both training
strategies, achieved the best performance with an average
accuracy of 98% on both the validation and test sets.
This combination effectively eradicated overfitting and
significantly enhanced the generalization capabilities of
our arrhythmia classifiers.

Figures 5 and 6 illustrate the metrics of the training
and validation datasets over epochs for the baseline and
final models (Model 0 and Model 3), respectively, high-
lighting the effectiveness of our techniques for tackling
overfitting. These figures visually demonstrate the impact
of preprocessing and data augmentation strategies on model
performance. Figure 5 shows the performance variations of
the baseline model without overfitting prevention strategies,
indicating potential areas of overfitting through the gap
between training and validation accuracy. Conversely, Fig-
ure 6 showcases the improved alignment between training
and validation metrics in the final model, emphasizing the
effectiveness of the employed techniques in enhancing gen-
eralization and reducing overfitting. This direct comparison
underscores the necessity and impact of preprocessing and
data augmentation strategies for achieving robust model
performance.

Figure 5. Training and validation dataset metrics as a function
of training epoch (cross-entropy loss, accuracy) for the baseline
model(without activating overfitting tackling techniques).

Figure 6. Training and validation dataset metrics as a function of
training epoch (cross-entropy loss, accuracy) for the final model(with
activating overfitting tackling techniques).

B. Analysis and generalization of the deep model
To assess the generalizability of our proposed Afib-

CNN model for Afib and other rhythm classifications, we
evaluated it on three widely-used datasets. After fixing the
architecture of the deep CNN and updating the number of
output classes according to each dataset (Cinc2017 has 4
classes, CPSC2018 has 9 classes, and MIT-AFIB includes
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TABLE VI. the experiments steps that illustrate the importance of the overfitting tackling technique used in this study, The over-fitting ratio is the
difference between the training and the validation accuracies.

Model Pre-process data shifted-length overlapping Training acc Validation acc Testing acc

Model 0 ✗ ✗ 98 82 72

Model 1 ✓ ✗ 98 91 90

Model 2 ✗ ✓ 99 98 78

Model 3 ✓ ✓ 99 98 98

2 classes), we trained each of these three models separately
without further hyperparameter tuning.

As evident from the confusion matrices in Figure 7,
our model demonstrates high performance in classifying
various arrhythmias across three distinct ECG datasets. This
illustrates the model’s robustness and broad applicability to
different types of arrhythmias and ECG data distributions.
Errors made by the model, as visible in the confusion
matrices, are largely explainable. For instance, numerous
arrhythmias are confused with normal rhythms, often due
to CPSC2018 poses a particular challenge for automatic
feature extraction due to the presence of both rhythm- and
heartbeat-based arrhythmias. For example, atrial fibrillation
(AF) is best analyzed at the rhythm level, while other
arrhythmias like LBBB and RBBB are more appropriately
classified based on individual heartbeats [31]. This suggests
that multiple electrodes may be needed to better differentiate
between arrhythmia classes.
Finally, the confusion matrices reveal that the model per-
forms less robustly on minority classes, such as SET from
CPSC2018 and P from CinC2017. This underscores the
importance of large datasets for improving the performance
of deep classification models.

C. Comparison with existing arrhythmia classification
methods
Table VII compares the performance of our proposed

method with state-of-the-art deep convolutional models
across three independent datasets: CinC2017, CPSC2018,
and MIT-AFIB. Our model, comprising a total of
1,641,796 parameters and utilizing 9-second single-lead
ECG signals, outperforms the other listed methods in terms
of classification accuracy.

For instance, the study by Jeong et al. [34] proposed a
network with fewer parameters and a shorter input length,
yet its classification precision proved to be suboptimal.
Similarly, Mousavi et al. [36] introduced an optimized
deep architecture with a 5-second input signal length but
demonstrated inconsistent performance across the two
datasets they validated—achieving 98.17% accuracy for
MIT-AFIB and only 72.62% for CinC2017.

Figure 7. The normalized confusion matrices (CM) of the Afib-CNN
classifier classification results in the validation set of three data sets
(MIT-AFIB, Cinc2017 and CPSC2018, respectively).
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TABLE VII. Comparison of the performances of convolutional neural network models that have been validated on the three independent databases
(Cinc 2017, CPSC 2018, MIT-AFIB); TF: Time-frequency; STFT: Short-term fourier transform; SWT: Stationary wavelet transform .

Team Dataset InputLength NumberParameters Accuracy Method

Our proposal. Cinc2017 9 seconds 1,641,796 98% Optimized 1D-CNN
CPSC2018 97%
MIT-AFIB 99%

Goodfellow et al[32]. Cinc2017 60 seconds 5,491,392 88% 1D-CNN

Hsieh, et al [10]. Cinc2017 30 seconds 3,212,740 77.8% 1D-CNN

Wang et al [33]. CPSC2018 10 seconds // 87.3% Densely 1D-CNN

Jeong, et al [34]. CPSC2018 0.6 seconds 92,857 74% TF 2D-CNN

Xia et al [35]. MIT-AFIB 5 seconds 53,400 98.29% STFT 2D-CNN
4,864,462 98.63% SWT 2D-CNN

Mousavi et al [36]. Cinc2017 5 seconds 91,332 72.62% 1D-CNN
MIT-AFIB 173,380 98.17%

(LBBB; Lead 1; Lead V6) (RBBB; Lead 1; Lead V6) (PVC; Lead 1)

Figure 8. Arrhythmias based heartbeat examples RBBB; LBBB;
PVC beats [31].

Additionally, Xia et al. [35] attained high classification
accuracy on the MIT-AFIB database with a model
comprising only 53,400 parameters. However, they did not
evaluate their model’s performance on different datasets,
limiting its proven generalizability.

In summary, our results indicate that our proposed model
offers a balanced combination of high performance and low
complexity for classifying various arrhythmias using short,
single-lead ECG records. Moreover, the model demonstrates
excellent flexibility and generalizability across different data
distributions.

4. Conclusions
This study introduced the Afib-CNN model, an

optimized 1D-CNN designed for the robust and accurate
classification of atrial fibrillation (Afib) and other
arrhythmias using short, single-lead ECG records. Validated
across three widely recognized datasets—CinC2017,
CPSC2018, and MIT-AFIB—our model achieved high
classification accuracy, exceeding 97% across all datasets,
and demonstrated remarkable generalizability across
different ECG data distributions.

The practical errors encountered by our model highlight

the inherent challenges in arrhythmia classification, such
as the episodic nature of certain arrhythmias and the
occurrence of multiple arrhythmia types within single ECG
records. Despite these challenges, Afib-CNN’s performance
compares favorably with state-of-the-art models, offering
superior results with notably lower complexity—evidenced
by fewer parameters and shorter input signal lengths.

This balance of high performance and computational
efficiency makes Afib-CNN an attractive solution for real-
world applications, where timely and accurate arrhythmia
detection is paramount, yet computational resources may
be limited.

Looking forward, our research will pivot towards further
optimizing Afib-CNN’s architecture and investigating the
integration of additional data types to enhance the model’s
diagnostic robustness. An important direction for future
work involves expanding the evaluation to include a broader
range of datasets, particularly those representing diverse
patient demographics and arrhythmia manifestations. This
expansion aims to address the limitation noted in the
current study—the evaluation on a limited set of public
datasets—and to ensure the model’s effectiveness across a
wider spectrum of arrhythmias and patient conditions.

In conclusion, the Afib-CNN model marks a signifi-
cant leap forward in arrhythmia classification technology.
Achieving a synergistic balance of accuracy, efficiency,
and generalizability, it holds the promise of enhancing
healthcare delivery through the improved and expedited
diagnosis of atrial fibrillation and other arrhythmias. Fu-
ture enhancements and broader clinical validations will be
instrumental in realizing this potential, contributing to better
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health outcomes and advancing the field of cardiac care.
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Appendix

Algorithm 1: shifted-length overlapping ECG signal
algorithm.
Result: Overlapped fixed size ECG recordings.
ECGRecording: The continuous ECG recording.
WindowLen: the length of the fixed size window.
ShiftLen: the length of samples to be overlapped.
if ECGRecording length > WindowLen then

- calculate the number of segments for the current
recording

NumberSegments ← (ECGRecording length -
ShiftLen )/(WindowLen - ShiftLen);

- segmented the continues ECG Recording into
WindowLen length with ShiftLen overlaps
between adjacent segments;

- if the last segment ¡ WindowLen;
padding it with zeros;
- save segments;

else
if ECGRecording length < WindowLen then

- Padding the recording with zeros into the
windowLen length Save recording;

else
- Save the recording;

end
end
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