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Abstract: In recent years, Laser Metal Deposition (LMD) has experienced significant advancements. For process monitoring 
purposes, in-situ sensors are often used, which tend to produce noisy data, and due to the short processing window, these data need to 
be automatically analyzed in real-time to ensure their reliability for further processing. A simple Moving Average (MA) is 
commonly used to reduce signal peaks, which could otherwise skew the statistical properties of the data. Stabilization of the LMD 
process can be ascribed to the occurrence of spatters, which exhibit concept drift characteristics and are closely related to signal 
peaks. In this respect, this study aims to differentiate between two types of anomalies in data streams: point anomalies and concept 
drift, to eliminate the peaks that could cloak the performance in the actual signals during the process. To solve this issue, a two-step 
approach is being proposed. A differencing method is first applied to identify any potential point outliers, which are then verified to 
check if these identified observations are indeed peaks resulting from the spatters generation with a density-distance approach. The 
method's reliability and robustness were tested with overhang structures (3-axis printing) and impeller blade structures (5-axis 
printing). Results show that the existing method, the Drift Streaming Peaks-Over-Threshold method, is inferior compared to the 
proposed method in terms of F1-score, despite a decrease in performance as the inclination angle increases. These experiments 
ascertain the pertinence of the proposed method in processing incoming sensor data of LMD. 
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1. INTRODUCTION 
Laser metal deposition (LMD), also known as 

Directed Energy Deposition (DED), is one of the common 
metal additive manufacturing (AM) methods available in 
the market. LMD projects a concentrated energy beam 
programmed to follow a predetermined toolpath along the 
given workspace, leaving a trail of solidified weld beads 
of a particular geometric shape. The intense heat coming 
from the energy beam, including laser or electron, onto 
the metal feedstock material in the form of powder or 
wire, coupled with the substrate, creates a locally liquified 
melt-pool morphology instantaneously surrounding the 
vicinity with a rapid solidification process. Unlike 
traditional manufacturing methods, LMD is capable of 
freeform fabrication of complex geometries without 
requiring any support. However, the process often needs 
consistent and focused energy density in geometrical 

control because continual irregular powder mass delivery 
and laser defocusing can cause inconsistency in the build 
height development [1]. Additionally, the process also 
involves a multitude of process parameters that directly 
influence the geometrical and microstructural properties 
of the finished product. Indeed,  it is expected to have 
occasional defects in the finished products, including a 
bumpy texture, insufficient deposition, or excessive 
deposition [2]. One of the methods to improve the quality 
of an LMD process is via reliable and robust in-situ 
measurement process and control. The most common in-
situ process monitoring is the direct measurement of 
geometrical characteristics, such as clad height, by 
obtaining a visual image data using a charge-coupled 
device (CCD) camera or complementary metal-oxide 
semiconductor (CMOS) camera [3]. However, monitoring 
sensors of the deposition process commonly give noisy 
time-series data, and since the deposition process occurs 
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rapidly, interpretation of these data and subsequent 
control of the deposition process can be challenging. 

An increasing amount of literature emphasizes the 
significance of identifying defects or outliers in the field 
of metal additive manufacturing (AM). Ren et al. [4] 
adopted an LSTM-Autoencoder and a K-means clustering 
to provide early defect detection based on quality 
classification under different conditions of laser power, 
printing speed, and powder feed rate. Zhang et al. [5] also 
used LSTM, but to predict melt pool time-series 
temperature during LMD, as the melt pool temperature 
affects the microstructure of the finished part. On the 
other hand, Reisch et al. [6] proposed an approach for 
anomaly detection in multivariate data streams based on 
the error distance. These errors are then fed to a 
Mahalanobis distance-based method to generate anomaly 
scores. 

The success yardstick of the monitoring and control 
model lies in its generalization in capturing intrinsic 
characteristics of the data. Bartsch et al. [7] asserted that 
the generalization of a model requires a satisfactory 
volume of high-quality data, which are representative of 
the problem, and consisting of only a few outliers and 
small noise. This manifest in the ability of the model to 
comprehensively describe the data, in terms of their 
descriptive patterns and their well-defined characteristics. 
Outlier detection aims to identify specific data points that 
significantly deviate from the rest of the dataset, arising 
from distinct underlying mechanisms. Various types of 
outliers possess unique statistical characteristics that 
deviate from normal behaviour, and they might have 
emerged abruptly or evolved gradually over time. 
Introducing data containing outliers to a model can have 
detrimental effects on the model's performance and 
estimated parameters. Thence, identifying and addressing 
outliers form a crucial aspect of time series analysis prior 
to modelling.  

Although there are quite a number of methods for 
detecting peaks in the streaming data application, the 
reliability of those existing methods is not applicable to 
the LMD process that presents the non-stationary in the 
time series data, i.e., noises with process shifts as a new 
normal. In this case, when a sudden drift develops during 
the LMD process, it signifies the process is unstable due 
to a multitude of complex interactions, sensitive to the 
environment and improper process parameter 
combinations, thus leading to poor quality. This 
meaningful information must be retained for downstream 
analysis, such as characterizing the types of defects based 
on the features of the signals when process shifts appear. 
However, to date, existing methods may be overly 
resistant to these changes, slowly updating their 
parameters as concept drift appears. Therefore, the central 
contributions of this study are as the following: 

• First, this paper describes the design and 
implementation of the proposed statistical 

framework that enables the detection and 
differentiation between sudden anomalies and 
drifts in one-dimensional data streams. It is 
designed explicitly for the LMD process, 
particularly in industrial practices in both 3-axis 
and 5-axis printing modes, with the spatter 
signature—an inextricably linked phenomenon.  

• Second, in testing the approach, twenty-seven 
different unique combinations of parameters of 
the proposed method were tested to obtain robust 
and optimal parameters in different scenarios, 
including both 3-axis and 5-axis printing modes 
to address spatter signature effectively—the noise 
that often interferes with the data—ensuring more 
accurate and reliable analyses, and 

• Third, in numerous industrial instances, detecting 
abnormalities can be a challenging task. 
Nevertheless, a recent study highly advocates the 
use of the Moving Average (MA) coupled with 
the three-sigma limits (lower and upper limits) 
approach to classify point anomalies as the actual 
facts precisely. This method is crucial in resolving 
the issue and should be put into operation 
promptly. 

The structure of the paper is drafted as follows. 
Following the introduction to the work in Section 1, 
Section 2 provides an overview of related works in the 
area of spatters, concept drift and its detection. The 
proposed framework is given in Section 3. This includes 
the proposed outlier detection method as well as the 
ground truth labelling. Section 4 outlines the experimental 
setups, as well as results and discussions. The final section 
concludes the paper. 

2. RELATED WORK 

A. Spatters and their effects 
One of the process-induced defects results from the 

complex interaction with different mediums,  including 
the selected energy beam, metal feedstock material, and 
the prior layers, is spatters [8]. Spatters may have a 
considerable impact on the stability of the deposition 
process despite being a common phenomenon in LMD. In 
simple terms, spatter is the expulsion of powder particles 
that are either melted or unmelted from the melt pool. The 
purpose of this is to reduce the surface energy. Khairallah 
et al. [9] provide a comprehensive explanation on the 
characteristics of the spatter formation in metal AM, 
which is further investigated by another study that 
elucidated different sets of process parameters that 
influence its frequency [10]. Spatter forms when the 
temperature gradients between the centre and the vicinity 
of the melt pool are too high due to the higher energy 
density, i.e., overheating. This higher energy density 
causes localized boiling on a specific portion of the melt 
pool, forming a droplet that eventually bursts with an 
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upwards momentum and spread across the surrounding 
vicinity including the build-part and laser head. When the 
laser passes by the large spatters settling on the surface of 
the build-part, it causes insufficient energy density to 
sufficiently melt the incoming powder and large spatters 
on the surface simultaneously, contributing to disjointed 
and sparser solidification [11]. Consequently, the creation 
of spatters is detrimental to the stability of the process and 
can result in a myriad of issues, including substandard 
quality in each layer, porosities, and internal cracks [12].  

According to Hauser et al. [13], there is a strong 
correlation between spatters and various process 
parameters. To thoroughly examine this relationship, the 
study used multi-modal data to acquire image and sound 
intensity through vision-based and acoustic sensors. The 
research found that choosing incorrect process parameters 
can destabilize the process. These errors can ultimately 
result in significant deviations in the shape of the built 
layer, which may further cause surface geometry 
fluctuations and variations in nozzle-to-work distance. 
These factors can ultimately impact the laser-powder 
dynamics, leading to more instances of spattering—
causing an unstable process, such as spikes in the signals. 
Additionally, prolonged spatters can lead to concept drift 
during an unstable process. Despite this, all unstable 
processes exhibit comparable behaviour in the AE, 
making distinguishing between them challenging in LMD.  

Yang et al. [12] preprocessed the image data to section 
the melt pool, spatters, and its vicinity represented by 
pixels in an image. Based on those pixels, they plotted the 
time series data to monitor the deposition process using 
the control chart, i.e., Shewhart. The violations of the 
process stability are indicative of anomalies that might 
have been incurred during the process. The authors used a 
moving average to reduce large values that may distort the 
estimation and smooth out the data points. 

In their study, Repossini et al. [14] created a method 
for analyzing the spattering behaviour during the laser-
metal AM process. This method involved measuring the 
spatters' characteristics, including area, quantity, and 
disperseness, to distinguish between under-, normal, and 
over-melting conditions. The authors suggested that 
spattering behaviour could be used alongside other known 
quantities of the melt pool, such as its geometric 
morphology and temperature, to improve the monitoring 
process. Similar studies in the field of laser welding [15-
17] have verified that spattering behaviour is one of the 
critical constituents to characterize the deposition process 
quality. While there are differences between laser metal 
AM and laser welding, these studies offer useful insights 
into characterizing and quantifying spattering behaviour 
using in-situ signal analysis.  

It has been suggested by Chen et al. [18] that complex 
features can aggravate the frequency of spatters by 
causing overheating, ultimately leading to more intense 
spattering. Others have indicated that high laser energy 

input may also lead to more spattering [13, 18] and larger 
spatters [12, 18]. Also, Chen et al. [18] utilized optical 
tomography (OT) as an online thermal monitoring tool to 
label ground truth. Through the analysis of OT images, 
they were able to infer the effect of layer profiles based on 
the spatters' frequency produced during the process. The 
OT images were partitioned into three distinct areas: the 
section exposed to laser radiation, the region affected by 
spattering, and the zone unaffected by either laser 
radiation or spattering. Further analysis compared the 
frequency and distribution of these regions. 

B. Concept Drift 
Data streams are real-time and continuous flows of 

data, with non-stationary distribution, i.e., distributions 
may change over time. Unbounded instances of data 
cannot just be stored all at once in the memory for real-
time processing due to computational resource 
constraints, and this makes it challenging to detect 
changes in data distribution. However, the summary of 
these instances can be stored [19]. Another challenge is 
the speed at which these instances arrive from a stream, 
which can quickly devour available resources including 
computational memory. Thus, it is recommended that 
stream mining algorithms prioritize speed and efficiency 
by using only a small batch of samples [20]. 

Concept drift may be defined as a statistical change in 
observations/distributions. Specifically, given a set of data 
𝑆! = (𝒳", … ,𝒳#) at a time step t, whereby each sample 
𝒳$ = (𝑥$,", … , 𝑥$,#) is a feature vector. If two consecutive 
sets of observations 𝑆!  and 𝑆!&"  present a considerable 
deviation in the distributions, then it can be said that 
concept drift appears. The coexistence of concept drifts in 
the streaming data degrades the classifier's performance 
over time, making it obsolete for the new incoming 
instances. Due to this reason alone, tracking this concept's 
change is essential—underpinning the model's reliability 
and credibility. 

Drift can manifest itself in various ways: suddenly, 
gradually, incrementally, or repeatedly. Sudden drift is 
marked by an abrupt alteration in distribution with no 
overlap between the preceding and present concepts. The 
new concept may also emerge gradually, with the 
transition between concepts occurring over time before 
stabilizing and is referred to as gradual drift. Recurring 
drift refers to the phenomenon of a concept repeating 
itself over time with either cyclical or non-cyclical 
behaviour. In contrast, incremental drift occurs when 
changes in distribution exhibit a stepwise manner but 
smoothly and continuously over time. Sudden drift, as the 
name suggests, is more apparent and noticeable compared 
to the other types of drift. 

C. Outliers and Concept Drift Detection 
A change of distribution over time may increase errors 

in a detection mechanism. As such, the mechanism must 
be able to trace errors in real time. This research focuses 
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on the removal of extreme values (noise) whilst 
considering the drift component of the data. In the 
literature, multiple outlier detection methods exist in 
streaming data applications, including sequential analysis-
based, similarity and dissimilarity-based, window-based, 
statistically based and data distribution-based [19]. 

The most commonly used similarity and dissimilarity-
based method is the Drift Detection Method (DDM) [21]. 
DDM embodies two warning levels of detection based on 
the set confidence interval, i.e., 95% and 99%, 
respectively. DDM performs well in detecting sudden and 
gradual drifts but performs atrociously for an incremental 
drift. Thus, Baena-García et al. [21] proposed an Early-
DDM to overcome this challenge. Sequential analysis-
based methods, such as the Page-Hinkley Test (PHT) 
[22], rely on hypothesis testing where incoming signals 
are assumed to follow a Gaussian distribution. Any 
sudden changes in variance, either increase or decrease, 
would be characterized as abnormal. On the other hand, a 
window-based approach commonly incorporates two 
windows that accumulate incoming data to form a small 
batch of data. Differences in the distributions between 
these two small batches of data may signal a drift. Rather 
than utilizing a fixed window size, an adaptive window 
size can be employed to tailor the window size according 
to the type of drift. A series of multiple statistical-based 
testing, such as measurements of central tendency, 
hypothesis testing, kurtosis, and skewness, can also be 
incorporated into the window-based approach. Vallim and 
De Mello [23] incorporated a Fourier transform method to 
produce power spectrum graphs of two sliding windows, 
before comparing them to detect statistical differences. 

Another popular method is the Drift Streaming Peak-
Over-Threshold (DSPOT) [24] method, which is based on 
the data distributionduring the initialization phase and 
iteratively updates the parameters when peaks are 
detected. The proposed method was rigorously compared 
to the DSPOT algorithm, which is widely used as a 
benchmark owing to its popularity. It is worth noting that 
the DSPOT algorithm is a modified version of the Peaks-
Over-Threshold (POT) method that is specifically 
designed for detecting anomalous points in real-time. Two 
variants of the POT method were developed by Siffer et 
al. [24]: Streaming POT and DSPOT. The former is suited 
for any stationary distribution, while the latter is more 
robust to handle process shifts in the streaming data.  At 
the outset, the algorithm requires a calibration step to 
initialize the threshold (quantile) value 𝑧' with a fixed risk 
q such that 𝑃(𝑋 > 𝑧') < 𝑞. The excess over the threshold 
(quantile) Th results in a set of peaks 𝑌! ← (𝑋$ − 𝑇ℎ|𝑋$ >
𝑇ℎ), with a Generalized Pareto Distribution (GPD) fitted 
on them to infer 𝑧'. Ultimately, the algorithm can adapt 
itself to the evolution of data for streaming that can detect 
anomalies (𝑋$ > 𝑧')  and refine 𝑧' . The threshold 
(quantile) value 𝑧' can be determined as 

𝑧' ≅ 𝑇ℎ +
𝜎8
𝛾8 :
;
𝑞𝑛
𝑁!
>
()*
− 1@ (1) 

where Th is a high threshold (quantile), n is the total 
samples, and peaks occurrences over Th is denoted by 𝑁!. 
Both parameters 𝜎8  and 𝛾8  are estimated through 
observations using Grimshaw’s trick to attain a single-
variable function for solving the two variable optimization 
problems.. 

3. METHODOLOGY 
When detecting outliers in time-series data, it can be 

difficult to determine what qualifies as abnormal within 
the dataset, with outliers having the possibility to disrupt 
the outlier detection method. This is even so in LMD, 
where time-series sequences of an LMD have unique 
characteristics that make defining anomalies even more 
challenging [13]. Studies found in the literature have 
already acknowledged that peaks present in the signal 
may affect the stability of the process due to spattering 
events. These events can indicate process stability, but 
they may also contain information on drift, which is 
useful for analyzing layer attributes. Care needs to be 
taken when removing data which are presumed to be 
outliers, to ensure that only true point anomalies are 
eliminated while keeping the meaningful spatters. 
Differentiating concept drift and noise, including extreme 
values and point anomalies, is a difficult task. For 
anomaly detection in AM, the control chart method has 
been employed by researchers to identify anomalies [25-
31]. In the realm of streaming applications, data are in a 
constant state of flux, posing an even greater challenge to 
the outlier detection algorithms. Algorithmic models may 
misidentify noise as concept drift or be excessively 
resistant to changes. As such, an effective model must 
maintain a balance of robustness and sensitivity.  

A. The Proposed Statistical Framework 
In this research, an innovative framework for 

detecting outliers is introduced that is based on a 
window-based approach with other statistical techniques, 
which will be further outlined in this section. As new 
data streams arrive at the start of every layer, they are 
collected in a buffer until the buffer's length matches the 
predefined window size n. Outliers within this smaller 
batch dataset need to be removed before the start of the 
streaming phase using Median Absolute Deviation 
(MAD). During the streaming phase, a differencing 
method is employed to detect potential outliers within the 
data stream and subsequently, a density-based outlier 
detection approach is utilized to confirm whether the 
detected potential outlier is indeed genuine. If a true 
outlier is identified, a re-computation phase is triggered, 
to remove the confirmed outlier in the calculation of the 
differencing method. This is because an outlier can 
distort and hide the true outlier as a normal value. Fig. 1 
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depicts a simplified flowchart of the proposed 
framework. 

Batch Processing phase: The batch processing phase 
occurs at the start of every layer. During the phase, data 
𝑥(𝑖) are collected in an initial batch 𝑋$#$! until it reaches 
a predefined window size n with 𝑋$#$! =
{𝑥(1), 𝑥(2), …𝑥(𝑛)}. Outliers need to be identified in the 
initial batch 𝑋$#$! to correctly represent the data, and for 
this, the MAD [32] is used. MAD is a more robust 
measure of scatteredness in comparison to normal three 
sigma, which are more sensitive to outliers. Given 𝑀(. ) 
as a function that gives median from its input and 
constant b related to the underlying distribution, 1/
𝑄(0.75), MAD can be calculated as 

𝑀𝐴𝐷 = 𝑀(|𝑥(𝑖) − 𝑀(𝑥(𝑖) ∈ 𝑋$#$!)|) × 𝑏 × 𝛽,
𝑥(𝑖) ∈ 𝑋$#$!  

(2) 

𝛽 is a variable defined by the user, with a high 𝛽 value 
indicating a stricter criterion, and vice versa. Outliers 
𝑌$#$!+,!-$./ in 𝑋$#$! can then be obtained, 

𝑌$#$!+,!-$./ ← {(𝑥(𝑖) < 𝑀(𝑥(𝑖) ∈ 𝑋$#$!) −
𝑀𝐴𝐷) ∨ (𝑥(𝑖) > 𝑀(𝑥(𝑖) ∈ 𝑋$#$!) +𝑀𝐴𝐷)},

𝑥(𝑖) ∈ 𝑋$#$!  
(3) 

where ∨ is the logical OR operation. 

Streaming Phase: A window-based approach is 
proposed for the efficient handling of the streaming data. 

Two overlapping sliding windows, 𝑤0(𝑡) and 𝑤"(𝑡), as 
shown in Fig. 2, that differ by one time step are proposed; 
combinations of which are divided into the detector, 
counter, and confirmation/verification zones. 𝑤(𝑡) 
indicates the combination of both windows 𝑤0(𝑡)  and 
𝑤"(𝑡) whilst 𝑤1(𝑡) indicates the count zone of data 𝑥(𝑡).  

In the detection zone, new data 𝑥(𝑡)  may be 
earmarked as a potential outlier according to the 
difference in data distributions between the two windows. 
Subsequently, earmarked potential outlier 𝑥2(𝑡) ≡ 𝑥(𝑡) is 
stored in a dictionary F of potential outliers, i.e. 𝑥2(𝑡) ∈
𝐹 . In the count zone, the number of succeeding 
neighbours of the potential outlier 𝑥2(𝑡) ∈ 𝐹  In the 
outliers dictionary F is tallied. Succeeding neighbour is 
defined as successive data of the potential outlier 𝑥2(𝑡) 
within the count zone 𝑤1(𝑡), i.e. 𝑥(𝑖) ∈ 𝑤1(𝑡) with values 
within 𝑥2(𝑡) ± 𝑅 . Once the potential outlier 𝑥2(𝑡) ∈ 𝐹 
enters the verification zone, a decision is made to 
determine if the potential outlier 𝑥2(𝑡)  is indeed an 
outlier, with an outlier defined as those having less than 𝜏 

 
Figure 1. The main process flow of the proposed framework, with dashed lines separating different phases: orange in colour represents the re-

computation phase, green in colour represents the batch processing, and blue in colour represents the streaming phase. 

 

 
Figure 2. An illustration to show the sliding window 𝒘	returns to 

retrograde by 𝒕𝒇 + 𝟏 to allow for the re-computation phase. 
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succeeding neighbours. 

Given a sliding window 𝑤$(𝑡)  at time t, with n 
observations, represented as 

𝑤$(𝑡) = {𝑥(𝑡 − (𝑛 − 1) − 𝑖), 𝑥(𝑡 − (𝑛 − 2) −
𝑖), …𝑥(𝑡 − 𝑖)}, 𝑖 = 0,1  

(4) 

The sliding window 𝑤$(𝑡) can be characterized using 
its modified moving average 𝑚𝑀𝐴$(𝑡) , which can be 
calculated by excluding data already confirmed as outliers 
in 𝑌+,!-$./, 

𝑚𝑀𝐴$(𝑡) =
∑ |𝑥(𝑡 − 𝑗 − 𝑖) − 𝑏(𝑡)|#("
340

𝑛 ,		 

𝑥(𝑡 − 𝑗 − 𝑖) ∋ 𝑌+,!-$./ , 𝑖 = 0,1  
(5) 

where 𝑏(𝑡)  is the mean of the combined windows 
𝑤0(𝑡) and 𝑤"(𝑡) at time 𝑡, 

𝑏(𝑡) =
∑ 6(!(3)!
"#$

#
,											𝑥(𝑡 − 𝑗 − 𝑖) ∋ 𝑌+,!-$./  (6) 

The difference 𝐷(𝑡)  in modified moving average 
values between the two windows, 𝑤"(𝑡)  and 𝑤0(𝑡)  can 
then be easily determined, 

𝐷(𝑡) = |𝑚𝑀𝐴"(𝑡) − 𝑚𝑀𝐴0(𝑡)|,  (7) 

𝐷(𝑡)  exceeding a pre-determined threshold 𝜌 , i.e., 
𝐷(𝑡) > 𝜌 , indicates that the point 𝑥(𝑡)  needs to be 
earmarked as a potential outlier 𝑥2(𝑡) ≡ 𝑥(𝑡) and stored 
in a dictionary F of potential outliers.  

A modified density-based approach is then used to 
confirm that the potential outlier 𝑥2(𝑡)  is indeed an 
outlier. In the count zone 𝑤1(𝑡) , the potential outlier 
𝑥2(𝑡) ∈ 𝐹  is assigned horizontal rectilinear boundaries 
set-apart by a length 𝑅 ∈ ℝ& , and these boundaries are 
used to determine the number of succeeding neighbours 
𝜏2(𝑡) , with values within ±𝑅  range of 𝑥2(𝑡) . The 
calculation of the number of succeeding neighbours 𝜏2(𝑡) 
of potential outlier 𝑥2(𝑡) ∈ 𝐹  is done whilst streaming, 
with 𝜏2(𝑡) on the arrival of data 𝑥(𝑖) ∈ 𝑤1(𝑡) determined 
as 

𝜏2(𝑡) ← 𝜏2(𝑡) + 𝑓b𝑥(𝑖), 𝑥2(𝑡), 𝑅c,		 
𝑥(𝑖) ∈ 𝑤1(𝑡)  

(8) 

where 𝑓(. ) is a threshold function defined by 

𝑓(𝑎, 𝑏, 𝑐) = f1 𝑖𝑓	|𝑎 − 𝑏| ≤ 𝐶
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(9) 

In the verification zone, if the number of succeeding 
neighbours 𝜏2(𝑡) of potential outlier 𝑥2(𝑡) ∈ 𝐹 is smaller 
than threshold value 𝜏, i.e.  𝜏2(𝑡) ≤ 𝜏, the potential outlier 
𝑥2(𝑡)  is confirmed as an outlier, i.e. b𝑥2(𝑡) ≡ 𝑥(𝑡)c ∈
𝑌+,!-$./, and vice-versa. 

Re-computation phase: In case an outlier has been 
identified, the process requires re-computation of the 
difference of mMA values of the data streams. This is 
because outliers need to be excluded in the calculation of 
mMA as per equation (5), and the recent confirmation of 
an outlier necessitates the recalculation of mMA of 
affected data. Given b𝑥2(𝑡) ≡ 𝑥(𝑡)c ∈ 𝑌+,!-$./  has been 
confirmed as an outlier in the streaming phase, the re-
computation phase requires re-computation of 𝐷(𝑡2 + 1), 
where 𝑡2 is the time index of the recently verified outlier. 
Similar to the streaming phase, 𝐷(𝑡2 + 𝑖) exceeding a pre-
determined threshold 𝜌, i.e., 𝐷b𝑡2 + 𝑖c > 𝜌, necessitates 
the point 𝑥(𝑡2 + 𝑖) to be earmarked as a potential outlier, 
with the number of succeeding neighbours 𝜏2(𝑡2 + 𝑖) to 
be recalculated, before the streaming phase can 
recommence. Fig. 3 illustrates the activation of the re-
computation phase. 

An easy-to-understand depiction of this method is 
presented in Fig. 4, showing snapshots at 4 distinct time 
intervals, with 𝜏 = 3 and 𝑛 = 5 set as an example.  

B. Ground Truth labelling 
The process of Additive Manufacturing (AM) 

involves intricate physical phenomena that include 
heating, melting, and solidification. These events can 
affect the dynamics of the process, making it challenging 
to create a precise labelling procedure. Despite advances 

 
Figure 3. Three different zones of the proposed method consist of 
the detection zone, count zone 𝒘𝒄 with a distance threshold 𝑹, and 

verification zone. These three zones are bounded by the two 
overlapping sliding windows 𝒘𝟎 and 𝒘𝟏, where 𝒘𝟏 is ahead of the 

other by 1-time step. 
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in metal AM, there is a shortage of methods for ground 
truth labelling [33], and there is currently no standard for 
evaluating the quality of the Laser Metal Deposition 
(LMD) process for labelling purposes [34]. 

Measuring the quality of a process can be a tedious 
and expensive task, whether it is done manually by 
experts [34-36] or through post-processing techniques like 
CT scans [37, 38], or visual inspections [39], especially 
when done between build layers [38]. Wu et al. [34] 
devised a meticulous quality evaluation technique based 
on the three-sigma approach that classifies quality into 
four tiers, separated by the frequency of spatters. 
Subsequently, they have also established a correlation 
between quality levels and the porosity of the finished 
parts. 

This study employs the three-sigma approach, which 
serves as ground truth and has been used by the study as 
mentioned above to pinpoint peaks in order to assess the 
efficacy of the proposed method. In the realm of outlier 
detection, Recall, Precision, and F1-Score serve as 

prevalent performance metrics for classification models. 
Recall gauges the classifier's ability to correctly identify 
the proportion of true outliers in relation to the total 
number of outliers. Precision measures the proportion of 
all outlier predictions that are correct. F1-score combines 
both precision and recall ratios. The equations for Recall, 
Precision, and F1-score are (10), (11), and (12), 
respectively. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (11) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (12) 

  
(a) (b) 

  
(c) (d) 

Figure 4. The proposed method can be visualised by looking at four different time intervals, whilst utilizing sliding windows 
of length 5 and  𝝉 = 𝟑: a during the batch processing phase, MAD detects outliers in the initial batch 𝑿𝒊𝒏𝒊𝒕; b during the 

streaming phase, a potential outlier for a window is detected by the differencing method (e.g., 𝒙𝟗	𝒂𝒕	𝒕 = 𝟗). This occurs at the 
detection zone; c In the subsequent time steps of the count zone, the density-based method tallies up the neighbours of the 

potential outlier 𝒙𝟗, i.e., (𝝉𝟗 = 𝟑) ≥ 𝝉. In the verification zone at 𝒕 = 𝟏𝟔, the proposed method cannot confirm that the 
potential outlier is an outlier, but instead classifies it as concept drift; d In another scenario, the proposed method confirms that 

another potential outlier 𝒙𝟏𝟗 is indeed an outlier, with fewer neighbours than the threshold 𝝉. 
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4. RESULTS AND DISCUSSIONS 
Experiments were conducted on a MacBook M1 Pro 

2021 with 16 GB RAM, using Python 3.9. The goal of 
these experiments was to effectively identify and manage 
the process signature that is characterized by high-
frequency spatters and process shift components. To 
gauge its performance, real-world datasets of tilted 
structures with various slopes ranging from 0° to 10° 
layers were utilized. The performance of this method was 
compared with the DSPOT algorithm. Furthermore, the 
algorithm was tested in the 5-axis printing mode of the 
impeller blade structure. 

A. Experimental setups 
Two different experimentations in 3-axis and 5-axis 

modes were tested using real experimental data generated 
from the DLMF DMX 01 (Hwacheon Machinery Co., 
Ltd, South Korea) as depicted in Fig. 5. Inconcel 718 
alloy powder manufactured by Sandvik with a size range 
of 53-150 𝜇𝑚  was used for this experiment. A dual 
vision-based sensing approach based on CMOS camera 

sensors was integrated with the DLMF DMX 01, designed 
with the purpose of acquiring in-situ monitoring of the 
melt pool height. The details of this sensing technology 
are built based on the US patent of US7423236B2 [40]. In 
the 3-axis mode, different overhang structures with 
different inclination angles from 0° to 10° were 
constructed. The structures were first constructed with an 
incline angle of 0° up to 10mm in height, after which, a 
slope of different inclination angles was constructed. The 
total height of each structure is 30 mm. Overall, there are 
ten independent overhang structures fabricated. Fig. 6a 
and Fig. 6b show the CAD model and the results of the 
fabricated overhang structures, respectively. In the 5-axis 
mode, the impeller blade structure with ten blades and 180 
layers, was printed that requires no overhang support as 
illustrated in Fig. 6c. The process parameters include a 
fixed z-increment of 0.25 mm, a scanning speed of 850 
mm/min, a powder feed rate of 4.5 g/min, and a coaxial 
gas flow rate of 6.8 l/min. Meanwhile, the laser power 
was adjusted based on the closed-loop control strategy 
according to the current melt-pool height. The filling 
deposition pattern is zigzag with a tool spacing of 0.5 mm. 

B. Effect of differencing threshold 𝝆 and linear 
horizontal boundaries R  
Nine out of 27 parameter sets were investigated with 

the purpose of demonstrating the effects of varying 
threshold 𝜌  and R values, as tabulated in Table I. 
Decreasing the 𝜌  value increases recall value. This is 
because lowering the 𝜌 value increases the detection of 
potential outliers, thus the more sensitive it gets in 
detecting the shift in the distributions between the two 
sliding windows. However, an increase in the number of 
detected potential outliers also increases computation 
time in the subsequent verification step. Hence, a 
compromise between the two metrics (recall and elapsed 
time) is governed by the proposed framework's forgetting 
mechanism, which activates the algorithm to backtrack to 
the detected outlier index 𝑓 + 1  for a recomputation 
excluding the recently detected outlier. Despite the lower 
𝜌 value capable of detecting a high proportion of the true 
outliers, precision is low as most of the detected outliers 
are not actual outliers, i.e., high false positives. Since 
real-time streaming applications require fast computation 
time, it is necessary to find a balance between the 
computation time and the overall performance (F1-
Score). 

C. Method comparison with overhang structure (3-axis 
printing mode) 
Our method was tested against DSPOT for detecting 

outliers in real-world overhang structure data, while 
accounting for concept drift. During the calibration step of 
the DSPOT algorithm, a large batch of samples (200 
samples) was required to obtain 𝑧', which the inference 
relies strongly on the excess over a threshold t (high 
empirical quantile, i.e., 95%) values that follow a 
Generalized Pareto distribution (GPD).  

  
(a) (b) 

 
(c) 

Figure 6. Experimetal datasets: (a) The CAD model of the overhang 
structure; (b) The physical artefacts of the overhang structures 

printed in a 3-axis mode; (c) The physical artefact of the impeller 
blade structure printed in a 5-axis mode. 

 

 
 

(a) (b) 
Figure 5. DLMF process (Hwacheon Machinery Co., Ltd): a DMX 

01 Metal 3D printer, and b DMX 01 deposition head. 
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A comparison group comprising 27 sets of parameters 
(𝜌, R, 𝜏) combinations of the proposed method with a 
fixed size window of 𝑤 = 20  alongside the DSPOT 
algorithm, was analyzed based on their performance 
metrics, recall, precision, and f1-score, as depicted in Fig. 
7, 8, and 9, respectively. As mentioned previously, the 
stability of the LMD process may degrade as the 
inclination angle increases. This stability can be 
represented by the spatters formation that results in high 
peaks of clad height signals. Therefore, finding robust 
parameters suitable for this volatile incoming streaming 
data is essential. Fig. 7 shows that the DSPOT method is 
the most stable in terms of recall in which the classifier 
detects most of the actual outliers, however, suffers 

greatly in terms of precision, where the numbers of the 
detected outliers are not actually true, as shown in Fig. 8. 
Especially, with the least sensitive differencing threshold 
𝜌 = 7, the proposed method performs exceptionally well 
against the benchmark method, i.e., DSPOT, in detecting 
the point anomalies.  

From the results in Fig. 9, it is apparent that the 
proposed method with the differencing threshold	𝜌 = 5, 
provides the most stable f1-score (less volatile), over the 
range of tested inclination angles. What is striking about 
the results in Fig. 8 and Fig. 9 is that this particular set of 
parameters is better than the benchmark in terms of 
precision and f1-score over the range of inclination 
angles. Although the DSPOT method gives slightly higher 
recall results than the proposed method with the particular 
set of parameters in the case of 0° to 5° inclination angles, 
the precision of the proposed method outperforms the 

TABLE I.  INFLUENCE OF THE DIFFERENCING THRESHOLD 𝜌 
AND R (𝜏 = 3, 𝑤 = 20) TO THE PERFORMANCE METRICS AND 

COMPUTATION TIME. NOTE THAT THIS SENSITIVITY ANALYSIS WAS 
TESTED ON THE 10° OVERHANG STRUCTURE DATASET (WORST 

CASE). 

Variables Recall Precision F1-
Score 

Average 
Elapsed time 
(s) 

𝜌 = 3, 𝑅 = 50 0.878 0.412 0.561 6.559±2.324 

𝜌 = 3, 𝑅 = 75 0.837 0.541 0.657 4.284±1.652 

𝜌 = 3, 𝑅 = 100 0.798 0.658 0.721 2.973±1.206 

𝜌 = 5, 𝑅 = 50 0.872 0.592 0.705 4.042±1.535 

𝜌 = 5, 𝑅 = 75 0.831 0.658 0.734 3.114±1.250 

𝜌 = 5, 𝑅 = 100 0.792 0.728 0.759 2.392±0.992 

𝜌 = 7, 𝑅 = 50 0.829 0.809 0.819 2.291±1.015 

𝜌 = 7, 𝑅 = 75 0.795 0.839 0.816 1.918±0.880 

𝜌 = 7, 𝑅 = 100 0.765 0.860 0.810 1.678±0.774 

 

 
Figure 9. The performance metrics (Recall) between the proposed 
method with different parameter combinations and DSPOT as a 

comparison method, with a fixed window size of 20 and different 
differencing threshold 𝝆. 

 

 
Figure 8. The performance metrics (Precision) between the 

proposed method with different parameter combinations and 
DSPOT as a comparison method, with a fixed window size of 20 

and different differencing threshold 𝝆. 

 
 
 

 
Figure 7. The performance metrics (f1-score) between the proposed 

method with different parameter combinations and DSPOT as a 
comparison method, with a fixed window size of 20 and different 

differencing threshold 𝝆. 
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DSPOT method. Retrospective to the aim of outlier 
detection defined in this study is to locate and eliminate 
peaks in the streaming data that are regarded as noise 
from spatters generation. As a result, precision takes 
precedence over recall. It is vital to accurately remove this 
noise while preserving the significant spatters that result 
in process shifts in the streaming data as an indicator for 
subsequent analysis, such as anomaly detection. 
Moreover, in the 0° structure, the parameter of 𝜌 = 5, 𝑅 =
75 and,		𝜏 = 7 yields the highest f1-score of 0.738, with a 
recall of 0.756 and a precision of 0.731. In the 10° 
structure, the parameter of 𝜌 = 7, 𝑅 = 100  and, 		𝜏 = 7 

yields the highest f1-score of 0.830, with a recall of 0.869 
and a precision of 0.795. 

Furthermore, the results obtained from averaging the 
relevant metrics values of all inclination angles were 
summarized in Fig. 10, 11, and 12, respectively. These 
Fig. rank the proposed method with different parameter 
combinations and the DSPOT method in descending order 
(top to bottom) in terms of performance. From Fig. 10, it 
can be seen that the DSPOT method sits nearly at the 
bottom, exhibiting its higher recall in detecting most of 
the actual outliers. At the same time, the proposed method 
still performs better than the DSPOT with the set of 
parameters of 𝜌 = 3, 𝑅 = 50  and, 		𝜏 = 7,  attaining the 
highest recall value. In addition, Fig. 11 and 12 are quite 
revealing in several ways. First, it demonstrates 
ostentatiously that, in terms of precision and f1-score, the 
DSPOT method underperforms the proposed framework. 
The highest average precision is from the proposed 
method with a set of parameters of 𝜌 = 7, 𝑅 = 100 
and,		𝜏 = 3. Finally, a set of parameters of 𝜌 = 7, 𝑅 = 75 
and,		𝜏 = 7 appears to be the most robust in terms of the 
overall balance between recall and precision of different 
inclination angles, including the worst-case scenario 
(10°), and henceforth, this set of parameters was utilized. 

Fig. 13 presents the two methods' layerwise analysis 
of the time-series clad height signals alongside the 
outcomes of these figures are depicted in the form of a 
confusion matrix, with Table II summarizing the 
performance scores of our and benchmark methods. It can 
be seen the time-series data of a 10° inclination angle has 
many extreme values (point anomalies) and is more prone 
to concept drift compared to 0°. This difference in the 
occurrence of high peaks shows that fabricating complex 
structures without support intensifies the spatter 
formation.  

The emergence of concept drift is more pronounced at 
the layer with a 10° inclination angle, i.e., near the start 
and end of the signal. The DSPOT method performs 
poorly at the layer with a 10° inclination angle because, 
during the calibration step, there are too many extreme 
values; thus, it sets the 𝑧'  to be too high. Due to this 
miscalibration, the upper threshold was set way too high 

 
Figure 10. Average recall values of all parameters, sorted in 
descending order (The highest value is at the bottom, and the 

lowest value is at the top). 

 
Figure 11. Average precision values of all parameters, sorted in 

descending order (the highest value is at the bottom, and the lowest 
value is at the top). 

 
Figure 12. Average f1-score values of all parameters, sorted in 
descending order (The highest value is at the bottom, and the 

lowest value is at the top). 

 
TABLE II.  THE PERFORMANCE METRICS LAYERWISE 

COMPARISON RESULTS BETWEEN THE PROPOSED METHOD (𝜌 =
7, 𝑅 = 75, 𝜏 = 7, 𝑤 = 20) AND THE DSPOT METHOD. 

Slope Method Recal
l 

Precision F1-
Score 

Elapsed 
Time (s) 

0° Proposed 
Method 

0.574 0.938 0.712 0.798 ± 
0.434 

DSPOT 0.886 0.347 0.499 4.300 ± 
4.065 

10° Proposed 
Method 

0.880 0.776 0.825 2.744 ± 
1.191 

DSPOT 0.793 0.334 0.470 2.806 ± 
4.437 
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and despite gradually diminishing, it persistently settled 
above the remaining peaks, leading to missing out on 
many true outliers, as shown in Fig. 13e. On the other 
hand, if extreme values are less; 𝑧'  is set too low, 
resulting in lower upper and lower thresholds (orange 
dashed lines) as shown in Fig. 13d. Due to this, the 
DSPOT method misclassified many false positive outliers 
in the initial phase of the layer build process. Fig. 13f 
shows that the DSPOT algorithm has trouble adapting to 
the concept drift in the initial and end phases due to 
changes in mean value. Thus, it detects the normal signals 
as false positive outliers. On the other hand, the proposed 
method handles this problem well. Even with concept 
drift, the proposed method flags the point shift as a 
potential outlier, with the verification zone confirming 
otherwise. 

In addition, in cases where the benchmark technique 
detects multiple peaks in the streaming data, it must 
perform a recalculation of sigma and gamma using 
Grimshaw's trick to achieve a numerical root finding. As a 
result, the optimization problem of DSPOT takes longer 
to complete than our proposed forgetting mechanism. 
Table II showcases the elapsed time required for our 
method with a 0° inclination angle using the proposed 
method takes 0.798 ±  0.434 seconds only, while the 
DSPOT requires 4.300 ±  4.065 seconds. Despite the 

computation time for the DSPOT algorithm being 
comparable with the proposed method for the 10° 
inclination angle, the f1-score of the DSPOT is too low at 
0.470 as it failed to detect most of the true outliers, as 
compared to 0.825 by the proposed method. Irrespective, 
the elapsed time for our method is still low with low 
variance. 

Furthermore, Table II displays that the f1-scores of 
our method are better than the benchmark method at both 
angles.  At 0° inclination angle, our method gave recall, 
precision, and F1-score values of 0.574, 0.938, and 0.712, 
respectively, compared to the benchmark method, which 
gave the values of 0.886, 0.347, and 0.499, respectively. 
Although the recall value of the benchmark method is 
higher than the proposed method at 0° inclination angle, 
the precision value of the proposed method scores a near-
perfect 1.0, with fewer false positive outliers, whereas the 
DSPOT method scores 0.347 in terms of precision. 
Together these results provide important insights into 
considering the right balance between recall and 
precision; detecting the noise (extreme values) is more 
critical during the data acquisition, as it could conceal the 
actual performance of the deposition process. Meanwhile, 
the meaningful spatters' presence in the signals is meant to 
be kept for further analysis, such as characterizing defects 
based on the different types of concept drifts in the LMD 

 

 

 

 

(a) (d) 

 

 

 

 

(b) (e) 

 
 

 

 

(c) (f) 

Figure 13. The visualization of the time-series of clad height and its corresponding confusion matrix at three different layers of the 3-axis 
overhang dataset by two different methods: (a-c) Differencing, (𝝆 = 𝟕, 𝑹 = 𝟕𝟓, 𝝉 = 𝟕,𝒘 = 𝟐𝟎), show a rendering of raw signal (blue), point 
ground truth (green), point flagged (orange), and point anomaly (red); (e-f) DSPOT, (𝒒 = 𝟎. 𝟎𝟎𝟏,𝑵𝒊𝒏𝒊𝒕 = 𝟐𝟎𝟎,𝒘 = 𝟐𝟎), show a rendering of 

raw signal (blue), moving average (black), lower and upper bounds (orange), point ground truth (green), and point anomaly (red); at layer 2 (0°), 
layer 63 (10°), and layer 69 (10°), respectively. 
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process. The signals of the 10° inclination angle show the 
presence of gradual, incremental, and recurrent concept 
drifts. Due to this, the performance of the proposed 
method is decreased, although it remains higher than the 
benchmark method. 

D. Method comparison with impeller blade structure (5-
axis printing mode) 
The proposed method with parameters 𝜌 = 7, 𝑅 = 75 

and,		𝜏 = 7 obtained from analysis of the 3-axis mode and 
the DSPOT method with parameters 𝑞 = 0.001,𝑁$#$! =
200,𝑤 = 20, were tested on another real experimental 
data of the 5-axis printing mode of the impeller blade 
dataset for comparisons. The results of the experiment 
comprising all stated metrics, including the average 
layerwise elapsed time, are summarized in Table III.  

The average scores for the entire blades were also 
computed and compared between the two methods. Ten 
different blades were segregated for the analysis, and the 
performance of our method was averaged with recall, 
precision, and f1-score calculated at 0.964, 0.512, and 
0.668, respectively. The average layerwise computation 
times on the 5-axis are relatively fast, as there are not as 
many extreme values due to the absence of overhang 
deposition requirement on the 5-axis printing mode, 
which is around 0.0976 ± 0.336 seconds. Another reason 
may be that the printing deposition is lessened as the layer 
grows. Thus, it eases the printing process for complex 
structures. However, it is best to note that the 5-axis 
printing and 3-axis printing are not entirely the same, as 
the layer thickness varies in the 5-axis mode, which may 
result in different time-series characteristics of the clad 

height signals, as depicted in Fig. 14. In sum, an 
interesting finding that stands out from the results 
reported earlier from the 3-axis overhang dataset was our 
method transcends the benchmark method in all scores 
approximately by 6%, 134.7%, 116%, and 153% 
difference, in terms of recall, precision, f1-score, and the 
average layerwise computation time, respectively. 

These unanticipated results can be further explicated 
based on the layerwise visualization between our and 
benchmark methods for detecting the point anomalies, as 
illustrated in Fig. 14. For blade #0 (layer 1), the DSPOT 
method is found to have difficulty in adapting to the 
cyclicality type of time series—slowly adjusting the lower 
and upper bounds—resulting in detecting more false 
positive outliers as compared to our method, from 80 to 
26, respectively. This description can be analyzed in Fig. 
14a and d. At the same time, detecting these false positive 
outliers also results in higher computation time in the 
DSPOT due to Grimshaw's trick calibration. A closer 
inspection of Fig. 14e shows that the DSPOT method is 
not stable when the variance of the signals is high leading 
to higher false positives, thus lower precision. Finally, the 
most interesting aspect of this 5-axis result is shown in 
Fig. 14f which shows that the DSPOT method fails to 
adapt to slow decreasing trend type of drift. One of the 
apparent limitations of the proposed method is that it may 
struggle when the signal has a high variance, as shown in 
Fig. 14(b). Thus, the proposed method misclassified these 
small peaks as spatter noise. Despite this shortcoming, the 
proposed method still outperforms the benchmark 
method, DSPOT. 

TABLE III.  THE PERFORMANCE METRICS OF THE OVERALL LAYERS OF EACH IMPELLER BLADE WITH THE PROPOSED METHOD (𝜌 = 7, 𝑅 =
75, 𝜏 = 7, 𝑤 = 20) 

Blade #ID Method Recall Precision F1-Score Average Elapsed Time (s) 

0 Proposed 0.96394 0.49922 0.65778 0.09376 ± 0.29378 
DSPOT 0.90144 0.10563 0.18911 0.78041 ± 1.20691 

36 Proposed 0.96695 0.50528 0.66373 0.09627 ± 0.37592 
DSPOT 0.89902 0.10028 0.18043 0.71426 ± 0.95754 

72 Proposed 0.96453 0.49515 0.65437 0.09888 ± 0.35032 
DSPOT 0.89184 0.11230 0.19948 0.77470 ± 1.13434 

108 Proposed 0.95845 0.50662 0.66286 0.09922 ± 0.34288 
DSPOT 0.88161 0.11243 0.19943 0.75873 ± 1.03328 

144 Proposed 0.95970 0.50471 0.66152 0.09002 ± 0.29851 
DSPOT 0.91438 0.11288 0.20096 0.75466 ± 1.2959 

180 Proposed 0.96901 0.51784 0.67498 0.09441 ± 0.28228 
DSPOT 0.89583 0.10253 0.18400 0.77104 ± 1.39730 

216 Proposed 0.97705 0.63986 0.77330 0.10441 ± 0.43713 
DSPOT 0.94184 0.21801 0.35406 0.71570 ± 1.08659 

252 Proposed 0.96376 0.47839 0.63940 0.09754 ± 0.33639 
DSPOT 0.89772 0.10940 0.19504 0.70409 ± 1.14212 

288 Proposed 0.95380 0.48340 0.64162 0.10213 ± 0.31208 
DSPOT 0.89883 0.12495 0.21940 0.75548 ± 1.17494 

324 Proposed 0.96679 0.48660 0.64737 0.09898 ± 0.32944 
DSPOT 0.91040 0.09491 0.17190 0.74331 ± 1.08522 

Average Proposed 0.96440 0.51171 0.66769 0.09756 ± 0.33587 
DSPOT 0.90329 0.11933 0.20938 0.74724 ± 1.15141 
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5. CONCLUSION 
During the LMD process, spatter can pose a 

significant challenge and negatively impact process 
stability. High-frequency spatters can cause signal peaks 
that obscure the true performance of the deposition 
process. A novel approach that integrates differencing and 
density-based methods was developed to combat this 
issue and simultaneously reduce noise from univariate 
time series data. This involves comparing two modified 
Moving Averages to identify potential outliers, which are 
then confirmed using a density-based method that 
considers neighbouring data points. To test the 
effectiveness of this approach, the study employed actual 
datasets of 3-axis overhanging structures with various 
inclination angles and 5-axis impeller blade structures. 
The DSPOT method was used as a benchmark, and the 
three-sigma approach coupled with the moving average 
was used to label peaks in the signal as the ground truth. 
The proposed method was then evaluated against twenty-
seven different parameters to determine the optimal 
option, which proved to perform exceptionally well in 
various scenarios. The results revealed that our method 
outperformed the benchmark in all metrics, including 
recall, precision, f1-score and computational time. 
However, finding optimal parameters for different 
scenarios that involve high-frequency spatter at a 10° 

inclination angle remains a challenge. It was found that 
the proposed method with a high 𝜌 yields higher precision 
when tested on the inclination angles below 5° but at the 
cost of a low recall, i.e., many missed out outliers. 
Nonetheless, the lower 𝜌 would result in a slight increase 
in recall but at the cost of higher computation time 
because it flags up many potential outliers, i.e., increased 
sensitivity. Another challenge is handling the combination 
of recurrent and incremental drifts, i.e., a cyclic of a slow 
and gradual drift, often appearing at the 10° structure and 
impeller blade structure, i.e., complex structures. Hence, 
the decline in the proposed model performance, including 
the DSPOT method.  

Moving forward, it is imperative that we thoroughly 
analyze and provide in-depth comparison evaluations that 
may affect the robustness of our method when utilizing a 
variety of static and adaptive window sizes with complex 
build structures. The generalization of static window size 
is found to be not robust enough for different scenarios, 
given the different types of concept drift that may exist, 
such as gradual, incremental, and recurring drifts, or even 
a high variance in the signal. Additionally, exploring and 
implementing an improvement for the forgetting 
mechanism could significantly increase computational 
speed through parallel computation. 

 

 

 

 

(a) (d) 

 

 

 

 

(b) (e) 

 

 

 

 

(c) (f) 

Figure 14. The visualization of the time-series of clad height at three different layers of the 5-axis impeller blade dataset by two different 
methods: (a-c) Differencing, (𝝆 = 𝟕, 𝑹 = 𝟕𝟓, 𝝉 = 𝟕,𝒘 = 𝟐𝟎), show a rendering of raw signal (blue), point ground truth (green), point flagged 
(orange), and point anomaly (red); (d-f) DSPOT, (𝒒 = 𝟎. 𝟎𝟎𝟏,𝑵𝒊𝒏𝒊𝒕 = 𝟐𝟎𝟎,𝒘 = 𝟐𝟎), show a rendering of raw signal (blue), moving average 
(black), lower and upper bounds (orange), point ground truth (green), and point anomaly (red); of blade #0 (layer 1), blade #180 (layer 2), and 

blade #324 (layer 94), respectively. 
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