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Abstract: This study leverages the Semantic Segmentation of Underwater Imagery (SUIM) dataset, encompassing over 1,500 

meticulously annotated images that delineate eight distinct object categories. These categories encompass a diverse array of items, 

ranging from vertebrate fish and invertebrate reefs to aquatic vegetation, wreckage, human divers, robots, and the seafloor. The use of 

this dataset involves a methodical synthesis of data through extensive oceanic expeditions and collaborative experiments, featuring 

both human participants and robots. The research extends its scope to evaluating cutting-edge semantic segmentation techniques, 

employing established metrics to gauge their performance comprehensively. Additionally, we introduce a fully convolutional encoder-

decoder model designed with a dual purpose: to deliver competitive performance and computational efficiency. Notably, this model 

boasts a remarkable accuracy of 88%, underscoring its proficiency in underwater image segmentation. This study elucidates the model’s 

practical benefits across diverse applications such as visual serving, saliency prediction, and intricate scene comprehension. Crucially, 

the utilization of the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) raises image quality, enriching the 

foundation upon which our model’s success rests. This research establishes a solid groundwork for future exploration in underwater 

robot vision by presenting the model and the benchmark dataset. 

 

Keywords: Deep Learning, Convolutional Neural Network (CNN), Underwater Object Detection, Underwater Imaging, Image 

Enhancement 

 

1. INTRODUCTION  

Object detection and image segmentation are essential 
techniques in studying marine life, enabling researchers to 
gain insights into underwater ecosystems [1]. However, 
underwater images often suffer from degradation due to 
light attenuation in water, making the extraction of 
meaningful information through segmentation a 
challenging task. 

In recent years, Underwater Object Detection (UOD) 
has emerged as a prominent area in computer vision and 
image processing. UOD focuses on identifying visually 
distinct and semantically meaningful objects in underwater 
images, separating them from the background. This allows 
for a better understanding of marine organisms and their 
interactions within their environment. 

Saliency detection, a key component of UOD, has been 
extensively studied across various disciplines, including 
computer vision, neuroscience, robotics, and graphics. It 

involves identifying the most visually striking regions in an 
image by analyzing features such as contrast, color, spatial 
information, and texture [2]. This enables the detection of 
salient objects and helps researchers isolate them from the 
background. 

However, the segmentation of underwater images 
presents unique challenges due to the degradation of image 
quality caused by light attenuation [3]. Overcoming these 
challenges is crucial for obtaining accurate and meaningful 
segmentation results, leading to a better understanding of 
marine life and the underwater environment. 

Semantic segmentation and scene parsing for visually-
guided underwater robots face notable challenges that 
distinguish them from their terrestrial counterparts. These 
challenges can be attributed to two fundamental practical 
constraints. Firstly, underwater imagery exhibits unique 
visual characteristics, including object categories specific 
to this domain, distinct background patterns, and optical 
distortion artifacts. Consequently, state-of-the-art models 
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trained on terrestrial data cannot be readily applied to the 
complexity of underwater scenes [4]. Secondly, the 
absence of comprehensive underwater datasets presents a 
significant obstacle to large-scale training and 
benchmarking of general-purpose semantic segmentation 
models. Current datasets often cater to particular use cases, 
like the classification of coral reefs [5, 6]. or fish detection 
[7, 8]. They often lack the diversity and coverage necessary 
for broader research endeavors. Additionally, conventional 
class-agnostic approaches are constrained to relatively 
simpler tasks like foreground segmentation or obstacle 
detection, falling short when it comes to multi-object 
semantic segmentation. 

To overcome these limitations, our approach leverages 
the SUIM dataset, purposefully created to serve as a 
substantial and annotated resource for semantic 
segmentation in general-purpose underwater robotics 
applications [9, 11]. This dataset boasts an extensive array 
of object categories that hold particular significance in the 
realm of underwater exploration and surveying, including 
fish, reefs, aquatic plants, and wrecks/ru .ins. Moreover, it 
provides crucial pixel-level annotations for various 
elements within the images, encompassing hu .m.an divers, 
robots/instruments, and seafloor/rocks, which essential for 
supporting human-rob.ot collaboration applications [12, 
13]. The SUIM dataset encompasses a total of 1,525 natural 
underwater images, each meticulously paired with 
corresponding ground truth semantic labels. This 
meticulous curation ensures the availability of precise 
training data for our model. Furthermore, to rigorously 
evaluate the model's ability to generalize, the dataset 
incorporates a distinct test set comprising 110 images that 
have not been used during the model training process. By 
leveraging the richness and comprehensiveness of the 
SUIM dataset, our study aims to significantly enhance the 
accuracy and robustness of the semantic segmentation 
model for underwater imagery, making noteworthy 
contributions to advancements in the field of underwater 
robotics and exploration 

In this research paper, we delve into the field of 

Underwater Object Detection, exploring novel 

methodologies and techniques for accurately identifying 

and extracting objects from underwater images. We aim to 

contribute to the advancement of marine research by 

developing robust algorithms that address the specific 

challenges posed by underwater imagery. By leveraging 

recent advancements in computer vision and image 

processing, we strive to improve the accuracy and 

efficiency of UOD systems, enabling researchers to study 

marine organisms with greater precision. Through our 

research, we hope to deepen our understanding of marine 

ecosystems and contribute to the conservation and 

management of our underwater world. 

2. OBJECT DETECTION IN COMPUTER VISION 

Object detection is a complex task within 

computer vision, presenting challenges similar to other 

assignments in this field. Training for detection and 

classification occurs concurrently in various image 

locations. Convolutional models distribute work across 

these locations, sharing computation loads. However, 

unlike localization tasks, object detection requires 

accounting for a background class when no object is 

present. Both classifying and locating image regions 

contribute to the challenge of identifying objects. 

Successful object detection involves understanding how to 

segment images and determine object locations. 

Recognizing an object's location aids in understanding its 

shape while understanding an object's shape assists in 

pinpointing its location. [14] For instance, features that 

appear distinct, such as a person's face and attire, might 

constitute parts of the same object. Nonetheless, 

comprehending the object's identity remains difficult 

without first recognizing the object itself. 

A. Underwater Object Detection Based on Object 

Characteristics 
Historically, underwater object detection relied on 

conventional techniques, employing algorithms that 
emphasized the recognition of contours, shapes, colors, or 
a combination of these features to identify objects in 
images and subsequently classify them. 

In a specific study [15], an innovative approach was 
introduced for underwater object detection. This method 
initiates by determining the presence of an object in an 
image through color segmentation. This technique is 
particularly effective in environments where fish imagery 
is captured within a controlled setting, featuring a known 
blue background and uniform lighting conditions. In this 
context, the term "object" primarily refers to fish. The 
procedure consists of subtracting the blue channel from the 
red channel, taking advantage of the observation that pixels 
representing fish objects usually display higher red and 
lower blue channel values. This operation results in the 
creation of a mask where object pixels are assigned a value 
of one, while background pixels receive a value of zero. 

Once the presence of an object is confirmed, the 
approach proceeds to extract its contour using the 
information derived from the mask. The resulting contour 
is subsequently simplified through data reduction, often 
reducing it to a manageable number of points, such as 40. 
This simplification enables further analysis, where 
parameters like the normalized length and turn angles 
between these points are examined to determine if the 
object corresponds to a fish. If it is indeed identified as a 
fish, the tracking process is initiated, and the species of the 
fish is determined. Species identification is accomplished 
by assessing specific landmark points on the fish and 
applying a technique known as Turn Angle Distribution 
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Analysis (TADA). This approach achieved a notable 
accuracy of 73.3% when tested on a dataset comprising 300 
fish images representing six different species.  

Although This technique was advanced for its time and 
yielded promising outcomes due to the controlled 
environment with optimal lighting conditions, it possesses 
limitations. It is constrained by its reliance on a specialized 
setup and its inability to handle scenarios where fish are 
partially occluded, bent, or subjected to shadows, which 
often leads to erroneous object detection in real-world 
settings. 

B. Underwater Object Detection Based on Deep 

Learning 
Deep learning has revolutionized object detection, 

making it more applicable to real-life scenarios. The 
approach proposed in [14] was limited by its specific setup 
and lacked real-world suitability. Deep learning has 
overcome these limitations by autonomously learning from 
labeled datasets, enabling object identification in diverse 
positions and enhancing real-life usability.  

In [15], a deep learning approach was implemented for 

fish detection and classification, specifically tailored for 

underwater imagery. This approach involved a series of 

steps, commencing with foreground extraction to enhance 

object detection. Subsequently, the improved images were 

input into a Convolutional Neural Network (CNN) with 

two convolutional layers employing distinct kernel sizes. 

The output from these layers underwent feature pooling 

and spatial pyramid pooling, facilitating object recognition 

across different poses. Final classification was achieved 

through a classifier layer utilizing Support Vector 

Machines (SVM). The Fish for Knowledge (F4K) dataset, 

containing 22,370 images representing 23 fish species, was 

employed. Remarkably, despite using a relatively less 

complex network, this method achieved an impressive 

accuracy of 98.57%. 

Nevertheless, certain limitations were observed. 

Foreground extraction faced real-world constraints, 

particularly due to the presence of non-fish objects. 

Additionally, the dataset contained images with varying 

resolutions, standardized to 47 * 47 pixels. Achieving 

higher resolutions would necessitate a deeper network, 

impacting processing time. Furthermore, the dataset 

exhibited an uneven distribution of species, with some 

having significantly fewer images.  

As for [16], another approach was pursued, involving a 

deep learning object detection algorithm known as Fast R-

CNN. The dataset was compiled from the F4K video 

repository, featuring 12 fish species and offering a more 

balanced image distribution compared to [15]. Training 

involved the use of Stochastic Gradient Descent (SGD). 

The processing times per image for these algorithms were 

24.945, 0.311, and 0.273 seconds, respectively, while their 

mean Average Precision (mAP) values were 81.2%, 

81.4%, and 78.9%. It's essential to highlight that this 

approach had limitations due to the dataset's focus on well-

lit and well-posed fish images, which lacked tailored digital 

image processing for underwater conditions. As a result, 

the approach's performance may not be as robust when 

applied to real-world underwater imagery. 

3. RELATED WORK 

Underwater recognition and detection tasks have a well-

established history of employing machine learning 

algorithms. Traditional methods in this field heavily relied 

on manually designed features for the detection of 

underwater objects, which included characteristics like 

shape, color, and texture. As an example, in [10], the 

authors harnessed a combination of texture and color 

features, complemented by Support Vector Machines 

(SVMs), to identify various scales of underwater corals. 

Kim et al. [11] introduced a technique centered on multi-

template object selection and color-based image 

segmentation, while Chuang et al. [12] utilized texture 

features extracted through the phase Fourier transform for 

fish detection. Some algorithms went even further by 

incorporating more advanced features, including the Scale-

Invariant Feature Transform (SIFT) [13] and the Histogram 

of Oriented Gradients (HOG) [17]. These techniques were 

considered the state-of-the-art methods in the field of 

underwater object detection for a substantial. 

However, the applicability of these hand-crafted features 

had limitations. First, their task-specific nature hindered 

their capacity for generalization; features tailored for 

scenes with weak illumination might not suit well-

illuminated underwater environments or scenarios 

involving substantial changes in the objects to be detected. 

Second, the disjointed nature of feature extraction and 

classification often led to suboptimal performance, as 

demonstrated by Villon et al. [17], who used HOG features 

with SVM for fish classification, lagging behind end-to-

end deep learning frameworks. Additionally, proposing 

and validating effective hand-crafted features would 

demand significant expertise. 

On the other hand, supervised deep learning algorithms 

have the ability to independently extract features from large 

datasets. Deep learning, a specialized subset of machine 

learning, employs layered structures inspired by biological 

neural networks to analyze data. It requires substantial 

training data from which it extracts useful and 

discriminative features with minimal human intervention 

[18]. Unlike traditional machine learning models that are 

task-specific and often require human adjustments, deep 

learning architectures effectively learn features from input 

data. Deep learning networks have showcased remarkable 

performance in a wide range of computer vision tasks, 

encompassing image classification, image segmentation, 

object detection, and object tracking. In underwater object 

detection, deep learning has been widely deployed. Choi 
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[19] used convolutional neural networks (CNNs) for fish 

species classification, while Villon et al. [17] employed a 

deep learning model for detecting coral reef fishes. [20] 

utilized the Fast-RCNN framework for fish species 

detection, later adopting Faster-RCNN [21] to enhance the 

speed of fish detection. Real-time detection requirements 

were met by Yang et al. [21] using the YOLOv3 framework 

[23] for underwater object detection. Despite the 

advantages of deep learning-based detection models over 

traditional machine learning models, challenges persist. 

Deep learning models may struggle with noisy data and 

class imbalance, leading to difficulties in effectively 

detecting small objects, which result in high numbers of 

false positives and false negatives. Therefore, further 

efforts are necessary to address these challenging issues in 

deep learning-based underwater object detection. 

4. SEMANTIC SEGMENTATION 

Semantic segmentation for underwater object detection 
is a challenging computer vision task that involves the 
accurate classification and delineation of various objects 
and regions within underwater imagery [25]. It plays a 
critical role in understanding the complex underwater 
environment and has significant applications in marine 
research, environmental monitoring, underwater robotics, 
and ocean exploration [26, 27]. 

In the context of underwater object detection, the goal 
of semantic segmentation is to partition an input 
underwater image into distinct semantic regions, where 
each pixel is assigned a specific object category label. 
Unlike object detection, which focuses on recognizing and 
localizing individual objects within an image, semantic 
segmentation provides a more fine-grained understanding 
of the scene by assigning meaningful labels to every pixel 
[10], thereby facilitating a pixel-wise analysis of the 
underwater environment [28]. To achieve semantic 
segmentation for underwater object detection, deep 
learning-based approaches have emerged as state-of-the-art 
techniques. Convolutional Neural Networks (CNNs) serve 
as the foundation for these methodologies due to their 
ability to automatically learn hierarchical features from 
images. Fully Convolutional Networks (FCNs) are a 
popular choice for this task, as they are designed 
specifically for dense pixel-wise predictions and allow end-
to-end learning. 

The process of semantic segmentation begins with the 
acquisition of a sufficiently large and diverse dataset of 
underwater images, each manually annotated with pixel-
level ground-truth labels corresponding to the different 
object categories present, such as corals, fish, rocks, sand, 
and other marine organisms or structures. 

During training, the deep learning model is fed with the 
annotated data to learn to identify relevant features that 
characterize each object category. The model is optimized 

to minimize the pixel-wise classification loss, ensuring 
accurate predictions for each pixel’s semantic label. 

In the inference phase, the trained model is applied to 
new, unseen underwater images. The model processes the 
input image and outputs a pixel-wise probability map, 
where each pixel is associated with the likelihood of 
belonging to a specific object category [29]. A thresholding 
step is often applied to obtain the final segmentation mask, 
where each pixel is assigned the label of the most probable 
object category. 

However, the complex nature of underwater imagery 
poses several challenges for semantic segmentation. 
Underwater images are prone to degradation due to 
absorption, scattering, and color attenuation, leading to 
reduced visibility and image quality. Moreover, the 
presence of unique underwater artifacts, such as 
backscatter and noise, can hinder accurate object detection. 

5. THE SUIM DATASET 

The SUIM dataset is a rich and all-encompassing 
collection, spanning a spectrum of object categories crucial 
for the semantic analysis of underwater imagery. These 
categories, including background waterbody (B.W), human 
divers (H.D), aqu  atic pla  nts/flo.ra (P.F), wreck.s/rui.ns (W.R), 
rob.ots and instruments (R.O), re  efs and other inverteb.rates 
(R.I), fish and other vertebrates (F.V), and seafloor and 
r.ocks (S.R) [30], are visually represented using a 3-bit 
binary RGB color coding scheme, thoughtfully outlined in 
Table 1. 

TABLE I. OBJECT CATEGORIES AND ASSOCIATED COLOR 

CODES IN THE SUIM DATASET. 

For the purpose of training and validation, the SUIM 
dataset comprises a total of 1,525 RGB images. 
Furthermore, an additional set of 110 test images is 
generously provided to facilitate the benchmark evaluation 
of semantic segmentation models. These images span a 
diverse range of spatial resolutions, including dimensions 
such as 1906 × 1080, 1280 × 720, 640 × 480, and 256 × 
256. The selection of these images was conducted 
meticulously, drawing from a vast collection gathered 
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during oceanic explorations and collaborative experiments 
involving both humans and robots in a myriad of 
underwater environments. 

Moreover, to introduce a wide range of natural 
underwater scenes and experimental configurations that are 
suitable for human-robot cooperation, we judiciously 
incorporated a smaller subset of images sourced from 
established Extensive datasets, particularly EUVP [4], 
USR 248 [31], and UFO 120 [32], were drawn upon. These 
datasets contributed to the variety of object categories, their 
associations, and the subtleties in RGB channel intensity 
values within the SUIM dataset. are vividly illustrated in 
the captivating visual representation featured in Figure 1. 

Figure 1.  Statistics of Object Categories in SUIM Dataset. 

the SUIM dataset stands as a testament to the 
meticulous work of seven human annotators who dedicated 
themselves to the intricate task of pixel-level annotations. 
Figure 2, showcasing these annotations alongside sample 
images, unequivocally showcases the dataset's exceptional 
quality and precision. 

The paramount objective of this annotation endeavor 
was to establish consistent object classification throughout 
the dataset, particularly when faced with potentially 
confounding distinctions like those between plants/reefs 
and vertebrates/invertebrates. This stringent approach 
serves as a guarantee of the dataset's unwavering reliability 
and its broad applicability in the realms of computer vision 
and image analysis. 

 In the pursuit of this precision, we diligently adhered 
to the guidelines delineated in references [33] and [34]. 
These invaluable guidelines played a pivotal role in 
ensuring the accuracy and dependability of object labeling 
within the dataset, further reinforcing its scholarly and 
practical value. 

 

 

 

 

 

Figure 2.  Sample Images and Corresponding Pixel Annotations in the 

SUIM Dataset. 

6. PRE PROCESSING 

Images captured in varying or uneven lighting 
conditions may suffer from color attenuation, scattering 
effects, and low contrast, leading to a loss of information 
content. Schettini and Corchs [34] provided an overview of 
previous research on underwater image enhancement to 
address this issue and preserve lost information. Among the 
various degradation aspects, contrast loss significantly 
impacts classification performance. To ensure consistent 
image quality and to enhance contrast, we have 
incorporated various pre-processing sub-steps as follows: 

A. Image Super-Resolution using ESRGAN 

 Image super-resolution is a crucial preprocessing step 

in underwater imaging, aimed at enhancing the resolution 

and quality of low-resolution images [35]. Underwater 

photography often faces challenges that result in low-

quality and low-resolution images [36]. Enter ESRGAN, 

short for Enhanced Super-Resolution Generative 

Adversarial Networks, a cutting-edge deep learning 

technique tailored for image super-resolution. It operates 

on the foundation of a GAN, or Generative Adversarial 

Network, which comprises a generator network responsible 

for creating high-resolution images and a discriminator 

network tasked with distinguishing between generated 

images and ground truth high-resolution images [37]. 

Leveraging ESRGAN for underwater image super-

resolution begins with the collection of a substantial dataset 

featuring high-quality underwater images, which serves as 

the basis for model training. The ESRGAN model, when 

trained on this dataset, learns the intricate mapping from 

low-resolution to high-resolution underwater images. 

Importantly, it takes into account the unique characteristics 

of underwater images, including challenges like light 

scattering and absorption-induced blur. By doing so, it 

produces visually pleasing and informative high-resolution 

images that are well-suited for underwater applications 

[38]. Once trained, the ESRGAN model can be applied to 

elevate the resolution of new underwater images, imparting 

significant benefits to a variety of underwater applications, 

particularly those reliant on object detection and 
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classification. For a visual representation of the ESRGAN 

architecture, please refer to Figure 3. 

7. PROPOSED METHODOLOGY 

A. Network Architecture  

Our primary focus lies in elevating the performance of 
our model, which leverages a neural network with twelve 
encoding layers obtained from pre-training. A visual 
representation of the architecture details can be found in 
Figure 4. The central goal of our research centers around 
attaining enhanced outcomes through this model. 

The strategy we have delineated is illustrated in Figure 
5 and has been formulated based on a thorough exploration 
of the pertinent literature as well as an exhaustive study of 
existing techniques and models. This comprehensive 
literature review encompassed a comparative analysis of 
diverse models concerning image contrast enhancement, 
image segmentation, and salient object detection. 

The proposed methodology comprises a series of carefully 
considered steps to achieve our research objectives:         

 

1. Initial Preprocessing for Underwater Image 
Super-Resolution: The first phase of our methodology 
focuses on enhancing the resolution of underwater images, 
which often suffer from low quality and resolution. In this 
regard, we explored several super-resolution models, 
conducting a thorough evaluation to identify the most 
suitable approach for our specific needs. Our extensive 
evaluation led us to select the Enhanced Super-Resolution 
Generative Adversarial Network (ESRGAN) [39] as the 
optimal solution for our super-resolution process. 

2. Model Implementation with Convolutional 
Encoder-Decoder Architecture: In the next step, we 
proceeded with the implementation of our model. Our 
model architecture is based on a fully convolutional 
encoder-decoder design, featuring skip connections 
between mirrored composite layers. This architecture is 
integral to our approach as it plays a crucial role in the 
extraction and reconstruction of high-resolution 
information from low-resolution input. 

480 X 448 

LR 

SR 

1920 X 1792  

Figure 3.  Architecture of Enhanced Super-Resolution Generative Adversarial Networks (ERSGAN) [32]. 

Figure 4.    Architecture of the Proposed End-to-End Model for Semantic Segmentation in Underwater Images. The model utilizes the initial four 

blocks of a pre-trained VGG 16 model for encoding, and subsequently employs three mirrored decoder blocks along with a deconvolution layer 

for decoding and generating the semantic segmentation map. 
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3. Comparative Assessment of Proposed Solution: 
To validate the efficacy of our proposed methodology, we 
conducted a comparative evaluation against existing 
models that address similar challenges. This step allows us 
to quantitatively measure the performance and 
effectiveness of our approach to other solutions available 
in the field. 

It is essential to highlight that the effectiveness of our 
proposed technique is grounded in a thoughtful 
combination of architectural design choices, preprocessing 
stages, and the specific components of our model. These 
elements are meticulously integrated to ensure that our 
model excels in terms of performance and outcomes, 
aligning with the central objective of our research. By 
carefully considering these aspects, we aim to contribute a 
robust and efficient solution for underwater image 
enhancement and related applications. 

Figure 5. Block Diagram for Underwater Image Object 

Detection  

in terms of performance and outcomes, which aligns with 
the central objective of our research. 

B. Training Pipeline and Implementation Details 

In this study, our focus is on establishing a mapping 
from the input domain X, which consists of natural 
underwater images, to their corresponding semantic labels 
Y within the RGB space. To achieve this mapping, we 
employ an end-to-end training approach, wherein the 
neural network is trained to minimize the cross-entropy 
loss [34]. This loss function is utilized to compare the 
predicted pixel labels with the ground truth pixel labels, 
enabling the network to effectively perform semantic 
segmentation. The goal is to generate precise and 
semantically meaningful pixel-wise predictions in the RGB 
space for the underwater images. 

The training pipeline is implemented using 

TensorFlow libraries [40] on a Windows host equipped 

with an NVidia GTX 1080 graphics card. For optimization, 

we utilize the Adam optimizer [41] with a learning rate of 

10-4 and a momentum of 0.5. These settings enable 

iterative learning to improve the network’s performance 

over time. To enhance the training process and improve 

generalization, we apply various image transformations as 

part of data augmentation during training. These 

transformations help to introduce diversity and variability 

in the training data, contributing to better model robustness 

and performance. 

By formulating the problem as a supervised learning 

task and utilizing the aforementioned training pipeline and 

implementation details, we aim to train a model that 

effectively maps natural underwater images to their 

corresponding pixel-level semantic labels in the RGB 

space. To prevent overfitting, a set of parameters was 

employed. Simple image augmentation techniques were 

applied to the dataset, as shown in Table II. 

The learning rate, which influences how the optimizer 

adapts during training, was set to a dynamic value. A large 

learning rate can lead to rapid changes in weight values, 

potentially resulting in convergence to a suboptimal 

solution. Conversely, a low learning rate may cause slow 

convergence. Therefore, a dynamic learning rate was 

utilized to ensure a stable gradient and prevent model 

divergence. 

  

Image Super-

Resolution 

using ESRGAN 

 

Preprocessing 

Post-Processing 

Image  

Segmentation 

Feature  

Extraction 

Performance 

Evaluation 

Proposed 

Model 

Object 

Detection 

Morphological 

Operation 

Training data 

 1525 

Testing data 

 110 
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TABLE II. UNDERWATER OBJECT DETECTION TRAINING SETTINGS. 

Category Configuration item 
Configuration 

value 

1. Network  
Deep learning 

network 
CNN 

2. Hardware GPU card used Nvidia GTX 1080 

3. Training 

resolution 

Image resolution 

during training 

1906 × 1080, 1280 × 

720, 640 × 480, and 

256 × 256 pixels 

4. Learning rate 

adjustment 
Learning rate 0.0001 

5.Image 

augmentations 
rotation  ∓ 0.2 

 Width_shift ∓ 0.05 

 Height_shift ∓ 0.05 

 Zoom ∓ 0.05 

 Horizontal flip enabled 

6. Data saving Save data every 5,000 Iteration 

7. Maximum 

training iterations 
Maximum iteration 5,000 Iteration 

8. RESULTS AND DISCUSSION 

To evaluate the performance of state-of-the-art (SOTA) 
models, we adopted two distinct training configurations, 
which are described in detail below : 

1. Semantic Segmentation with Five Major Object 
Categories: 

The dataset comprises five major object categories, 
namely HD, WR, RO, RI, and FV. All other objects in the 
dataset are considered to be background and are 
represented by the color 000 ( RGB ). To perform semantic 
segmentation, each model was designed to produce five 
channels of output, with one channel dedicated to each of 

the major object categories. These separate pixel masks 
were then combined to create RGB masks, facilitating  

visualization of the segmentation results. The primary 
objective of this configuration was to enable the models to 
accurately classify and segment input images into the 
specified five object categories. 

 

2. Single-Channel Saliency Prediction: 

In this specific setup, the focus was on predicting saliency 
regions within the input images. To achieve this, the ground 
truth intensities of pixels belonging to the HD, RO, FV, and 
WR categories were set to 1.0, while pixels corresponding 
to all other categories were set to 0.0. During training, the 
models were tasked with predicting a single-channel output 
representing saliency values. Subsequently, the output was 
thresholded, yielding binary images that depicted the 
salient regions. This configuration aimed to assess the 
models’ ability to accurately predict areas of interest within 
the images. 

During our assessment, we conducted a comparative 

analysis of all models by employing established metrics to 

assess the similarity of regions and the accuracy of 

contours. Specifically, we measured region similarity using 

the F score (also known as the dice coefficient), which 

takes into account both precision and recall. 

        (1) 

HD WR RO RI FV

PSPNet 80.21 70.94 72.04 72.65 79.19

DeepLab 89.68 77.73 72.72 78.28 87.95

SUIM-Net (RSB) 89.04 65.37 74.18 71.92 84.36

SUIM-Net (VGG) 93.56 86.02 78.06 83.49 93.73

Our Model 93.63 86.31 84.62 83.72 93.07

0.00

20.00

40.00

60.00

80.00

100.00

Quantitative performance comparison between models 
(F-Score)

PSPNet DeepLab SUIM-Net (RSB) SUIM-Net (VGG) Our Model

Figure 6.  Quantitative performance comparison between models to show the F-Score. 
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Regarding contour accuracy, our evaluation involved 

utilizing the mean IOU (intersection over union) scores. 

This measure helped us assess the degree of overlap 

between the predicted masks and the ground truth masks. 

These widely recognized metrics were instrumental in 

providing an objective evaluation of the models' 

proficiency in semantic segmentation and saliency 

prediction tasks on the SUIM dataset. 

        

 (2) 

The numerical results illustrated in Figures 6 and 7 

offer an extensive examination of the F Score and mIOU 

scores for semantic segmentation across all individual 

object categories, along with saliency prediction scores. 

Among the range of models under scrutiny, DeepLabV3 

consistently emerges as the top performer, securing the 

highest three scores for F-Score and IOU in both semantic 

segmentation and saliency prediction tasks. It's worth 

noting that PSPNetMobileNet also delivers competitive 

results, albeit with varying effectiveness across different 

object categories. In contrast, the SUIM-NetRSB and 

SUIM-NetVGG models consistently exhibit competitive 

performance in terms of region similarity and object 

localization. 

Figure 8 shows the average F-score and IOU 
comparison between our model and the others . Our model 
outperforms the others in accuracy and object boundary 

localization, affirming its superiority for underwater 
semantic segmentation. Interestingly, our model exhibits 
notable improvements in accuracy for certain specific 
objects, as illustrated in the accompanying figure  . These 
advancements further underscore the efficacy of our 
approach and its potential for superior performance in 
semantic segmentation and saliency prediction tasks 
compared to the other evaluated models. These 
advancements further underscore the efficacy of our 
approach and its potential for superior performance in 
semantic segmentation and saliency prediction tasks 
compared to the other evaluated models. 

 

Figure 7.  Quantitative performance comparison between models to show the IOU. 

 

HD WR RO RI FV

PSPNet 75.76 86.82 72.66 85.16 74.67

DeepLab 80.78 85.17 66.03 83.96 79.62

SUIM-Net (RSB) 81.12 80.68 65.79 84.90 76.81

SUIM-Net (VGG) 85.09 89.90 72.49 89.51 83.78

Our Model 81.96 88.66 78.79 89.87 81.28

0.00

20.00

40.00

60.00

80.00

100.00

Quantitative performance comparison between models (IOU)

PSPNet DeepLab SUIM-Net (RSB) SUIM-Net (VGG) Our Model

F-score IOU

PSPNet 75.01 79.01

DeepLa 81.27 79.11

SUIM-Net(RSB) 76.97 77.86

SUIM-Net(VGG) 86.97 84.15

our model 88.27 84.11

65.00
70.00
75.00
80.00
85.00
90.00

F- score  and IOU Averages

Figure 8.      Average of F-Score and IOU 
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Initiating the training phase, our model leverages a pre-
trained model's parameter values as a starting point. 
Subsequently, the assessment of outcomes commences 
through the evaluation of the loss function. Typically, this 
process begins with a notably high loss, gradually 
diminishing as optimization of the model's parameters 
unfolds. As evidenced in the training conducted with 
ERSGAN, the initial average accuracy of 0.8932 ascended 
commendably to 0.9836, a trend showcased in Figure 9. 
Simultaneously, the average loss, commencing at 0.0713, 

exhibited a downward trajectory, culminating at 0.0101, as 
illustrated in Figure 10. These outcomes affirm the model's 
adaptability to the underlying challenge. 

However, the optimizer's proficiency in problem 
adaptation and resolution does not inherently guarantee the 
trained model's precision in object detection. Diverse 
factors may contribute to this, ranging from an 
insufficiently diverse training dataset, which may fail to 
encapsulate all conceivable object scenarios, to potential 
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Figure 10. Accuracy versus different epoch plot. 
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limitations rooted in the quality of the image dataset itself. 
Challenges might arise from inefficiencies in extracting 
object features due to inadequate image quality, further 
accentuating the complexity of the detection process. 

9. CONCLUSIONS 

This study addressed the critical need for semantic 
segmentation and pixel-level detection of salient objects in 
underwater environments to enhance the capabilities of 
visually-guided Autonomous Underwater Vehicles 
(AUVs). While advancements in terrestrial domains have 
been well-documented in the literature, existing solutions 
for underwater scenarios have been constrained by their 
application-specific nature or outdated methodologies. In 
response to these limitations, we introduce the SUIM 
dataset, a pioneering and comprehensive dataset 
thoughtfully curated for general underwater environment 
semantic segmentation. This dataset comprises 1,525 
images, each meticulously annotated at the pixel level, 
covering eight distinct object categories, which encompass 
fish, reefs, plants, wrecks/ru.ins, humans, robo.ts, 
s.eafloor/san.d, and waterbody backgrounds. Additionally, 
we undertake a thorough evaluation of cutting-edge 
semantic segmentation techniques, employing the dataset's 
test set for benchmarking purposes. 

Our proposed model adopts a fully convolutional 
encoder-decoder architecture, achieving competitive 
performance in semantic segmentation while offering 
significantly improved runtime efficiency compared to 
existing SOTA approaches. This delicate balance between 
robust performance and computational efficiency makes 
our model well-suited for near real-time utilization in tasks 
such as attention modeling and servoing for visually-
guided underwater robots. 

Our approach's effectiveness is exemplified by the 
achievement of an impressive 88% accuracy in semantic 
segmentation. This remarkable result underscores the 
superiority of our model when compared to alternative 
methodologies, clearly demonstrating its ability to 
accurately detect and classify objects even in challenging 
underwater conditions. To attain these outstanding results, 
we thoughtfully incorporated Image Super Resolution 
using ESRGAN as a preprocessing step, a technique that 
effectively enhances the resolution and overall quality of 
low-resolution underwater images. Additionally, we 
harnessed the power of morphological operations to further 
refine the segmentation outcomes, ensuring that our model 
delivers precise and reliable performance. 

The release of the SUIM dataset, coupled with the 
exceptional performance of our model, opens up exciting 
new opportunities across various underwater applications. 
In the immediate future, we are eager to harness the full 
potential of the SUIM dataset to explore diverse learning-
based models, such as those geared towards visual question 
answering and guided searches. Our ultimate objective is 
to evaluate their feasibility in the context of underwater 

human-robot collaborative applications. By doing so, we 
hope to make substantial contributions to the advancement 
of underwater robotics and exploration, paving the way for 
cutting-edge developments in these fields. 

This research represents a pivotal milestone in 
narrowing the gap between semantic segmentation and 
object detection methodologies in terrestrial and 
underwater domains. With the SUIM dataset at its core and 
our highly efficient model leading the way, we are opening 
doors to enhanced capabilities and practical usage of 
visually-guided Autonomous Underwater Vehicles 
(AUVs) in the realms of underwater exploration, marine 
research, and environmental monitoring. The remarkable 
success of our approach serves as a testament to the 
potential for further breakthroughs in underwater computer 
vision, facilitating significant progress in the 
comprehension and conservation of underwater 
ecosystems and marine resources. 

In the future, we plan to extend and fortify our 
contributions in the domains of underwater image 
enhancement and object detection. First and foremost, we 
are dedicated to constructing a unified enhancement-
detection framework, seamlessly amalgamating low-level 
image enhancement and high-level object detection. By 
unifying these components, we will eliminate the need for 
separate models, subsequently mitigating the associated 
time and resource overhead. This integration holds the 
promise of delivering superior solutions and significantly 
expediting the processing time, as it eliminates the 
necessity for image transmission between distinct models. 
Additionally, We will primarily concentrate on creating an 
innovative multi-task loss function designed to thoroughly 
assess the efficacy of this integrated framework. 

Secondly, in response to the growing demand for 
reduced computational complexity in real-time underwater 
applications, we will concentrate on the integration of 
various model compression algorithms into our framework. 
These techniques, encompassing weight binarization, 
weight pruning, and compact block design, are geared 
towards substantially reducing memory and computational 
overhead, thereby enhancing the efficiency of our 
framework. Our ultimate objective is to formulate a deep 
learning compression algorithm that minimizes storage and 
energy requirements, rendering deep networks suitable for 
real-time deployment on AUVs and remotely operated 
vehicles (ROVs). These future research endeavors will 
further solidify and expand upon our contributions in this 
field. 
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