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Abstract: In recent years, Laser Metal Deposition (LMD) has experienced significant advancements. For process monitoring purposes,
in-situ sensors are often used, which tend to produce noisy data, and due to the short processing window, these data need to be
automatically analyzed in real-time to ensure their reliability for further processing. A simple Moving Average (MA) is commonly
used to reduce signal peaks, which could otherwise skew the statistical properties of the data. Stabilization of the LMD process
can be ascribed to the occurrence of spatters, which exhibit concept drift characteristics and are closely related to signal peaks. In
this respect, this study aims to differentiate between two types of anomalies in data streams: point anomalies and concept drift, to
eliminate the peaks that could cloak the performance in the actual signals during the process. To solve this issue, a two-step approach
is being proposed. A differencing method is first applied to identify any potential point outliers, which are then verified to check if
these identified observations are indeed peaks resulting from the spatters generation with a density-distance approach. The method’s
reliability and robustness were tested with overhang structures (3-axis printing) and impeller blade structures (5-axis printing). Results
show that the existing method, the Drift Streaming Peaks-Over-Threshold method, is inferior compared to the proposed method in
terms of F1-score, despite a decrease in performance as the inclination angle increases. These experiments ascertain the pertinence of
the proposed method in processing incoming sensor data of LMD.
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1. INTRODUCTION
Laser metal deposition (LMD), also known as Directed

Energy Deposition (DED), is one of the common metal Ad-
ditive Manufacturing (AM) methods available in the market.
LMD projects a concentrated energy beam programmed to
follow a predetermined toolpath along the given workspace,
leaving a trail of solidified weld beads of a particular
geometric shape. The intense heat coming from the energy
beam, including laser or electron, onto the metal feedstock
material in the form of powder or wire, coupled with the
substrate, creates a locally liquified melt-pool morphology
instantaneously surrounding the vicinity with a rapid solidi-
fication process. Unlike traditional manufacturing methods,
LMD is capable of freeform fabrication of complex geome-
tries without requiring any support. However, the process
often needs consistent and focused energy density in ge-
ometrical control because continual irregular powder mass
delivery and laser defocusing can cause inconsistency in the
build height development [1]. Additionally, the process also
involves a multitude of process parameters that directly in-
fluence the geometrical and microstructural properties of the

finished product. Indeed, it is expected to have occasional
defects in the finished products, including a bumpy texture,
insufficient deposition, or excessive deposition [2]. One of
the methods to improve the quality of an LMD process
is via reliable and robust in-situ measurement process and
control. The most common in-situ process monitoring is
the direct measurement of geometrical characteristics, such
as clad height, by obtaining a visual image data using a
Charge-Coupled Device (CCD) camera or Complementary
Metal-Oxide Semiconductor (CMOS) camera [3]. However,
monitoring sensors of the deposition process commonly
give noisy time-series data, and since the deposition process
occurs rapidly, interpretation of these data and subsequent
control of the deposition process can be challenging.

An increasing amount of literature emphasizes the sig-
nificance of identifying defects or outliers in the field of
metal AM. Ren et al. [4] adopted an LSTM-Autoencoder
and a K-means clustering to provide early defect detection
based on quality classification under different conditions of
laser power, printing speed, and powder feed rate. Zhang et
al. [5] also used LSTM, but to predict melt pool time-series
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temperature during LMD, as the melt pool temperature
affects the microstructure of the finished part. On the
other hand, Reisch et al. [6] proposed an approach for
anomaly detection in multivariate data streams based on the
error distance. These errors are then fed to a Mahalanobis
distance-based method to generate anomaly scores.

The success yardstick of the monitoring and control
model lies in its generalization in capturing intrinsic char-
acteristics of the data. Bartsch et al. [7] asserted that the
generalization of a model requires a satisfactory volume of
high-quality data, which are representative of the problem,
and consisting of only a few outliers and small noise. This
manifest in the ability of the model to comprehensively
describe the data, in terms of their descriptive patterns and
their well-defined characteristics. Outlier detection aims to
identify specific data points that significantly deviate from
the rest of the dataset, arising from distinct underlying
mechanisms. Various types of outliers possess unique statis-
tical characteristics that deviate from normal behaviour, and
they might have emerged abruptly or evolved gradually over
time. Introducing data containing outliers to a model can
have detrimental effects on the model’s performance and
estimated parameters. Thence, identifying and addressing
outliers form a crucial aspect of time series analysis prior
to modelling.

Although there are quite a number of methods for detect-
ing peaks in the streaming data application, the reliability
of those existing methods is not applicable to the LMD
process that presents the non-stationary in the time series
data, i.e., noises with process shifts as a new normal. In this
case, when a sudden drift develops during the LMD process,
it signifies the process is unstable due to a multitude
of complex interactions, sensitive to the environment and
improper process parameter combinations, thus leading to
poor quality. This meaningful information must be retained
for downstream analysis, such as characterizing the types
of defects based on the features of the signals when process
shifts appear. However, to date, existing methods may be
overly resistant to these changes, slowly updating their
parameters as concept drift appears. Therefore, the central
contributions of this study are as the following:

• First, this paper describes the design and imple-
mentation of the proposed statistical framework that
enables the detection and differentiation between sud-
den anomalies and drifts in one-dimensional data
streams. It is designed explicitly for the LMD process,
particularly in industrial practices in both 3-axis and
5-axis printing modes, with the spatter signature—an
inextricably linked phenomenon.

• Second, in testing the approach, twenty-seven differ-
ent unique combinations of parameters of the pro-
posed method were tested to obtain robust and opti-
mal parameters in different scenarios, including both
3-axis and 5-axis printing modes to address spatter

signature effectively—the noise that often interferes
with the data—ensuring more accurate and reliable
analyses, and

• Third, in numerous industrial instances, detecting
abnormalities can be a challenging task. Nevertheless,
a recent study highly advocates the use of the Moving
Average (MA) coupled with the three-sigma limits
(lower and upper limits) approach to classify point
anomalies as the actual facts precisely. This method
is crucial in resolving the issue and should be put into
operation promptly.

The structure of the paper is drafted as follows. Follow-
ing the introduction to the work in Section 1, Section 2 pro-
vides an overview of related works in the area of spatters,
concept drift and its detection. The proposed framework
is given in Section 3. This includes the proposed outlier
detection method as well as the ground truth labelling.
Section 4 outlines the experimental setups, as well as results
and discussions. The final section concludes the paper.

2. RELATED WORK
A. Spatters and their effects

One of the process-induced defects results from the
complex interaction with different mediums, including the
selected energy beam, metal feedstock material, and the
prior layers, is spatters [8]. Research into spatter behaviour
reveals its connection to process conditions and stability, in-
dicating that tracking spatter could provide valuable insights
into the quality and consistency of the metal AM process
[9], [10], [11], despite being a common phenomenon in
LMD. In simple terms, spatter is the expulsion of powder
particles that are either melted or unmelted from the melt
pool. The purpose of this is to reduce the surface energy.
Khairallah et al. [12] provide a comprehensive explanation
on the characteristics of the spatter formation in metal
AM, which is further investigated by another study that
elucidated different sets of process parameters that influence
its frequency [13]. Spatter forms when the temperature
gradients between the centre and the vicinity of the melt
pool are too high due to the higher energy density, i.e.,
overheating. This higher energy density causes localized
boiling on a specific portion of the melt pool, forming a
droplet that eventually bursts with an upwards momentum
and spread across the surrounding vicinity including the
build-part and laser head [14]. Spatter formation strips
material from the clad’s designed geometry, introducing
under-deposition and surface defects such as balling, which
in turn exacerbates surface roughness [14]. These imper-
fections typically necessitate further post-processing, which
can prolong the production schedule and inflate costs. When
the laser passes by the large spatters settling on the surface
of the build-part, it causes insufficient energy density to
sufficiently melt the incoming powder and large spatters
on the surface simultaneously, contributing to disjointed
and sparser solidification [14], [15], [16], potentially giving
rise to porosity formation. In addition, it was found that
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spatter often precedes with the creation of keyholes [17], a
consequence of inappropriately high energy density applied
to the substrate or previous layers, which causes overly deep
depressions and subsequent voids from gas entrapment. The
in-situ monitoring system detected a considerable amount
of heavy spattering at the contours [18]. On the built part
side, a significant spatter was found, causing substantial
disruption to the shape of the melt pool due to defects, such
as balling caused by spatters and the separation of the melt.
Consequently, the creation of spatters is detrimental to the
stability of the process and can result in a myriad of issues,
including substandard quality in each layer, porosities, and
internal cracks [19].

Rezaeifar and Elbestawi [20] noted that off-axis imag-
ing systems, while measuring the in-situ process of the
melt pool size, can suffer from overlapping and spreading
spatters, resulting in inaccurate measurements. Thus, it is
imperative to mitigate these disturbances to ensure accurate
image processing of the melt pool [21]. A few studies
have incorporated spatter tracking for denoising as part
of an additional step in image processing to reduce these
spatter-induced deviations in deposited layer extraction [22],
[23]. Further, Feng et al. [24] noted that temperature spikes
caused by spatters could lead to potential confusion between
defects and noise, emphasizing the need for analysis of
temperature signals and interpretation of their results.

According to Hauser et al. [25], there is a strong corre-
lation between spatters and various process parameters. To
thoroughly examine this relationship, the study used multi-
modal data to acquire image and sound intensity through
vision-based and acoustic sensors. The research found that
choosing incorrect process parameters can destabilize the
process. These errors can ultimately result in significant
deviations in the shape of the built layer, which may
further cause surface geometry fluctuations and variations
in nozzle-to-work distance. These factors can ultimately im-
pact the laser-powder dynamics, leading to more instances
of spattering—causing an unstable process, such as spikes
in the signals. Additionally, prolonged spatters can lead to
concept drift during an unstable process. Despite this, all
unstable processes exhibit comparable behaviour in the AE,
making distinguishing between them challenging in LMD.

Yang et al. [19] preprocessed the image data to section
the melt pool, spatters, and its vicinity represented by
pixels in an image. Based on those pixels, they plotted
the time series data to monitor the deposition process
using the control chart, i.e., Shewhart. The violations of
the process stability are indicative of anomalies that might
have been incurred during the process. The authors used a
moving average to reduce large values that may distort the
estimation and smooth out the data points.

In their study, Repossini et al. [26] created a method for
analyzing the spattering behaviour during the laser-metal
AM process. This method involved measuring the spatters’

characteristics, including area, quantity, and disperseness,
to distinguish between under-, normal, and over-melting
conditions. The authors suggested that spattering behaviour
could be used alongside other known quantities of the melt
pool, such as its geometric morphology and temperature, to
improve the monitoring process. Similar studies in the field
of laser welding [27], [28], [29] have verified that spattering
behaviour is one of the critical constituents to characterize
the deposition process quality. While there are differences
between laser metal AM and laser welding, these studies
offer useful insights into characterizing and quantifying
spattering behaviour using in-situ signal analysis.

It has been suggested by Chen et al. [30] that complex
features can aggravate the frequency of spatters by causing
overheating, ultimately leading to more intense spattering.
Others have indicated that high laser energy input may also
lead to more spattering [25], [30] and larger spatters [19],
[30]. Also, Chen et al. [30] utilized Optical Tomography
(OT) as an online thermal monitoring tool to label ground
truth. Through the analysis of OT images, they were able to
infer the effect of layer profiles based on the spatters’ fre-
quency produced during the process. The OT images were
partitioned into three distinct areas: the section exposed
to laser radiation, the region affected by spattering, and
the zone unaffected by either laser radiation or spattering.
Further analysis compared the frequency and distribution of
these regions.

In a nutshell, melt pool instabilities may cause excessive
spatters [9], [13], which in turn may cause concept drift in
signals [31], [32]. Significantly, it should be highlighted
that existing research into the impact of spatter-induced
noise and related parameters has predominantly utilized
image and sound data. In contrast, the proposed method
exclusively employs one-dimensional signal data reflecting
the geometric characteristics of the melt pool height. This
approach marks a considerable decrease in the computa-
tional resources required for analysis.

B. Concept Drift
Data streams are real-time and continuous flows of

data, with non-stationary distribution, i.e., distributions may
change over time. Unbounded instances of data cannot just
be stored all at once in the memory for real-time processing
due to computational resource constraints, and this makes it
challenging to detect changes in data distribution. However,
the summary of these instances can be stored [33]. Another
challenge is the speed at which these instances arrive from
a stream, which can quickly devour available resources
including computational memory. Thus, it is recommended
that stream mining algorithms prioritize speed and effi-
ciency by using only a small batch of samples [34].

Concept drift may be defined as a statistical change in
observations/distributions. Specifically, given a set of data
S t = (X1, . . . , Xn) at a time step t, whereby each sample
Xi = (xi,1, . . . , xi,n) is a feature vector. If two consecutive
sets of observations S t and S t+1 present a considerable
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deviation in the distributions, then it can be said that concept
drift appears. The coexistence of concept drifts in the
streaming data degrades the classifier’s performance over
time, making it obsolete for the new incoming instances.
Due to this reason alone, tracking this concept’s change is
essential—underpinning the model’s reliability and credi-
bility.

Drift can manifest itself in various ways: suddenly,
gradually, incrementally, or repeatedly. Sudden drift is
marked by an abrupt alteration in distribution with no
overlap between the preceding and present concepts. The
new concept may also emerge gradually, with the transition
between concepts occurring over time before stabilizing and
is referred to as gradual drift. Recurring drift refers to the
phenomenon of a concept repeating itself over time with
either cyclical or non-cyclical behaviour. In contrast, incre-
mental drift occurs when changes in distribution exhibit a
stepwise manner but smoothly and continuously over time.
Sudden drift, as the name suggests, is more apparent and
noticeable compared to the other types of drift.

C. Outliers and Concept Drift Detection
A change of distribution over time may increase errors

in a detection mechanism. As such, the mechanism must
be able to trace errors in real time. This research focuses
on the removal of extreme values (noise) whilst consid-
ering the drift component of the data. In the literature,
multiple outlier detection methods exist in streaming data
applications, including sequential analysis-based, similarity
and dissimilarity-based, window-based, statistically based
and data distribution-based [33].

The most commonly used similarity and dissimilarity-
based method is the Drift Detection Method (DDM) [35].
DDM embodies two warning levels of detection based
on the set confidence interval, i.e., 95% and 99%, re-
spectively. DDM performs well in detecting sudden and
gradual drifts but performs atrociously for an incremental
drift. Thus, Baena-Garcı́a et al. [35] proposed an Early-
DDM to overcome this challenge. Sequential analysis-based
methods, such as the Page-Hinkley Test (PHT) [36], rely
on hypothesis testing where incoming signals are assumed
to follow a Gaussian distribution. Any sudden changes in
variance, either increase or decrease, would be characterized
as abnormal. On the other hand, a window-based approach
commonly incorporates two windows that accumulate in-
coming data to form a small batch of data. Differences in
the distributions between these two small batches of data
may signal a drift. Rather than utilizing a fixed window
size, an adaptive window size can be employed to tailor
the window size according to the type of drift. A series of
multiple statistical-based testing, such as measurements of
central tendency, hypothesis testing, kurtosis, and skewness,
can also be incorporated into the window-based approach.
Vallim and De Mello [37] incorporated a Fourier transform
method to produce power spectrum graphs of two sliding
windows, before comparing them to detect statistical differ-

ences.

Another popular method is the Drift Streaming Peak-
Over-Threshold (DSPOT) [38] method, which is based on
the data distribution during the initialization phase and iter-
atively updates the parameters when peaks are detected. The
proposed method was rigorously compared to the DSPOT
algorithm, which is widely used as a benchmark owing to
its popularity. It is worth noting that the DSPOT algorithm
is a modified version of the Peaks-Over-Threshold (POT)
method that is specifically designed for detecting anomalous
points in real-time. Two variants of the POT method were
developed by Siffer et al. [38]: Streaming POT and DSPOT.
The former is suited for any stationary distribution, while
the latter is more robust to handle process shifts in the
streaming data. At the outset, the algorithm requires a
calibration step to initialize the threshold (quantile) value
zq with a fixed risk q such that P(X > zq) < q. The
excess over the threshold (quantile) Th results in a set of
peaks Yt ← (Xi − Th | Xi > Th), with a Generalized Pareto
Distribution (GPD) fitted on them to infer zq. Ultimately,
the algorithm can adapt itself to the evolution of data for
streaming that can detect anomalies (Xi > zq) and refine zq.
The threshold (quantile) value zq can be determined as

zq � Th +
σ̂

γ̂

(qn
Nt

)−γ̂
− 1

 (1)

where Th is a high threshold (quantile), n is the total
samples, and peaks occurrences over Th is denoted by Nt.
Both parameters σ̂ and γ̂ are estimated through observations
using Grimshaw’s trick to attain a single-variable function
for solving the two variable optimization problems.

It is important to note that whilst DSPOT is robust
in other applications, it may not be as effective for the
LMD process due to its limitations. Firstly, a large batch
of samples is required for the initialization phase before
making an inference, including lower and upper bounds
to distinguish normal and extreme values. Extreme values
that exist in the initialization batch of samples will not be
detected because the calibration phase requires a normal
state of the process before inferencing the threshold limits.
Secondly, if the initialization phase contains many extreme
values, it can result in incorrect inference for the threshold
limits, i.e., high threshold limits. For instance, if the de-
position process begins with excessive spattering behavior,
i.e., commonly starts from the edges of the build (contour),
the subsequent extreme values during the streaming phase
may be missed entirely. Lastly, the method may struggle
to adapt to cyclicality in time series, slowly adjusting the
threshold value. Therefore, a robust method that is tailored
to the LMD process is developed, which will be explained
in detail in the next section.

3. METHODOLOGY
When detecting outliers in time-series data, it can be

difficult to determine what qualifies as abnormal within
the dataset, with outliers having the possibility to disrupt
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the outlier detection method. This is even so in LMD,
where time-series sequences of an LMD have unique
characteristics that make defining anomalies even more
challenging [25]. Studies found in the literature have already
acknowledged that peaks present in the signal may affect
the stability of the process due to spattering events. These
events can indicate process stability, but they may also
contain information on drift, which is useful for analyzing
layer attributes. Care needs to be taken when removing
data which are presumed to be outliers, to ensure that
only true point anomalies are eliminated while keeping
the meaningful spatters. Differentiating concept drift and
noise, including extreme values and point anomalies, is a
difficult task. For anomaly detection in AM, the control
chart method has been employed by researchers to identify
anomalies [39], [40], [41], [42], [43], [44], [45]. In the realm
of streaming applications, data are in a constant state of flux,
posing an even greater challenge to the outlier detection
algorithms. Algorithmic models may misidentify noise as
concept drift or be excessively resistant to changes. As such,
an effective model must maintain a balance of robustness
and sensitivity.

A. The Proposed Statistical Framework
In this research, an innovative framework for detecting

outliers is introduced that is based on a window-based
approach with other statistical techniques, which will be
further outlined in this section. As new data streams arrive
at the start of every layer, they are collected in a buffer
until the buffer’s length matches the predefined window
size n. Outliers within this smaller batch dataset need to
be removed before the start of the streaming phase using
Median Absolute Deviation (MAD). During the streaming
phase, a differencing method is employed to detect potential
outliers within the data stream and subsequently, a density-
based outlier detection approach is utilized to confirm
whether the detected potential outlier is indeed genuine. If a
true outlier is identified, a re-computation phase is triggered,
to remove the confirmed outlier in the calculation of the
differencing method. This is because an outlier can distort
and hide the true outlier as a normal value. Figure 1 depicts
a simplified flowchart of the proposed framework.

Batch Processing phase: The batch processing phase
occurs at the start of every layer. During the phase, data
x(i) are collected in an initial batch Xinit until it reaches
a predefined window size n with Xinit = x(1), x(2), . . . x(n).
Outliers need to be identified in the initial batch Xinit to
correctly represent the data, and for this, the MAD [46]
is used. MAD is a more robust measure of scatteredness in
comparison to normal three sigma, which are more sensitive
to outliers. Given M(.) as a function that gives median
from its input and constant b related to the underlying
distribution, 1/Q(0.75), MAD can be calculated as

MAD = M (|x(i) − M(x(i) ∈ Xinit)|) × b × β, x(i) ∈ Xinit (2)

β is a variable defined by the user, with a high β value

indicating a stricter criterion, and vice versa. Outliers Youtlier
init

in Xinit can then be obtained,

Youtlier
init ←

{(
x(i) < M(x(i) ∈ Xinit) − MAD

)
∨

(
x(i) > M(x(i) ∈ Xinit) + MAD

)}
,

x(i) ∈ Xinit

(3)

where ∨ is the logical OR operation.

Streaming Phase: A window-based approach is pro-
posed for the efficient handling of the streaming data. Two
overlapping sliding windows, w0(t) and w1(t), as shown
in Figure 2, that differ by one time step are proposed;
combinations of which are divided into the detector, counter,
and confirmation/verification zones. w(t) indicates the com-
bination of both windows w0(t) and w1(t) whilst wc(t)
indicates the count zone of data x(t).

In the detection zone, new data x(t) may be earmarked
as a potential outlier according to the difference in data
distributions between the two windows. Subsequently, ear-
marked potential outlier x f (t) ≡ x(t) is stored in a dictionary
F of potential outliers, i.e., x f (t) ∈ F. In the count zone,
the number of succeeding neighbours of the potential outlier
x f (t) ∈ F. In the outliers dictionary F is tallied. Succeeding
neighbour is defined as successive data of the potential
outlier x f (t) within the count zone wc(t), i.e., x(i) ∈ wc(t)
with values within x f (t) ± R. Once the potential outlier
x f (t) ∈ F enters the verification zone, a decision is made
to determine if the potential outlier x f (t) is indeed an
outlier, with an outlier defined as those having less than
τ succeeding neighbours.

Given a sliding window wi(t) at time t, with n observa-
tions, represented as

wi(t) =
{
x
(
t− (n−1)− i

)
, x

(
t− (n−2)− i

)
, . . . x

(
t− i

)}
, i = 0, 1

(4)

The sliding window wi(t) can be characterized using its
modified moving average mMAi(t), which can be calculated
by excluding data already confirmed as outliers in Youtlier,

mMAi(t) =

∑n−1
j=0

∣∣∣x(t − j − i) − b(t)
∣∣∣

n
,

x(t − j − i) ∋ Youtlier, i = 0, 1
(5)

where b(t) is the mean of the combined windows w0(t) and
w1(t) at time t,

b(t) =

∑n
j=0 x(t − j)

n
, x(t − j − i) ∋ Youtlier (6)

The difference D(t) in modified moving average values
between the two windows, w1(t) and w0(t) can then be easily
determined,

D(t) =
∣∣∣mMA1(t) − mMA0(t)

∣∣∣ (7)
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Figure 1. The main process flow of the proposed framework, with dashed lines separating different phases: orange in colour represents the re-
computation phase, green in colour represents the batch processing, and blue in colour represents the streaming phase

Figure 2. Three different zones of the proposed method consist of
the detection zone, count zone wc with a distance threshold R,
and verification zone. These three zones are bounded by the two
overlapping sliding windows w0 and w1, where w1 is ahead of the
other by 1-time step

D(t) exceeding a pre-determined threshold ρ, i.e., D(t) >
ρ, indicates that the point x(t) needs to be earmarked as a
potential outlier x f (t) ≡ x(t) and stored in a dictionary F of
potential outliers.

A modified density-based approach is then used to

confirm that the potential outlier x f (t) is indeed an outlier.
In the count zone wc(t), the potential outlier x f (t) ∈ F
is assigned horizontal rectilinear boundaries set-apart by a
length R ∈ R+, and these boundaries are used to determine
the number of succeeding neighbours τ f (t), with values
within ±R range of x f (t). The calculation of the number of
succeeding neighbours τ f (t) of potential outlier x f (t) ∈ F
is done whilst streaming, with τ f (t) on the arrival of data
x(i) ∈ wc(t) determined as,

τ f (t)← τ f (t) + f (x(i), x f (t),R), x(i) ∈ wc(t) (8)

where f (.) is a threshold function defined by

f (a, b, c) =
{

1 if |a − b| ≤ C
0 otherwise

(9)

In the verification zone, if the number of succeeding
neighbours τ f (t) of potential outlier x f (t) ∈ F is smaller
than threshold value τ, i.e., τ f (t) < τ, the potential outlier
x f (t) is confirmed as an outlier, i.e., (x f (t) ≡ x(t)) ∈ Youtlier,
and vice-versa.

Re-computation phase: In case an outlier has been
identified, the process requires re-computation of the differ-
ence of mMA values of the data streams. This is because
outliers need to be excluded in the calculation of mMA
as per equation (5), and the recent confirmation of an
outlier necessitates the recalculation of mMA of affected
data. Given (x f (t) ≡ x(t)) ∈ Youtlier has been confirmed
as an outlier in the streaming phase, the re-computation
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phase requires re-computation of D(t f + 1), where t f is
the time index of the recently verified outlier. Similar to
the streaming phase, D(t f + i) exceeding a pre-determined
threshold ρ, i.e., D(t f + i) > ρ, necessitates the point x(t f + i)
to be earmarked as a potential outlier, with the number of
succeeding neighbours τ f (t f + i) to be recalculated, before
the streaming phase can recommence. Figure 3 illustrates
the activation of the re-computation phase.

Figure 3. An illustration to show the sliding window w returns to
retrograde by t f + 1 to allow for the re-computation phase

An easy-to-understand depiction of this method is pre-
sented in Figure 4, showing snapshots at 4 distinct time
intervals, with τ = 3 and n = 5 set as an example.

B. Ground Truth Labelling
The process of AM involves intricate physical phenom-

ena that include heating, melting, and solidification. These
events can affect the dynamics of the process, making it
challenging to create a precise labelling procedure. Despite
advances in metal AM, there is a shortage of methods
for ground truth labelling [47], and there is currently no
standard for evaluating the quality of the LMD process for
labelling purposes [48].

Measuring the quality of a process can be a tedious
and expensive task, whether it is done manually by experts
[48], [49], [50] or through post-processing techniques like
Computed Tomography (CT) scans [51], [52], or visual
inspections [53], especially when done between build layers
[52]. Wu et al. [48] devised a meticulous quality evaluation
technique based on the three-sigma approach that classifies
quality into four tiers, separated by the frequency of spat-
ters. Subsequently, they have also established a correlation
between quality levels and the porosity of the finished parts.

This study employs the three-sigma approach, which
serves as ground truth and has been used by the study
as mentioned above to pinpoint peaks in order to assess
the efficacy of the proposed method. In the realm of
outlier detection, Recall, Precision, and F1-Score serve as
prevalent performance metrics for classification models.
Recall gauges the classifier’s ability to correctly identify
the proportion of true outliers in relation to the total number
of outliers. Precision measures the proportion of all outlier
predictions that are correct. F1-score combines both preci-
sion and recall ratios. The equations for Recall, Precision,

and F1-score are (10), (11), and (12), respectively.

Recall =
T P

T P + FN
(10)

Precision =
T P

T P + FP
(11)

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(12)

4. RESULTS AND DISCUSSIONS
Experiments were conducted on a MacBook M1 Pro

2021 with 16 GB RAM, using Python 3.9. The goal of
these experiments was to effectively identify and manage
the process signature that is characterized by high-frequency
spatters and process shift components. To gauge its perfor-
mance, real-world datasets of tilted structures with various
slopes ranging from 0° to 10° layers were utilized. The
performance of this method was compared with the DSPOT
algorithm. Furthermore, the algorithm was tested in the 5-
axis printing mode of the impeller blade structure.

A. Experimental Setups
Two different experimentations in 3-axis and 5-axis

modes were tested using real experimental data generated
from the DLMF DMX 01 (Hwacheon Machinery Co., Ltd,
South Korea) as depicted in Figure 5. Inconcel 718 alloy
powder manufactured by Sandvik with a size range of
53 − 150 µm was used for this experiment. A dual vision-
based sensing approach based on CMOS camera sensors
was integrated with the DLMF DMX 01, designed with
the purpose of acquiring in-situ monitoring of the melt
pool height. The details of this sensing technology are
built based on the US patent of US7423236B2 [54]. In
the 3-axis mode, different overhang structures with different
inclination angles from 0° to 10° were constructed. The
structures were first constructed with an incline angle of 0°
up to 10 mm in height, after which, a slope of different
inclination angles was constructed. The total height of
each structure is 30 mm. Overall, there are ten independent
overhang structures fabricated. Figure 6(a) and Figure 6(b)
show the CAD model and the results of the fabricated
overhang structures, respectively. In the 5-axis mode, the
impeller blade structure with ten blades and 180 layers,
was printed that requires no overhang support as illustrated
in Figure 6(c). The process parameters include a fixed z-
increment of 0.25 mm, a scanning speed of 850 mm/min,
a powder feed rate of 4.5 g/min, and a coaxial gas flow
rate of 6.8 l/min. Meanwhile, the laser power was adjusted
based on the closed-loop control strategy according to the
current melt-pool height. The filling deposition pattern is
zigzag with a tool spacing of 0.5 mm.

B. Effect of differencing threshold ρ and linear horizontal
boundaries R
Nine out of 27 parameter sets were investigated with the

purpose of demonstrating the effects of varying threshold ρ
and R values, as tabulated in Table I . Decreasing the ρ value
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(a) (b)

(c) (d)

Figure 4. The proposed method can be visualised by looking at four different time intervals, whilst utilizing sliding windows of length 5 and
τ = 3: (a) during the batch processing phase, MAD detects outliers in the initial batch Xinit; (b) during the streaming phase, a potential outlier
for a window is detected by the differencing method (e.g., x9 at t = 9). This occurs at the detection zone; (c) In the subsequent time steps of the
count zone, the density-based method tallies up the neighbours of the potential outlier x9, i.e., (τ9 = 3) ≥ τ. In the verification zone at t = 16,
the proposed method cannot confirm that the potential outlier is an outlier, but instead classifies it as concept drift; (d) In another scenario, the
proposed method confirms that another potential outlier x19 is indeed an outlier, with fewer neighbours than the threshold τ

(a) (b)

Figure 5. DLMF process (Hwacheon Machinery Co., Ltd): (a) DMX
01 Metal 3D printer, and (b) DMX 01 deposition head

increases recall value. This is because lowering the ρ value
increases the detection of potential outliers, thus the more
sensitive it gets in detecting the shift in the distributions
between the two sliding windows. However, an increase
in the number of detected potential outliers also increases
computation time in the subsequent verification step. Hence,
a compromise between the two metrics (recall and elapsed
time) is governed by the proposed framework’s forgetting
mechanism, which activates the algorithm to backtrack
to the detected outlier index f + 1 for a recomputation
excluding the recently detected outlier. Despite the lower
ρ value capable of detecting a high proportion of the true
outliers, precision is low as most of the detected outliers are
not actual outliers, i.e., high false positives. Since real-time
streaming applications require fast computation time, it is
necessary to find a balance between the computation time
and the overall performance (F1-Score).
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(a) (b)

(c)

Figure 6. Experimetal datasets: (a) The CAD model of the overhang
structure; (b) The physical artefacts of the overhang structures
printed in a 3-axis mode; (c) The physical artefact of the impeller
blade structure printed in a 5-axis mode

TABLE I. INFLUENCE OF THE DIFFERENCING THRESHOLD
ρ and R (τ = 3,w = 20) TO THE PERFORMANCE METRICS
AND COMPUTATION TIME. NOTE THAT THIS SENSITIVITY
ANALYSIS WAS TESTED ON THE 10° OVERHANG STRUC-
TURE DATASET (WORST CASE)

Variables Recall Precision F1-
Score

Average
Elapsed
Time (s)

ρ=3,R=50 0.878 0.412 0.561 6.559±2.324
ρ=3,R=75 0.837 0.541 0.657 4.284±1.652
ρ=3,R=100 0.798 0.658 0.721 2.973±1.206
ρ=5,R=50 0.872 0.592 0.705 4.042±1.535
ρ=5,R=75 0.831 0.658 0.734 3.114±1.250
ρ=5,R=100 0.792 0.728 0.759 2.392±0.992
ρ=7,R=50 0.829 0.809 0.819 2.291±1.015
ρ=7,R=75 0.795 0.839 0.816 1.918±0.880
ρ=7,R=100 0.765 0.860 0.810 1.678±0.774

C. Method comparison with overhang structure (3-axis
printing mode)
Our method was tested against DSPOT for detecting out-

liers in real-world overhang structure data, while accounting
for concept drift. During the calibration step of the DSPOT
algorithm, a large batch of samples (200 samples) was
required to obtain zq, which the inference relies strongly on
the excess over a threshold t (high empirical quantile, i.e.,
95%) values that follow a Generalized Pareto distribution
(GPD).

A comparison group comprising 27 sets of parameters

(ρ,R, τ) combinations of the proposed method with a fixed
size window of w = 20 alongside the DSPOT algorithm,
was analyzed based on their performance metrics, recall,
precision, and f1-score, as depicted in Figure 7, Figure 8,
and Figure 9, respectively. As mentioned previously, the
stability of the LMD process may degrade as the inclination
angle increases. This stability can be represented by the
spatters formation that results in high peaks of clad height
signals. Therefore, finding robust parameters suitable for
this volatile incoming streaming data is essential. Figure 7
shows that the DSPOT method is the most stable in terms
of recall in which the classifier detects most of the actual
outliers, however, suffers greatly in terms of precision,
where the numbers of the detected outliers are not actually
true, as shown in Figure 8. Especially, with the least
sensitive differencing threshold ρ = 7, the proposed method
performs exceptionally well against the benchmark method,
i.e., DSPOT, in detecting the point anomalies.

Figure 7. The performance metrics (Recall) between the proposed
method with different parameter combinations and DSPOT as a
comparison method, with a fixed window size of 20 and different
differencing threshold ρ

From the results in Figure 9, it is apparent that the
proposed method with the differencing threshold ρ = 5,
provides the most stable f1-score (less volatile), over the
range of tested inclination angles. What is striking about
the results in Figure 8 and Figure 9 is that this particular
set of parameters is better than the benchmark in terms
of precision and f1-score over the range of inclination
angles. Although the DSPOT method gives slightly higher
recall results than the proposed method with the particular
set of parameters in the case of 0° to 5° inclination
angles, the precision of the proposed method outperforms
the DSPOT method. Retrospective to the aim of outlier
detection defined in this study is to locate and eliminate
peaks in the streaming data that are regarded as noise from
spatters generation. As a result, precision takes precedence
over recall. It is vital to accurately remove this noise while
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Figure 8. The performance metrics (Precision) between the proposed
method with different parameter combinations and DSPOT as a
comparison method, with a fixed window size of 20 and different
differencing threshold ρ

Figure 9. The performance metrics (F1-score) between the proposed
method with different parameter combinations and DSPOT as a
comparison method, with a fixed window size of 20 and different
differencing threshold ρ

preserving the significant spatters that result in process
shifts in the streaming data as an indicator for subsequent
analysis, such as anomaly detection. Moreover, in the 0°
structure, the parameter of ρ = 5,R = 75 and, τ = 7 yields
the highest f1-score of 0.738, with a recall of 0.756 and a
precision of 0.731. In the 10° structure, the parameter of
ρ = 7,R = 100 and, τ = 7 yields the highest f1-score of
0.830, with a recall of 0.869 and a precision of 0.795.

Furthermore, the results obtained from averaging the
relevant metrics values of all inclination angles were sum-
marized in Figure 10, Figure 11, and Figure 12, respectively.

These figures rank the proposed method with different
parameter combinations and the DSPOT method in de-
scending order (top to bottom) in terms of performance.
From Figure 10, it can be seen that the DSPOT method sits
nearly at the bottom, exhibiting its higher recall in detecting
most of the actual outliers. At the same time, the proposed
method still performs better than the DSPOT with the set
of parameters of ρ = 3,R = 50 and, τ = 7, attaining the
highest recall value. In addition, Figure 11 and Figure 12
are quite revealing in several ways. First, it demonstrates
ostentatiously that, in terms of precision and f1-score, the
DSPOT method underperforms the proposed framework.
The highest average precision is from the proposed method
with a set of parameters of ρ = 7,R = 100 and, τ = 3.
Finally, a set of parameters of ρ = 7,R = 75 and, τ = 7
appears to be the most robust in terms of the overall balance
between recall and precision of different inclination angles,
including the worst-case scenario (10°), and henceforth, this
set of parameters was utilized.

Figure 10. Average recall values of all parameters, sorted in descend-
ing order (The highest value is at the bottom, and the lowest value
is at the top)

Figure 11. Average precision values of all parameters, sorted in
descending order (The highest value is at the bottom, and the lowest
value is at the top)

Figure 13 presents the two methods’ layerwise analysis
of the time-series clad height signals alongside the outcomes
of these figures are depicted in the form of a confusion
matrix, with Table II summarizing the performance scores
of our and benchmark methods. It can be seen the time-
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Figure 12. Average f1-score values of all parameters, sorted in
descending order (The highest value is at the bottom, and the lowest
value is at the top)

TABLE II. THE PERFORMANCE METRICS LAYERWISE COM-
PARISON RESULTS BETWEEN THE PROPOSED METHOD
(ρ = 7,R = 75, τ = 7,w = 20) AND THE DSPOT METHOD

Angle Method Recall Precision F1-
score

Elapsed
Time (s)

0° Proposed 0.574 0.938 0.712 0.798 ±
0.434

DSPOT 0.886 0.347 0.499 4.300 ±
4.065

10° Proposed 0.880 0.776 0.825 2.744 ±
1.191

DSPOT 0.793 0.334 0.470 2.806 ±
4.437

series data of a 10° inclination angle has many extreme
values (point anomalies) and is more prone to concept drift
compared to 0°. This difference in the occurrence of high
peaks shows that fabricating complex structures without
support intensifies the spatter formation.

The emergence of concept drift is more pronounced
at the layer with a 10° inclination angle, i.e., near the
start and end of the signal. The DSPOT method performs
poorly at the layer with a 10° inclination angle because,
during the calibration step, there are too many extreme
values; thus, it sets the zq to be too high. Due to this
miscalibration, the upper threshold was set way too high
and despite gradually diminishing, it persistently settled
above the remaining peaks, leading to missing out on many
true outliers, as shown in Figure 13(e). On the other hand,
if extreme values are less; zq is set too low, resulting in
lower upper and lower thresholds (orange dashed lines) as
shown in Figure 13(d). Due to this, the DSPOT method
misclassified many false positive outliers in the initial phase
of the layer build process. Figure 13(f) shows that the
DSPOT algorithm has trouble adapting to the concept drift
in the initial and end phases due to changes in mean
value. Thus, it detects the normal signals as false positive
outliers. On the other hand, the proposed method handles
this problem well. Even with concept drift, the proposed

method flags the point shift as a potential outlier, with the
verification zone confirming otherwise.

In addition, in cases where the benchmark technique
detects multiple peaks in the streaming data, it must perform
a recalculation of sigma and gamma using Grimshaw’s
trick to achieve a numerical root finding. As a result, the
optimization problem of DSPOT takes longer to complete
than our proposed forgetting mechanism. Table II show-
cases the elapsed time required for our method with a 0°
inclination angle using the proposed method takes 0.798
± 0.434 seconds only, while the DSPOT requires 4.300 ±
4.065 seconds. Despite the computation time for the DSPOT
algorithm being comparable with the proposed method for
the 10° inclination angle, the f1-score of the DSPOT is too
low at 0.470 as it failed to detect most of the true outliers, as
compared to 0.825 by the proposed method. Irrespective, the
elapsed time for our method is still low with low variance.

Furthermore, Table II displays that the f1-scores of
our method are better than the benchmark method at both
angles. At 0° inclination angle, our method gave recall,
precision, and F1-score values of 0.574, 0.938, and 0.712,
respectively, compared to the benchmark method, which
gave the values of 0.886, 0.347, and 0.499, respectively.
Although the recall value of the benchmark method is
higher than the proposed method at 0° inclination angle, the
precision value of the proposed method scores a near-perfect
1.0, with fewer false positive outliers, whereas the DSPOT
method scores 0.347 in terms of precision. Together these
results provide important insights into considering the right
balance between recall and precision; detecting the noise
(extreme values) is more critical during the data acquisition,
as it could conceal the actual performance of the deposition
process. Meanwhile, the meaningful spatters’ presence in
the signals is meant to be kept for further analysis, such
as characterizing defects based on the different types of
concept drifts in the LMD process. The signals of the 10°
inclination angle show the presence of gradual, incremental,
and recurrent concept drifts. Due to this, the performance
of the proposed method is decreased, although it remains
higher than the benchmark method.

D. Method comparison with impeller blade structure (5-
axis printing mode)
The proposed method with parameters ρ = 7,R = 75

and, τ = 7 obtained from analysis of the 3-axis mode
and the DSPOT method with parameters q = 0.001,Ninit =
200,w = 20, were tested on another real experimental data
of the 5-axis printing mode of the impeller blade dataset
for comparisons. The results of the experiment comprising
all stated metrics, including the average layerwise elapsed
time, are summarized in Table III.

The average scores for the entire blades were also
computed and compared between the two methods. Ten
different blades were segregated for the analysis, and the
performance of our method was averaged with recall, pre-
cision, and f1-score calculated at 0.964, 0.512, and 0.668,
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(a) (d)

(b) (e)

(c) (f)

Figure 13. The visualization of the time-series of clad height and its corresponding confusion matrix at three different layers of the 3-axis overhang
dataset by two different methods: (a-c) Differencing, (ρ = 7,R = 75, τ = 7,w = 20), show a rendering of raw signal (blue), point ground truth
(green), point flagged (orange), and point anomaly (red); (e-f) DSPOT, (q = 0.001,Ninit = 200,w = 20), show a rendering of raw signal (blue),
moving average (black), lower and upper bounds (orange), point ground truth (green), and point anomaly (red); at layer 2 (0°), layer 63 (10°), and
layer 69 (10°), respectively

respectively. The average layerwise computation times on
the 5-axis are relatively fast, as there are not as many
extreme values due to the absence of overhang deposition
requirement on the 5-axis printing mode, which is around
0.0976 ± 0.336 seconds. Another reason may be that the
printing deposition is lessened as the layer grows. Thus, it
eases the printing process for complex structures. However,
it is best to note that the 5-axis printing and 3-axis printing
are not entirely the same, as the layer thickness varies in
the 5-axis mode, which may result in different time-series
characteristics of the clad height signals, as depicted in
Figure 14. In sum, an interesting finding that stands out
from the results reported earlier from the 3-axis overhang
dataset was our method transcends the benchmark method
in all scores approximately by 6%, 134.7%, 116%, and
153% difference, in terms of recall, precision, f1-score, and
the average layerwise computation time, respectively.

These unanticipated results can be further explicated
based on the layerwise visualization between our and
benchmark methods for detecting the point anomalies, as
illustrated in Figure 14. For blade #0 (layer 1), the DSPOT

method is found to have difficulty in adapting to the cycli-
cality type of time series—slowly adjusting the lower and
upper bounds—resulting in detecting more false positive
outliers as compared to our method, from 80 to 26, re-
spectively. This description can be analyzed in Figure 14(a)
and Figure 14(d). At the same time, detecting these false
positive outliers also results in higher computation time in
the DSPOT due to Grimshaw’s trick calibration. A closer
inspection of Figure 14(e) shows that the DSPOT method is
not stable when the variance of the signals is high leading
to higher false positives, thus lower precision. Finally, the
most interesting aspect of this 5-axis result is shown in
Figure 14(f) which shows that the DSPOT method fails to
adapt to slow decreasing trend type of drift. One of the
apparent limitations of the proposed method is that it may
struggle when the signal has a high variance, as shown in
Figure 14(b). Thus, the proposed method misclassified these
small peaks as spatter noise. Despite this shortcoming, the
proposed method still outperforms the benchmark method,
DSPOT.

In a broader context of AM quality control and process
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TABLE III. THE PERFORMANCE METRICS OF THE OVERALL LAYERS OF EACH IMPELLER BLADE RESULTS BETWEEN THE
PROPOSED METHOD (ρ = 7,R = 75, τ = 7,w = 20) AND THE DSPOT METHOD

Blade #ID Method Recall Precision F1-score Average Elapsed Time (s)

0 Proposed 0.96394 0.49922 0.65778 0.09376 ± 0.29378
DSPOT 0.90144 0.10563 0.18911 0.78041 ± 1.20691

36 Proposed 0.96695 0.50528 0.65437 0.09627 ± 0.37592
DSPOT 0.89902 0.10028 0.18043 0.71426 ± 0.95754

72 Proposed 0.96453 0.49515 0.65778 0.09888 ± 0.35032
DSPOT 0.89184 0.11230 0.19948 0.77470 ± 1.13434

108 Proposed 0.95845 0.50662 0.66286 0.09922 ± 0.34288
DSPOT 0.88161 0.11243 0.19943 0.75873 ± 1.03328

144 Proposed 0.95970 0.50471 0.66152 0.09002 ± 0.29851
DSPOT 0.91438 0.11288 0.19943 0.75466 ± 1.2959

180 Proposed 0.96901 0.51784 0.67498 0.09441 ± 0.28228
DSPOT 0.89583 0.10253 0.18400 0.77104 ± 1.39730

216 Proposed 0.97705 0.63986 0.77330 0.10441 ± 0.43713
DSPOT 0.94184 0.21801 0.35406 0.71570 ± 1.08659

252 Proposed 0.96376 0.47839 0.63940 0.09754 ± 0.33639
DSPOT 0.89772 0.10940 0.19504 0.70409 ± 1.14212

288 Proposed 0.95380 0.48340 0.64162 0.10213 ± 0.31208
DSPOT 0.89883 0.12495 0.21940 0.75548 ± 1.17494

324 Proposed 0.96679 0.48660 0.64737 0.09898 ± 0.32944
DSPOT 0.91040 0.09491 0.17190 0.74331 ± 1.08522

Average Proposed 0.96440 0.51171 0.66769 0.09756 ± 0.33587
DSPOT 0.90329 0.11933 0.20938 0.74724 ± 1.15141

optimization, it is crucial to differentiate between point
anomalies, which are merely spatter as noise, and concept
drift, which is prolonged spatter leading to an unstable
process, during data acquisition in laser metal-based AM.
This distinction is critical for an accurate quality control
assessment. For instance, spatters can create transient spikes
in data acquisition signals when evaluating layer deposition
performance, whether layer-wise or voxel-wise [55]. These
spikes can be mistakenly categorized as anomalies but
are actually noise resulting from the natural process of
laser-based metal AM. Such a false positive evaluation on
localized regions can be misinterpreted as anomalies by
the AM controller; failure to address these issues would
lead to a false decision on the region and ultimately cause
the inception of defects, which can propagate as the layers
grow in the z-direction. This false decision poses a severe
threat to the integrity of the fabricated component. For
example, in order to enhance the geometric precision of
each layer, deviations from the standard are categorized
as under-deposition, normal, or over-deposition and color-
coded accordingly. If the melt pool height signals, contam-
inated by spatter-induced noise, indicate multiple instances
of over- and under-deposition in certain areas, feeding this
data into the Convolutional Neural Network (CNN) model
could result in misclassification of layer performance as
abnormal. Therefore, the proposed method is essential for a
reliable data acquisition process and, thus, efficient quality
control in laser metal-based AM; otherwise, the defective
fabricated component has to be scrapped, leading to wastage
in materials and an increase in production lead time.

Many methods for removing spatter involve analyzing
2D images of the melt pool geometry through image pro-
cessing. However, this research emphasizes the use of one-
dimensional time series data and an efficient proposed algo-
rithm, which is more efficient in terms of computing power
and can be applied in real-time scenarios. The practical
implementation of the method necessitates the integration
of CMOS camera sensors with a compatible processor and
software suite for real-time data analysis [56]. A prime ex-
ample of an effective setup involves leveraging the Beckhoff
TwinCAT3 system alongside Beckhoff TwinCAT Analytics,
powered by the C69xx series Industrial PCs, in tandem
with a Beckhoff Control Panel. This configuration presents
a robust control platform for AM applications, especially
when combined with TwinCAT software on a Windows
10 environment, utilizing an Intel® Core™ processor. The
Beckhoff TwinCAT3 system is designed to facilitate real-
time visualization of the manufacturing process, enhancing
human-machine interaction through web-based processing.
This enables comprehensive analysis, visualization, diagno-
sis, and documentation of both external and internal process
variables. Meanwhile, Beckhoff TwinCAT Analytics serves
as a potent tool for the synchronization of process data in
real-time streams, proving essential for straightforward and
insightful process analysis. The capability to extend the
software framework with C/C++ and MATLAB, through
integration with Mathworks toolboxes for machine learn-
ing and optimization, significantly amplifies the analytical
capabilities of the setup. The suite encompasses a diverse
range of algorithms aimed at analyzing both live and
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(a) (d)

(b) (e)

(c) (f)

Figure 14. The visualization of the time-series of clad height at three different layers of the 5-axis impeller blade dataset by two different methods:
(a-c) Differencing, (ρ = 7,R = 75, τ = 7,w = 20), show a rendering of raw signal (blue), point ground truth (green), point flagged (orange), and
point anomaly (red); (d-f) DSPOT, (q = 0.001,Ninit = 200,w = 20), show a rendering of raw signal (blue), moving average (black), lower and
upper bounds (orange), point ground truth (green), and point anomaly (red); of blade #0 (layer 1), blade #180 (layer 2), and blade #324 (layer 94),
respectively

historical data across single or multiple distributed systems,
specifically designed for in-depth data analysis. This con-
figuration has been successfully applied in the context of
fused filament fabrication technologies, incorporating com-
puter vision-based quality control mechanisms to enhance
the manufacturing of AM components [57]. Consequently,
adopting this proven configuration for the deployment of
the proposed method appears both practical and feasible.

5. Conclusions and FutureWork
During the LMD process, spatter can pose a significant

challenge and negatively impact process stability. High-
frequency spatters can cause signal peaks that obscure the
true performance of the deposition process. A novel ap-
proach that integrates differencing and density-based meth-
ods was developed to combat this issue and simultaneously
reduce noise from univariate time series data. This involves
comparing two modified Moving Averages to identify po-
tential outliers, which are then confirmed using a density-
based method that considers neighbouring data points. To
test the effectiveness of this approach, the study employed
actual datasets of 3-axis overhanging structures with various

inclination angles and 5-axis impeller blade structures. The
DSPOT method was used as a benchmark, and the three-
sigma approach coupled with the moving average was
used to label peaks in the signal as the ground truth. The
proposed method was then evaluated against twenty-seven
different parameters to determine the optimal option, which
proved to perform exceptionally well in various scenarios.
The results revealed that our method outperformed the
benchmark in all metrics, including recall, precision, f1-
score and computational time. However, finding optimal pa-
rameters for different scenarios that involve high-frequency
spatter at a 10° inclination angle remains a challenge. It
was found that the proposed method with a high ρ yields
higher precision when tested on the inclination angles below
5° but at the cost of a low recall, i.e., many missed out
outliers. Nonetheless, the lower ρ would result in a slight
increase in recall but at the cost of higher computation time
because it flags up many potential outliers, i.e., increased
sensitivity. Another challenge is handling the combination
of recurrent and incremental drifts, i.e., a cyclic of a slow
and gradual drift, often appearing at the 10° structure and
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impeller blade structure, i.e., complex structures. Hence, the
decline in the proposed model performance, including the
DSPOT method.

It is worth considering that the proposed method has a
limitation in that the parameters (ρ,R, τ) require fine-tuning
to achieve optimal results. In the current study, only the
3-axis mode was fine-tuned, and the resulting optimal pa-
rameters were applied to the 5-axis impeller blade scenario.
However, this may not necessarily be the most effective
approach, i.e., suboptimal. To ensure the robustness of
the proposed method, future work should explore different
structures and conduct independent fine-tuning for each sce-
nario. Moving forward, it is imperative that we thoroughly
analyze and provide in-depth comparison evaluations that
may affect the robustness of our method when utilizing a
variety of static and adaptive window sizes with complex
build structures. The generalization of static window size
is found to be not robust enough for different scenarios,
given the different types of concept drift that may exist,
such as gradual, incremental, and recurring drifts, or even
a high variance in the signal. Additionally, exploring and
implementing an improvement for the forgetting mechanism
could significantly increase computational speed through
parallel computation.
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