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Abstract: Hyperspectral image (HSI) classification can support different applications, such as agriculture, military, city planning,
land utilization, and identifying distinct regions. It is treated as a crucial topic in the research community. Recent advancement in
convolution neural network (CNN) has shown the unique capability of extracting meaningful feature and classification. However,
CNN works with square images with fixed dimensions and cannot extract local information of images having distinct geometric
variations with context and content relationships; hence there is a scope for improvement in correctly identifying class boundaries.
Encouraged by the facts, we propose an HSI feature segmentation model by the hybrid convolution network (GCNN-RESNET152)
for the HSI classification. First, pre-trained CNN on ImageNet is used to obtain the multilayer feature. Second, the 3D discrete
wavelet transform image is fed into the graph convolution network GCN model to gain patch-to-patch correlations feature maps.
Finally, the features are integrated using the three weighted coefficients concatenation method. Finally, the linear classifier is used to
predict the semantic classes of pixel HSI. The proposed model is tested on four benchmark dataset Houston University (HU), Indian
pines(IP), Kennedy space station(KSS), and Pavia university(PU). The result is compared with state-of-art algorithms and found to
be superior in terms of overall, average, and kappa accuracy. The Overall, average and kappa accuracy achieved for HU: 97.7%,
99.4%, 95.6%, IP: 97.7%, 99.4%, 95.6%, KSS:97.48%,99.68%,96.43%, and PU: 97.7%, 99.4%, 95.6% respectively, which is 5 to
8% more than state of art methods.

Keywords: Hybrid Convolution Network, Hyper-spectral image, classification, deep feature segmentation

1. INTRODUCTION
This The recent year witnessed hyperspectral image

(HSI) classification in the military, irrigation, mining, and
route detection [1, 2], as shown in Fig 1. Most machine
learning ML algorithms such as K-nearest neighbor [3],
support vector machine [4], Bayesian classifier [5],
kernel-based method [6], and regression model [7] have
been used for HSI classification [8, 9]. The major
drawback of this ML is the manual extraction of features,
which is time-consuming. Recently Deep learning
algorithm has shown remarkable results with automatic
feature extraction from raw images. HSI classification
using deep learning is categorized into 1-D CNN [10,11],
2-D CNN [12-14], and 3-D CNN [15].

(a) (b) (c)

(d) (e) (f)
Figure 1. Real World application of Hyperspectral Image a) Corn

Varieties showing HSI in agriculture [17] b) Military Surveillance or
Tracking [18] c) Urban Green Observation [19] d) Land Utilization [20]

e) City Planning [21] f) Flood Monitoring [22]
The CNN model has its limitation. During the training,

it stuck in local minima or gradient descent. The pooling
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layer can lose maximum information during pre-
processing. In contrast, 3- D CNN is experienced as
computationally costly and complex. On the other side, to
capture the topological and geometric features of the
geospatial image, the GCN model is found to be the most
effective [16].

The CNN model [16], while a powerful tool in
machine learning, does have its limitations. One notable
issue arises during the training process when the model
can become trapped in local minima or struggle with
gradient descent convergence. This can hinder its ability
to learn and generalize effectively. Another drawback lies
in the pooling layer, which, during pre-processing, can
lead to the loss of maximum information, potentially
affecting the model's ability to discern critical features. In
contrast to the CNN, the 3-D CNN, although capable of
capturing intricate spatial information, is often considered
computationally expensive and complex. This increased
computational burden can hinder its practicality and
efficiency in certain applications.

To address these challenges and leverage the strengths
of both the CNN and the GCN (Graph Convolutional
Network) models, we propose a novel approach—a deep
feature segmentation model known as GCNN-
RESNET152—for hyperspectral image (HSI)
classification. This innovative hybrid model combines the
ResNet152 architecture for global feature extraction and
the GCN for context feature extraction from the 3D
discrete wavelet transform image. By employing GCN,
we can effectively reveal patch-wise correlations within
feature maps, enhancing the model's ability to understand
intricate spatial relationships.

The proposed approach follows a structured workflow:

 Global Feature Extraction (ResNet152): Initially,
we employ the ResNet152 model to extract global
features from the hyperspectral images. This step
helps the model capture high-level information
that is vital for accurate classification.

 Context Feature Extraction (GCN): Next, we
utilize the Graph Convolutional Network (GCN) to
extract context features from the 3D discrete
wavelet transform image. This approach enables
the model to capture intricate topological and
geometric features of geospatial images, which are
essential for precise classification.

 Integration of Extracted Features: Once we have
both the global and context features, we integrate
them using weighted methods. This fusion of
information ensures that the model leverages the
strengths of both feature extraction processes,
enhancing its overall classification performance.

 Classification with Linear Classifiers: The

integrated features are then used to train and test a
linear classifier. We explore various classifiers,
including Support Vector Machine, Decision Tree,
Naïve Bayes, K-Nearest Neighbors (KNN), and
Extreme Machine Learning.

 Remarkably, our experimental results demonstrate
that the Extreme Machine Learning classifier
consistently outperforms the other classifiers in
terms of classification accuracy. This indicates the
effectiveness of our proposed hybrid model in
providing discriminative features for accurate HSI
classification.

Furthermore, we assess the overall performance of
our approach by comparing its average accuracy and
kappa accuracy with those of other state-of-the-art
algorithms. Our results reveal that our method
significantly outperforms these alternative approaches
on four benchmark datasets: Indian Pines, Kennedy
Space Station, Houston University, and Pavia
University. This superior performance underscores the
potential of the GCNN-RESNET152 model for
hyperspectral image classification tasks.

The paper's organization is as follows; section II
deals with materials and methods, and section III shows
the proposed method GCNN-RESNET152. Experiment
evolution and result analysis are discussed in Section IV.
Section V deals with novelty and summary, followed by
the conclusion and future work in section VI.

Figure 2. Pixel represent HSI, visualized as data cube, where (x, y)
axis represent spatial information and z (lambda or wavelength) axis

represent spectral information of image.

2. MATERIALS AND METHODS

A. Hyper spectral Imaging
Spectroscopy techniques play a crucial role in the

field of Hyperspectral Imaging (HSI), a powerful
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Figure 3. Most cited Research in the field of Hyperspectral Image
classification year wise and Evolution of CNN

technology used to collect detailed information about
objects or scenes. Unlike the human eye, which can
perceive only three primary colors (blue, green, and red),
HSI goes beyond this limitation by capturing images at
numerous distinct wavelengths across a wide range,
typically spanning from 01 to 1000 μm (micrometers).
The fundamental concept of HSI involves breaking
down the spatial area of interest into countless small
regions, typically pixels. For each of these pixels, HSI
records the intensity of light at multiple wavelengths.
This data is then represented as a three-dimensional
cube, commonly referred to as the "HSI cube."

This cube comprises three dimensions: X and Y
Dimensions (Spatial Information): These represent the
horizontal and vertical dimensions of the image, which
correspond to its spatial extent. Essentially, it's the
familiar 2D representation of the object or scene. λ
Dimension (Spectral Information): This is the third
dimension, which represents the spectral content or the
wavelength information. It extends perpendicular to the
X-Y plane. In essence, this dimension contains the
information about the different wavelengths of light
used to capture the image.

So, when you examine a HSI cube, you're looking at
a composite image that combines spatial and spectral
information. Each pixel within the cube represents a
tiny piece of the overall scene and contains data about
how light at different wavelengths interacts with that
specific part of the object or scene.

To provide a visual representation, Fig 2 in
illustrates this HSI cube. It's essentially a graphical
depiction of the HSI data structure, with axes
representing the spatial dimensions (X and Y) and the
spectral dimension (λ). This cube is a fundamental

concept in hyperspectral imaging, serving as the basis
for extracting valuable information about the materials,
composition, and characteristics of the objects or scenes
being observed. One important application of
hyperspectral imaging is the classification of objects
within the image. This involves the task of assigning a
specific class label to every individual pixel in the
image. This can be done using advanced machine
learning and image processing techniques, allowing for
the identification and analysis of specific features or
materials within the scene.

B. Convolution Neural Network
The rise of machine learning has propelled deep

learning into the global spotlight due to its remarkable
accuracy and its ability to extract meaningful features
from vast datasets. However, when applied to
Hyperspectral Imaging (HSI), the process of learning and
feature extraction becomes notably time-consuming. Fig 3
illustrates the advancement of deep learning algorithms in
the realm of HSI classification.

The journey of HSI classification in the literature
commenced with a significant breakthrough in 1994 [24],
introducing orthogonal subspace projection techniques.
Subsequently, posterior to this milestone, the least squares
orthogonal subspace projection approach was employed
for HSI signature extraction and classification [25].
Throughout the first decades of the 21st century, various
methods, including Long Short-Term Memory (LSTM)
[26], K-Nearest Neighbors (KNN), Bayes, Decision Trees,
and Random Forests, made their appearances.

Notably, Support Vector Machines (SVM) [27],
kernel-based approaches [29], and Random Forests [28]
gained popularity for HSI classification. However, the last
8-10 years have witnessed remarkable growth in HSI
classification due to the emergence of deep learning
techniques [29-32]. We meticulously selected and focused

3
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Figure 4. ResNet152 Architecture

on research with significant impact and high citation
counts during this period.

Some noteworthy contributions during this surge
include the implementation of Logistic Regression using
Machine Learning (MLR) in a cloud environment [33],
dictionary-based sparse representation [34], the adoption
of deep learning [35], exploration of neural translation
encoder approaches such as Gated Recurrent Units (GRU)
[36], Convolutional Neural Networks (CNN) [37, 38],
Deep Belief Networks [39], deep learning combined with
dimension reduction [35], and the application of
dictionary-based sparse representation [36].

Furthermore, techniques like Deep Recurrent
Neural Networks [40], 3D deep learning frameworks [41-
44], Cascaded Recurrent Neural Networks [45], and
Multi-Layer Perceptrons (MLP) [46] emerged as
prominent contenders in HSI classification. Hybrid
approaches such as Spiking Neural Networks (SNN) [47],
1D CNN [48], Morphological Convolutional Neural
Networks (MCNN) [49], S2GraphSage [50], RLSBSA
[51], and 3DHyperGamo [52] models have broken
previous accuracy records in predicting HSI classes.

However, a limitation persists in the use of CNN,
primarily designed for square images, leaving room for
innovation in the extraction of crucial features from
curved and edge images. In response to this, we propose a
hybrid approach involving convolutional networks for
HSI feature extraction and classification.

To delve into the evolution of Convolutional
Neural Networks (CNN), the first CNN, known as
ConvNet, was reported in 1989. It took nearly two
decades to gain widespread popularity across various
domains, including computer vision, image processing,
object detection, video processing, natural language
processing, and speech recognition. LeNet [53] made its
debut in handwritten recognition, while AlexNet [54]
introduced the concept of using multiple layers of

convolution and pooling with Rectified Linear Unit
(ReLU) activation for classifying 1000 classes.

ResNet [55] was a pivotal development,
introducing skip connections and achieving impressive
performance with lower time complexity.
GoogleNet/Inception [56] improved upon the Inception
module from LeNet and introduced a 22-layer deep
convolutional neural network for image classification.
ZDNet [57] was designed to visualize network
performance statistically, tracking CNN performance
through neuron activation analysis.

VGG [56] conducted extensive research into
denser convolutional network design, and the Inception
architecture evolved rapidly with versions V1, V2, V3,
and V4 [58], focusing on reducing computational
complexity. DenseNet [59,60] tackled the vanishing
gradient problem by implementing cross-layer
connections, similar to ResNet. Channel Boosted CNN
[61] increased input channel numbers to enhance network
representation capacity. RANN [62] incorporated an
attention module into CNN, stacking residual blocks to
identify object characteristics.

The evolution of CNN, as depicted in Fig 4,
showcases the consistent improvements in feature
extraction and classification performance. In our research,
we adopted the ResNet152 model, a widely used CNN
version with proven effectiveness across various vision-
related applications.

ResNet152 was named and suggested to
consist of 152 layers. ResNet shows a decrease in error
rate with an increase in layers. ResNet152 uses the
residual blocks with skip network, thus solving gradient
decent problem and enhancing network performance. Fig
4 shows the architecture of the ResNet152 model. All skip
connections and layers are shown in the figure.
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Figure 6. 3D-DWT Architecture

C. Graph convolutional network
A Graph-based convolution Network (GCN) can hold

the correlated structure of HSI. It can be treated as semi-
supervised learning on the graph data structure. It is
capable of describing the one in non-Euclidean space.
GCN architecture can preserve spectral information
through localized first-order approximation. Hidden layers
of GCN help encode and learn graph edges and nodes'
local features. These spectral signatures of HSI are
represented as an undirected graph. Let the undirected
Graph is denoted as G = (V, E). Where V represents
vertex and E indicates edge sets, respectively. In HSI,
pixels represent vertex sets, and the relation between these
pixels are edges, i.e., edges represent similarities between
two vertexes��and�� . Let �� denote the feature vector of
the vertex ��for � layers can be evaluated using (1)

��� = � ��∈�(��)
� �+ � ��

� �� +�(��)
� (1)

Where � represents the activation function (ReLU,
ELU, Tanh), � ∈ � is the weight matrix, and L(.)
represents neighbors of a vertex. H(.) is a simple neural
network. K(.) is another MLP to project the added vector
into another dimension. Now to evaluate the weighted
coefficient between the neighbors ��and�� , the edge ��� is
evaluated using (2)

��� = �
exp

� ��−��
2

�2

��∈�(��)
exp ( ��,�� )�

(2)

Where � is the parameter to control the width of radial
function, ��and�� are the spectral signatures associated
with the pixel. �represents the empirical set [0.2, 0.8] to
assign weights for distance and direction relations
between adjacent regions. T(.) is a simple neural network.
The information related to equation (2) and� = |�| ⊆ ℜ
as an aggregated message for all nodes can be evaluated
using (3)

� = � × � ×� (3)

Stacking in GNN will help to refine the search result
and produce contextual similar feature. Following Fig 5
shows the concept of GNN, the input to GNN is node
feature � ∈ ��× � , the output is the intermediate node
embedding �1 ∈ �� ×�1 , where �1 is the first embedding
dimension. �1 is made up of ��1 ∈ ��1. �1 is considered to
be the input to second layer and similar set of evolution is
done with the �2 dimension. After few layer at the output
of the S layer is �� ∈ ��×��.

Figure 5. Layers Graph CNN

D. 3D-DWT
As we know, single HS images consist of multiple

narrow bands that enable the development of algorithms
to extract diverse features [65]. 3D-discrete wavelet
transform (3D-DWT) can be used to decompose the
image into spectral components. Later this spectral
component can be directly fed into GCN for gaining
spectral features. Wavelet transform is mostly used in
noise removal and image compression. In general, a
wavelet transform (WT) can define as (4)

�� �, � = 1
� −∞

+∞ � � � ∗ �−�
�

��� (4)

where �and b represent scaling and shifting parameter
simultaneously used for giving frequency and time
information of input signal. �(�) is the kernel function.
DWT can be defined using (5).

��,�
� � = 1

� −∞
+∞�(�)�0

−�
2 � �−��0�0

�

�0
�� �� (5)

where �0 is scaling parameter and, �0 is shifting
parameter. Now signal �(�) can be recovered by wavelet
and scaling function ∅(�) and �(�) . Now, equation (5)
can be re-written for discrete signal �(�) as (6)

� � = 1
� ��� �0, � ��0,� �� + 1

� �=�0
∞

��� �, � ��0,� ��� (6)

where �(�) , ��0�[�] and ��0,� � are discrete set
functions. This function may vary in the range of [0, � −
1] for �different points. The inner product �� �0, � and
�� �, � can obtained from (7) and (8).

�� �0, � = 1
� � � � ���,�[�]� (7)

�� �, � = 1
� � � � ���,�[�]� (8)
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Figure 7. GCNN-RESNET152 Proposed Frame Work for HS Image

In the proposed work, 3d-DWT transformation is
using expression (5) over different 1-D DWTs. Haar
wavelet is used with different filter bank (�, �) with
coefficient � � = 1

2 ,
1
2 ��� ℎ � = 1 12 ,

1
2 . 3D-

DWT over HS imaging is performed on each 1-D on HS
hypercube. The tensor product is constructed for 3D-
DWT using (9) and (10).
�(�,�,�) = �� ⊕�� ⊗ �� ⊕�� ⊗ �� ⊕��

(9) �(�,�,�) = ������ ⊕ ������ ⊕������ ⊕������ ⊕
������ ⊕������ ⊕������ ⊕������ (10)

where ⊕represent direct sum and ⊗is product of
tensor. Fig 6, shows the eight-sub band decomposition of
3D data. The sub-band can be represented using (11)

xi,j = U1 i, j , U2 i, j , U3 i, j , …, ( U15( i, j)) (11)

3. HYBRID CONVOLUTION NETWORK
HSI contains process information from the

electromagnetic spectrum. HS Image is in the form of a
hypercube where each pixel spectrum of a narrow
wavelength band is stored in 3D space. The spatial
information is held over the x and y axis, whereas spectral
information is stored on the z-axis. The image is in the
form of a 3D (x, y, λ). HSI image analysis is processing
the hypercube and extracting local and global features.
The exploration of spectral bands from global visual
features and local contextual information can be the
solution to perfectly identifying the patches in HSI images
with overlapping boundaries and edges. In this view, we
propose a Hybrid Convolution Network to explore the
discriminative ability of the pre-trained ResNet152 model.
As shown in Fig 7, the GCNN-RESNET152 consists of
two synthesized; the spectral band global features and
local contextual as FC features. In Fig 7, we provide a
visual representation of our proposed GCNN-
RESNET152 model. This Fig illustrates how the spectral

band global features and local contextual features are
synthesized within the network. By doing so, we aim to
improve the accuracy of identifying patches in HSI
images, especially those with complex overlapping
boundaries and edges. This innovative approach has the
potential to advance various applications reliant on HSI
data, offering more precise material and object
identification.

The novelty of our work lies in its approach of
combining deep learning, particularly GCNNs-
RESNET152, with HSI to address longstanding
challenges in feature extraction and classification. Our
innovative hybrid model, which combines elements of
both CNN and

GCN, addresses some of the limitations associated
with traditional CNN models. By leveraging global and
context features effectively, we achieve remarkable
classification results, particularly with the Extreme
Machine Learning classifier, surpassing the performance
of other cutting-edge algorithms on benchmark datasets.
This demonstrates the promise of our approach in
advancing hyperspectral image classification and its
potential applications in various domains. This innovative
approach has the potential to enhance the accuracy and
applicability of HSI across a range of domains, ultimately
contributing to more informed decision-making and
discoveries Authors and Affiliations

4. HYBRID CONVOLUTION NETWORK

A. DataDescription
For quantitative and qualitative evolution of proposed

model experiments is conducted over four benchmark
datasets.

1. The Indian Pines (IP) Dataset was obtained using the
Airborne Visible/Infrared Imaging Spectrometer

6
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(AVIRIS) from a ground distance of 20 meters. It
comprises 220 spectral bands and has an image size of
145x145 pixels, with a spectral resolution of 10nm.
This dataset encompasses 16 distinct land-cover
categories. For our analysis, we divided the dataset
into 695 samples for training and 9671 samples for
testing.

2. The Pavia University (PU) Dataset was collected
using the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor. It consists of an image
with dimensions 610x340 pixels and encompasses 103
spectral bands spanning the range from 430nm to
860nm. This dataset is categorized into 9 different
land-cover classes, and additional details can be found
in Table II.

3. The Houston2013 (HU) dataset was captured using the
ITRES CASI-1500 sensor. It features an image size of
349x1905 pixels with a spectral resolution of 10nm.
The dataset comprises 144 spectral bands spanning the
range from 364nm to 1046nm. Detailed information
regarding the land-cover categories within the
Houston dataset, which total 15, is provided in Table
III.

4. The Kennedy Space Center (KSC) dataset was
acquired using an AVIRIS sensor, covering a wide
wavelength range from 400nm to 2500nm. The image
has dimensions of 512x614 pixels and includes 176
spectral bands. This dataset encompasses 13 distinct
categories related to wetlands, totaling 5202 labeled
samples, as outlined in Table IV.

B. Experimental Setup
ResNet152 is implemented using the Tensor Flow

platform, and Adam [63] is used for optimization. The
current learning rate is dynamically updated by
multiplying the base learning rate by 0.5 at an interval of
every 10 epochs. The maximum number of epochs is set
to 100. Batch-wise normalization [64] is used with a
momentum of 0.6 and batch size 64. Training of network
is done with 10-fold cross-validation. The accuracy of the
result is measured using indices Overall Accuracy (OA),
Average Accuracy (AA), Kappa Coefficient(κ).

TABLE I: INDIAN PINES DATASET LAND COVER 16 CATEGORIES
DISTRIBUTED OVER TRAINING AND TESTING SAMPLES.

Category Training Testing
Corn Notil 50, 1384
Corn Mintil 50-784
Corn 50-184
Grass Pasture 50-447
Grass Trees 50-697
Hay Windrowed 50-439
Soybean Notil 50-918
Soybean Mintill 50-2418
Soybean Clean 50-564
Wheat 50-162
Woods 50-1244

Buildings Grass Trees Drives 50-330
Stone Steel Towers 50-45
Alfalfa 15-39
Grass Pasture Mowed 15-11
Oats 15-5
Total 695-9671

TABLE II: PAVIA UNIVERSITY DATASETLAND COVER 9 CATEGORIES
DISTRIBUTED OVER TRAINING AND TESTING SAMPLES.

Category Training-Testing
Asphalt 584-6304
Meadows 540-18146
Gravel 392-1815
Trees 524-2912
Metal Sheets 265-1113
Bare Soil 532-4572
Bitumen 375-981
Bricks 514-3364
Shadows 231-795
Total 3921-40002

TABLE III: HOUSTON2013 DATASET LAND COVER 15 CATEGORIES
DISTRIBUTED OVER TRAINING AND TESTING SAMPLES.

Category Training-Testing
Healthy Grass 198-1053
Stressed Grass 190-1064
Synthetic Grass 192-505
Tree 188-1056
Soil 186-1056
Water 182-143
Residential 196-1072
Commercial 191-1053
Road 193-1059
Highway 191-1036
Railway 181-1054
Parking Lot1 192-1041
Parking Lot2 184-285
Tennis Court 181-247
Running Track 187-473
Total 2832-12197

TABLE IV: KENNEDY SPACE CENTRE DATASET LAND COVER 13
CATEGORIES DISTRIBUTED OVER TRAINING AND TESTING SAMPLES.

Category Training Testing
CP Hammock 25-231
Hardwood 22-207
Spartina Marsh 50-470
Mud Flats 50-453
Scrub 70-691
Slash Pine 25-227
Swap 20-85
Cattail Marsh 40-364
Water 90-837
Willow Swamp 25-218
Oak / Broadleaf 20-141
Graminoid Marsh 40-391
Salt Marsh 40-379
Total 517-4694

C. Multilayer feature extraction
ResNet152 is a deep learning model comprising

convolutional, pooling, activation, and fully connected
(FC) layers. During feature extraction, the FC layer,

7
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although losing some spatial information, serves as a
global representation for classification purposes.
ResNet152 is structured with four convolution layers,
namely convs2_x, conv3_x, con4_x, and conv5_x, each
with different dimensional sizes (256, 512, 1024, and
2048 real numbers).

To capture the spectral structure of Hyperspectral
Imaging (HSI) images effectively, we employ a graph-
based convolutional network. Additionally, we utilize a
3D wavelet transform over the HSI hypercube,
preserving both spatial and spectral information. The
coefficients obtained from the 3D-DWT process are
extracted at multiple levels. Specifically, the LLL sub-
bands capture spatial information in the second-level 3D-
DWT, while the LLH band retains spectral information
from the HSI data. These sub-band knowledge
representations are concatenated, resulting in a 3D data
cube correlation.

In Fig 8, we illustrate the output of the 3D-DWT
approximation and detail levels from 1 to 3, covering
slices 1 to 25. This Fig provides a visual representation of
the 3D-DWT wavelet decomposition, utilizing a near-
symmetric wavelet.

Furthermore, in Fig 9, we demonstrate the
refinement of convolutional features transformed by the
3D-DWT, showing the impact of our proposed Graph
Convolutional Neural Network (GCNN) on the HSI data.
This refinement step enhances the effectiveness of
feature extraction and classification within the HSI
dataset.

Figure 8. 3D-DWT approximation and details at level 1 to 3 for slice 1
to 25 for the Indian pine dataset

Figure 9. Refining of 3D-DWT transformed convolution feature by
GCNN

D. Feature Fusion
Since the proposed approach uses two deep

learning approaches for feature extraction, an effective
fusion strategy is required to fuse to obtain discriminative
features. FC_GCNN treated contextual information, and
FC_ResNet152 held global information. The weighted
concatenation method is adopted for integration for the
proposed Hybrid DWT-based GCNN and ResNet152
model. The final feature can be acquired using (12).

������ = [�����, ���_������152] (12)

Now,������ can be used for training and testing a linear
classifier.
E. Result Analysis

The proposed method’s performance is evaluated
using indices ��, ��, and � . OAis the percentage of
number of samples correctly classified �� over available
sample �� . �� is the average of classification accuracy
for all class level, and Kappa coefficient (�) is the ratio
between producer’s accuracy for classification result.

�� = ��
��

× 100 % (13)

�� = 1
�� �=1

�� ���

�����
× 100 %� (14)

����� = ��−��
1−��

× 100% (15)

The final integrated features ������ is fed into a
set of linear classification SVM, KNN, DT, Naïve Bayes,
and extreme machine learning EML. Fig 10 compares
each classifier's accuracy over OA, AA, and kappa. It can
be seen that the performance of EML is better than other
classifiers. The OA accuracy achieved by EML is
94.4±1.30, 92.31±1.78, 97.48±2.15, and 97.7±0.58 for
four datasets IP, HU, KSC, and PU dataset, which is 3 to
5% better then OA achieved using SVM, NB, KNN, and
DT. Similar performance is measured for AA and kappa
accuracy for all the five classifiers, and EML has better
than the rest. Since the performance of the model solely
depends upon the quality of matrix ��� eq(2), which is
influenced by two parameters: the number of neighbour
� and� as width of radial function. We have shown the

8
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changing trends in two parameters and their contribution.
Fig 11 shows the OA achieved through the different
combinations of these two parameters. Tables V-VIII
quantitatively report the classification scores obtained by
different methods in terms of OA, AA, and κ, as well as
the individual class accuracies for the Indian Pines, Pavia
University, and Houston2013 data sets, respectively.
Comparison is only listed with the state of art methods,
which they claimed to be superior in comparison to
traditional classifiers. Hence, we have not tested our
model with a traditional classifier. The comparison is
made with random forest [28], MLR [33], SVM [27],
MLP [46], RNN [70], LSTM [26], GRU [36], CNN-1D
[48], CNN-2D [37], CNN-3D [43], MorphCNN [49],
RLSBSA [51], 3DHyperGamo [52] and S2GraphSage
[50]. The obtained accuracies for disjoint training and
test samples are shown in Tables V-VIII and Fig 12, 13,
14, and 15.

Figure 10. Accuracy Comparison in terms of OA, AA and � in % with
EML, SVM, Naïve Bayes, KNN and DT classifier for all the four

datasets.

(a) (b)

(c) (d)

Figure 11. Parameter analysis of � and � for OA on datasets a) IP b)
KSC c) PU, and d) HU

For the dataset Pavia University, the result of the
proposed methodology shows the highest overall average
and kappa accuracies which are 94.4%, 96.6%, and
93.2%, respectively. Similarly, the test accuracy on the
KSC dataset achieved is 97.48%, 99.68%, and 96.43%
overall, average kappa accuracy. The test result for the
other two datasets is also superior to state-of-art
algorithms.

9
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Figure 12. Classification Map on Pavia University dataset a) Original
RGB Image b) Ground Truth c) ResNet152 d) Proposed hybrid GCNN-

RESNET152

Figure 13. Classification Map on Indian Pine dataset a) Original RGB
Image b) Ground Truth c) ResNet152 d) Proposed hybrid GCNN-

RESNET152

10
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TABLE V: Indian Pine quantitative comparison in terms of OA, AA, AND � with state-of-art algorithms.

Class RF MLR SVM MLP RNN LSTM GRU CNN-ID CNN-
2D

CNN-
3D

Hybrid
SN

Morph
CNN

RLS
BS-A

3-D
Hyper_
Gamo

s2
Grap
hSage

Proposed
GCNN-
RESNET

152
1 89.98 77.68 82.23 84.53 83.08 82.63 77.25 87.18 93.4 85.66 89.74 94.52 99.8 97.4 84.87 99.9
2 74.39 58.79 65.81 75.13 67.9 78.74 80.1 89.64 96.84 95.88 81.78 97.12 99.9 99.49 95.29 100.0
3 38.42 67.21 66.72 68.37 65.17 60.73 54.79 71.1 65.48 68.11 82.88 85.08 98.6 91.71 85.96 98.6
4 98.24 74.27 97.77 93.5 90.72 97.1 92.05 95.32 95.55 97.02 83.66 97 99.4 71.31 83.63 100.0
5 95.98 98.88 99.37 99.37 99.23 99.28 99.51 99.48 98.03 98.9 99.94 99.25 99.9 98.3 99.52 100.0
6 51.43 93.53 91.62 89.94 85.07 65.94 74.86 88.28 80.52 68.85 72.43 93.92 100 97.99 85.85 100.0
7 80.63 85.08 87.36 87.2 82.94 84.95 90.17 86.77 89.29 73.09 96.16 84.98 98.4 97.25 96.78 98.4
8 97.64 87.58 90.46 90.37 85.85 88.89 90.42 90.43 94.5 95.21 92.8 96.62 99.5 94.1 94.16 100.0
9 94.92 99.22 93.71 98.44 94.52 98.29 93.51 97.33 95.8 93.54 94.04 97.05 99.3 92.09 97.67 100.0
OA 77.44 72.23 77.8 82.05 77.07 80.38 80.7 89.09 92.55 89.43 84.18 95.51 99.7 93.9 91.41 97.7
AA 80.18 82.47 86.12 87.43 83.83 84.06 83.63 89.5 89.94 86.25 88.16 93.95 99.4 93.29 91.53 99.4

k(x100) 70.44 65.44 72.06 76.89 70.84 74.32 74.76 85.5 89.9 85.61 79.13 93.95 99.6 91.86 88.61 95

Table VI: Kennedy Space centre (KSC) quantitative comparison in terms of OA, AA, AND κ with state-of-art algorithms.

Class RF MLR SVM MLP RNN LSTM GRU CNN-IDCNN-2DCNN-3D Hybrid
SN

MorphC
NN

3-D
Hyper
Gamo

s2
Graph
Sage

Proposed
GCNN-
RESNET

152
1 99.69 100.0 94.13 99.18 87.33 92.22 89.44 99.79 85.52 97.17 100.0 97.63 97.33 99.7 100.0
2 98.38 99.03 0.0±0 86.63 63.12 81.64 70.85 99.19 67.31 92.91 100.0 86.79 71.68 98.99 100.0
3 99.23 99.54 54.59 84.25 69.72 75.38 78.89 95.11 60.09 81.04 99.69 98.31 88.84 99.37 100.0
4 88.16 99.06 17.28 78.97 47.82 58.09 44.08 77.73 45.17 44.54 99.53 88.94 89.9 78.26 100.0
5 73.72 100.0 0 13.38 68.37 74.21 65.21 80.53 67.40 85.15 98.78 48.66 82.99 83.05 99.28
6 88.88 100.0 0 78.12 56.24 65.12 59.82 91.97 65.47 62.74 100.0 86.32 77.82 80.8 100.0
7 100.0 89.88 0 78.65 83.52 90.26 89.14 95.13 77.15 80.52 97.75 97.75 99.74 99.44 98.32
8 85.51 100.0 60.10 89.62 65.57 71.40 69.76 97.45 64.75 71.49 99.90 70.76 99.58 98.53 100.0
9 96.68 100.0 89.37 97.59 88.39 90.72 86.72 99.92 89.22 98.94 100.0 91.93 94.95 100 100.0
10 99.22 100.0 98.83 96.50 92.42 88.92 88.53 99.90 73.08 90.67 100.0 100.0 99.37 96.56 100.0
11 100.0 98.03 94.94 98.50 83.89 90.26 84.83 100.0 87.55 97.56 96.34 100.0 98.85 99.64 98.33
12 97.89 99.29 89.25 98.52 81.31 87.46 83.57 98.36 82.48 99.30 99.06 97.89 98.3 94.83 100.0
13 100.0 100.0 100.0 100.0 99.88 100.0 99.92 100.0 99.92 100.0 100.0 100.0 100 99.43 100.0
OA 96.17 99.45 72.84 91.76 81.47 86.10 82.76 97.18 79.98 89.71 99.48 92.76 95.31 99.67 97.48
AA 94.41 98.83 53.73 84.61 75.96 81.97 77.75 95.00 74.24 84.77 99.31 89.61 92.26 94.51 99.68

k(x100) 95.74 99.40 69.29 90.82 79.33 84.51 80.79 96.86 77.63 88.51 99.43 91.94 94.78 96.27 96.43

TableVII: Pavia University quantitative comparison in terms of OA, AA, AND κ with state-of-art algorithms.

Class RF MLR SVM MLP RNN LSTM GRU CNN-ID CNN-
2D

CNN-
3D

Hybrid
SN

Morph
CNN

RLSBS-
A

3-
DHyper
Gamo

s2Grap
hSage

Propose
d

GCNN-
RESNE
T152

1 89.98 77.68 82.23 84.53 83.08 82.63 77.25 87.18 93.4± 85.66 89.74 94.52 99.8 97.4 84.87 99.9
2 74.39 58.79 65.81 75.13 67.9 78.74 80.1 89.64 96.84 95.88 81.78 97.12 99.9 99.49 95.29 100.0
3 38.42 67.21 66.72 68.37 65.17 60.73 54.79 71.1 65.48 68.11 82.88 85.08 98.6 91.71 85.96 98.6
4 98.24 74.27 97.77 93.5 90.72 97.1 92.05 95.32 95.55 97.02 83.66 97 99.4 71.31 83.63 100.0
5 95.98 98.88 99.37 99.37 99.23 99.28 99.51 99.48 98.03 98.9 99.94 99.25 99.9 98.3 99.52 100.0
6 51.43 93.53 91.62 89.94 85.07 65.94 74.86 88.28 80.52 68.85 72.43 93.92 100 97.99 85.85 100.0
7 80.63 85.08 87.36 87.2 82.94 84.95 90.17 86.77 89.29 73.09 96.16 84.98 98.4 97.25 96.78 98.4
8 97.64 87.58 90.46 90.37 85.85 88.89 90.42 90.43 94.5 95.21 92.8 96.62 99.5 94.1 94.16 100.0
9 94.92 99.22 93.71 98.44 94.52 98.29 93.51 97.33 95.8 93.54 94.04 97.05 99.3 92.09 97.67 100.0
OA 77.44 72.23 77.8 82.05 77.07 80.38 80.7 89.09 92.55 89.43 84.18 95.51 99.7 93.9 91.41 97.7
AA 80.18 82.47 86.12 87.43 83.83 84.06 83.63 89.5 89.94 86.25 88.16 93.95 99.4 93.29 91.53 99.4

k(x100) 70.44 65.44 72.06 76.89 70.84 74.32 74.76 85.5 89.9 85.61 79.13 93.95 99.6 91.86 88.61 95.6
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Table VIII: Houston University quantitative comparison in terms of OA, AA, AND κ with state-of-art algorithms.

Class RF MLR SVM MLP RNN LSTM GRU CNN-ID CNN-
2D

CNN-
3D

Hybrid
SN

Morph
CNN

RLSBS-
A

3-
DHyper
Gamo

s2Grap
hSage

Propose
d

GCNN-
RESNE
T152

1 82.87 82.24 82.34 81.23 82.22 82.76 82.58 82.28 82.25 82.1 82.74 82.43 94.22 82.87 82.24 82.34
2 82.51 82.5 83.36 82.29 82.87 80.19 81.64 91.78 84.15 84.14 90.91 84.42 97.23 82.51 82.5 83.36
3 64.09 99 8 99.8 99.72 99.72 99.68 99.88 99.92 90.31 77.85 98.81 97.21 60 22 64.09 99 8 99.8
4 92.04 98.3 99 96 87.58 93.5 91.23 93.22 94.36 87.24 89.24 83.96 92.37 93.86 92.04 98.3 99 96
5 99.81 97.44 99 77 97.35 97 76 97.65 97 37 98.77 99.51 98.97 99.46 99 77 100.0 99.81 97.44 99 77
6 96 27 94 11 97 9 94.55 95.1 97.06 98.32 95.8 96.43 98.91 98 60 99 16 90 20 96 27 94 11 97 9
7 86.19 73.37 77.43 75.24 81.41 78 88 77.03 82.78 86.44 85.48 75 62 88.07 95 57 86.19 73.37 77.43
8 41.69 63.82 60.3 57.0 40.06 40.11 53.62 75.51 70.03 62.06 93.16 72 09 98.46 41.69 63.82 60.3
9 86.02 70.23 76.77 75 59 76.54 81.55 79.06 81.44 79.53 80.81 81.39 84.09 92.45 86.02 70.23 76.77
10 36.00 55.6 61.29 48.78 47.44 47.37 49.54 68.71 60.22 54.75 76.51 62.86 96.21 36.00 55.6 61.29
11 64.67 74.21 80.55 76.25 76.24 76.38 80.82 85.24 82.93 66.78 89.21 89.15 94.34 64.67 74.21 80.55
12 67.27 70.41 79.92 75.31 76.33 79.98 84.15 89.93 92.87 93.83 96.28 93.02 97.38 67.27 70.41 79.92
13 89.23 67.72 70.88 73.18 69.12 71.37 72.63 74.88 86.21 82.34 86.78 89.61 95.25 89.23 67.72 70.88
14 100.0 98.79 100.0 99.84 100.0 99.11 99.92 99.68 98.92 96.31 100.0 99.19 100.0 100.0 98.79 100.0
15 90.06 95.56 96.41 97.8 97.59 98.14 98.22 98.48 77.63 75.85 100.0 97.04 100.0 90.06 95.56 96.41
OA 75.38 78.97 81.86 78.22 77.95 78.16 80.21 86.42 83.27 80.24 88.31 86.51 92.31 75.38 78.97 81.86
AA 78.58 81.63 84.31 81.45 81.06 81.43 83.2 87.97 84.98 81.96 90.23 88.78 96.9 78.58 81.63 84.31

k(x100) 73.49 77.3 80.43 76.55 76.23 76.52 78.66 85.27 81.89 78.62 87.33 85.4 90.33 73.49 77.3 80.43

Figure 14. Classification Map on KSC dataset a) Original RGB Image b)
Ground Truth c) ResNet152 d) Proposed hybrid GCNN-RESNET152

Figure 15. Classification Map on Houston dataset a) Original RGB
Image b) Ground Truth c) ResNet152 d) Proposed hybrid GCNN-

RESNET152
An effort is made to show the visual comparison

(Fig 12-15) between ResNet152 and the proposed model
in the form of classification maps. In general, ResNet152
pixel-wise classification models result in noise in the
classification maps. The proposed approach of using
discrete wavelet transform and implementing GCNN for
batch-wise feature fused with ResNet152 elements can
preserve global and local information, thus resulting in
better visibility and classification accuracy.

5. NOVELTY& SUMMARIZATION

The novelty of our work lies in the development and
application of a hybrid feature extraction and
classification model, GCNN-RESNET152, for
hyperspectral image (HSI) classification. This approach
combines the strengths of two distinct techniques,
ResNet152 and Graph Convolutional Network (GCN), to
achieve superior results in HSI classification.
 Global Feature Extraction with ResNet152: Our work

begins by employing the ResNet152 model, a well-
established deep learning architecture, for global
feature extraction from hyperspectral images. While
ResNet models are commonly used in image
classification tasks, their application in hyperspectral
imagery is relatively novel. This initial step allows
our model to capture high-level information from the
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HSI data, which is crucial for accurate classification.
By adapting ResNet152 for this specific domain, we
bring a fresh perspective to hyperspectral image
analysis.

 Context Feature Extraction with GCN: The second
unique aspect of our work involves the use of the
Graph Convolutional Network (GCN) to extract
context features from the 3D discrete wavelet
transform image. GCN is typically employed in
graph-based data, and its application to hyperspectral
imagery is a novel and innovative approach. By doing
so, we enable our model to capture intricate
topological and geometric features present in
geospatial images. This capability is essential for
precise classification, especially in scenarios where
the spatial context plays a critical role. The adaptation
of GCN for hyperspectral image analysis represents a
significant advancement in the field.

 Integration of Extracted Features: The integration of
both global features from ResNet152 and context
features from GCN using weighted methods is
another novel aspect of our work. This fusion of
information is a key innovation, as it allows our
model to leverage the strengths of both feature
extraction processes. By combining these features, we
enhance the model's overall classification
performance. This integrated approach to feature
extraction and fusion represents a unique contribution
to the HSI classification literature.

 Classification with Various Linear Classifiers: In our
work, we explore various linear classifiers, including
Support Vector Machine, Decision Tree, Naïve Bayes,
K-Nearest Neighbors (KNN), and Extreme Machine
Learning, for the classification task. While these
classifiers are not novel in themselves, our application
of them within the context of our hybrid feature
extraction framework is innovative. We
systematically evaluate these classifiers to determine
their effectiveness in utilizing the integrated features
from our model.

 Superior Performance of Extreme Machine Learning
(ELM): One of the most striking findings from our
experiments is the consistent outperformance of the
Extreme Machine Learning (ELM) classifier in terms
of classification accuracy. This result underscores the
effectiveness of our proposed hybrid model in
providing discriminative features for accurate HSI
classification. The preference for ELM among a range
of classifiers highlights a unique and powerful aspect
of our approach.
In summary, our work introduces several novel

elements to the field of hyperspectral image classification.
From the adaptation of ResNet152 and GCN for feature
extraction to the integration of these features and the
preference for Extreme Machine Learning as the

classifier, each component contributes to the innovation
of our approach. Our research not only advances the
state-of-the-art in HSI classification but also offers new
perspectives and methodologies that can potentially
benefit other image analysis domains. The combination
of these novel elements makes our work a significant
contribution to the field of hyperspectral image analysis.

6. CONCLUSION

To preserve the context information of the pixels,
the graph structure can characterize the HS image data
structure in 3D space. The noise can be filtered using
3D-DWT for retrieving smoothing features. The HS
Image is trained in batches, thus achieving flexible
lower computational cost. Our approach of combining
the global and contextual features uses GCNN and
ResNet152 to reach diverse and discriminative features
representation of HSI. These Features are classified
using a different set of classifiers. Accuracy archived of
Extreme machine learning has reported maximum
accuracy in terms of overall, average, and kappa
accuracy. We have used the weighted concatenation
method adopted for the integration of features. Our
experiment is conducted on four different HSI datasets.
The result successfully proves the superiority of the
proposed model over all other state-of-art algorithms.

In the future, we would like investigate different
possible combinations with an advanced fusion strategy
to exploit the spectral information of HSI. The success
of deep learning models often relies on meticulous
hyper parameter tuning, including learning rates, batch
sizes, and architectural choices. Failing to find the
optimal set of hyper parameters can lead to suboptimal
performance. In future work will also focus on
designing optimization techniques for parameter tuning.
Some other limitation is data dependency, where
model's performance is highly dependent on the quality
and representativeness of the training dataset. It may not
generalize well to new or unseen datasets, which is a
common challenge in machine learning. To come over
this we would like to check model performance over
another dataset also.
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