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Abstract: The use of Hyperspectral Image(HSI) has become prevalent in many sectors due to its ability to identify detailed spectral
information (i.e., relationships between the collected spectral data and the object in the HSI data) that cannot be obtained through
ordinary imaging. Traditional RGB image classification approaches are insufficient for hyperspectral image classification(HSIC)
because they struggle to capture the subtle spectral information that exists within hyperspectral data. In the past few years, the Deep
Learning(DL) based model has become a very powerful and efficient non-linear feature extractor for a wide range of computer
vision tasks. Furthermore, DL-based models are exempt from manual feature extraction. The use of this stimulus prompted the
researchers to use a DL-based model for the classification of Hyperspectral Images, which yielded impressive results. This motivation
inspired the researchers to develop a DL-based model for the classification of hyperspectral images, which performed well. Deeper
networks might encounter vanishing gradient problems, making optimization more difficult. To address this issue, regularisation
and architectural improvements are being implemented. One of the key issues is that the DL-based HSIC model requires a large
number of training samples for training, which is an important concern with hyperspectral data due to the scarcity of public
HSI datasets. This article provides an overview of deep learning for hyperspectral image classification and assesses the most recent
methods. Among all studied methods SpectralNET offers significantly better performance, due to the utilization of wavelet transformation.

Keywords: Hyperspectral image, hyperspectral image classification, deep learning based hyperspectral image classification,
deep learning

1. INTRODUCTION
The sole purpose of Hyperspectral Image(HSI) process-

ing is to acquire meaningful data from the spectral bands
captured by the sensor at specific distances without having
to come into contact with the object of interest [1]. HSI
processing technology can capture data in hundreds of
discrete, successive spectral bands across a wide range of
the electromagnetic spectrum, including visible light (0.4-
0.7 m) and short wave infrared (0.7-2.4 m). This gives a full
study of the spectrum, allowing for the extraction of detailed
spectral information. Moreover, HSI is the only method for
evaluating the luminosity properties of objects in the mid
to far infrared band [2]. Because HSI offers comprehensive
data about each pixel, popular methods for multispectral
and RGB images have encountered numerous challenges
and cannot be used directly.

HSI has a multitude of useful applications, including
municipal planning, natural resource prospecting, forestry
management, and ecological sustainability [3], [4], [5], [6],
[7], [8]. HSI has recently been used in the defence sector

for a variety of reasons spanning from finding landmines to
charting coastal regions. HSI has also been used on space-
craft, airplanes, and watercraft to collect precise spectral
data for a variety of purposes [9], [10], [11], [12].

This paper focuses on Hyperspectral Image Classifica-
tion (HSIC), which has piqued the interest of scientists
leading to better capability for identifying land use and land
cover, recognizing environmental threats, and city planning.
Initially, machine learning-based algorithms were used for
HSIC. The constant evolution of machine-learning-based
methods has improved classification accuracy over time.
Deep learning’s breakthrough has had a significant impact
on the precision of HSIC, making it among the most
significant advances in this area. This article intends to
provide an overview of some DL-based HSIC strategies that
have been developed in recent years. The performance of
different methods are compared and analyzed to find out
the which method is better than others for which dataset.
The motivational backgroud behind this survey study have
been discussed in Section 2. Section 3 explains HSI and
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its classification. Then, the application of deep learning in
HSIC is discussed in Section 4. After that, recent deep
learning based HSIC methods are explained in Section 5.
The comparative evaluations are explained in Section 6.
And in the last we conclude our study at Section7.

2. Motivation behind this survey
Deep learning has emerged as a potent technique for

tackling complicated challenges in the world of techno-
logical developments. Among its numerous uses, HSIC
has received a lot of interest. The comparative research
of deep learning-based HSI classification systems is an
intriguing and hard endeavour with enormous potential to
revolutionise numerous sectors.

The objective of this comparative study of deep learning-
based HSIC systems is to uncover the genuine capabilities
of these algorithms in this area. We hope to determine the
most effective and efficient ways for the classification of
HSIs by comparing and contrasting various procedures. This
type of research offers the potential to develop and improve
existing methodologies, opening the door to a wide range
of applications.

Researchers want to find unique insights, identify cre-
ative solutions, and inspire future breakthroughs in this
interesting subject by undertaking this comparative study
of deep learning-based HSIC systems. The outcomes of this
study have the potential to impact the future of hyperspec-
tral image analysis and bring in a new era of intelligent
information extraction. The applications are diverse and
transformational, ranging from boosting precision agricul-
ture practises to assisting disaster response operations. The
ambition to leverage the full potential of deep learning
and hyperspectral imaging drives this effort, generating a
synergy with the potential to revolutionise industries and
positively benefit society as a whole.

3. Hyperspectral image and its classification
A hyperspectral image (HSI) can be depicted as a 3-

dimensional hypercube HC ∈ RBD(ROW×COL) as shown in
Figure 1, which contains one-dimensional spectral infor-
mation and two-dimensional spatial information for each
sample. The number of spectral bands BD and the spatial
dimension ROW × COL of the cube are both incorporated
in the representation.

A. Spectral representation
Each pixel of the hypercube is distinguished from its

neighbours in spectral representation, and each pixel is
treated separately based on its own unique one-dimensional
spectral signature. Spectral representation can be stated
mathematically as HC ∈ RBD, where BD denotes either
the total number of spectral bands present or only the per-
tinent spectral bands selected using different band selection
methods. In general, pixels with only the necessary spectral
bands are picked for processing rather than all of the
spectral bands. This selection procedure greatly reduces the
overall dimension of the hypercube, minimizing redundancy

Figure 1. An overview of Hypercube

and achieving greater class separability without a notable
drop in information.

Bands for a particular dataset can be chosen either
supervised or unsupervised. Without any prior knowledge
of the class labels associated with the data, unsupervised al-
gorithms pick the relevant spectral bands. This suggests that
the decision is made only on the basis of the data’s spectral
features, with no preconceived class labels. Two well-known
unsupervised band selection approaches are principal com-
ponent analysis(PCA) and locally linear embedding [13].
Supervised band selection methods employ labelled samples
to gain an understanding of the data distribution. Their
purpose is to guarantee that data points from the same
class are placed near to one another. Band selection tech-
niques includes linear discriminant analysis(LDA), local
Fisher discriminant analysis(LFDA) [14]. local discriminant
embedding [15], and nonparametric weighted FE [16]. [14].

B. Representation of HSI in spatial domain
To escape the restrictions of HSI representation in spec-

tral domain, another strategy is to utilize the spatial data of
the pixels, which is structured in a matrix, hci×R(ROW×COL).
This matrix is made up of ROW rows and COL columns of
numerical numbers, providing for a comprehensive image
depiction. Each band contains its own individual pixels,
which are all represented in this matrix. Because of the
strong correlation between neighboring pixels, pixels near
each other are apt to be identical in character. As a result,
when working with spatial depiction, it is extremely crucial
to take into account information from adjacent pixels. This
can be done by using a kernel- or pixel-centric window [17].
Extracting spatial information from HSI cubes. In addition,
Deep Neural Networks (DNNs) have also been employed
for this purpose.

The image texture provides significant spatial context
for HSI. A texture inspection technique, such as the Gabor
filter, can successfully capture textural information at a
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variety of scales and orientations. Similarly, Local Binary
Pattern(LBP) can express spatial textures in a rotation-
invariant manner. Furthermore, DNNs can derive spatial
information from HSI by treating them as image patches, as
opposed to the conventional method of treating individual
pixel as a spectral vector.

C. Spectra-Spatial Representation
Both spectral and spatial information are combined in

this representation. Mathematically this representation of
HSI can be expressed as HC ∈ RBD(ROW×COL). This means
that the vector of each pixel is examined using spectral
characteristics while also taking into consideration spa-
tial relevant data. In hyperspectral imaging(HSI), Spectra-
Spatial representation techniques that use both spatial and
spectral models frequently link the spatial data with the
spectral vector [18]. In this literature most of the methods
are based on this spectra-spatial representation of HSI.

D. HSI classification (HSIC)
The key focus of HSIC is to give a unique label to

each individual pixel vector within an image cube based
on its spectral and spatial characteristics. An HSI cube is
mathematically stated as HC = [hc1, hc2, hc3, ..., hcBD]T ∈

RBD(ROW×BD) , where BD is the count of spectral bands,
each with ROW×COL samples that can be allocated to CLS
distinct classes. The class identifier clsi is assigned to the ith
sample in the HSI cube, hci = (hc1,i, hc2,i, hc3,i, ..., hcBD,i)T .
One way to look at the classification issue is as an optimiza-
tion problem. This means that a mapping function, fc(.), is
used to transform the input data HC in a way that results
in a matching level CLS . By doing so, the function reduces
the discrepancy between the anticipated and the real output.

CLS = fC(HC, θ) (1)

The parameter θ needs to be adjusted in order for
transformation of the input data HC to be done in the form
of fc: HC → CLS .

4. Application of deep learning for HSIC
Traditional RGB, monochrome, and multispectral imag-

ing approaches cannot be directly used to HSI due to
its unique engineering and statistical qualities with high-
dimensional spectra-spatial data. As a result, techniques
for HSI classification based on machine learning have
been created. These methods typically necessitate the use
of engineering skills and domain knowledge to build a
collection of important features created by humans. Hand-
crafted features can represent numerous picture attributes;
therefore, they can be used with analyzed data, but they may
not function with real data. Because the optimal features
differ widely amongst data sets, it is challenging to strike a
balance between robustness and discriminability. DL-based
approaches were created to solve the drawbacks of standard
models by learning the behaviour of any data without
understanding its statistical distribution [19] and extracting

linear and nonlinear features without any predetermined
knowledge.

Considering the outlined DL potentials, there are several
additional hurdles to consider when applying DL to HSI
data. The existence of numerous continuous and narrow
spectral bands with higher spectral resolution and lower
spatial resolution throughout the electromagnetic spectrum,
combined with a dearth of training data, causes the majority
of these issues. While pixels that contain a lot of data
about their spectral characteristics are advantageous for
classification, the complexity of the calculations involved
becomes a major issue.

Furthermore, as the number of factors increases, the
complexity of processing such high-dimensional data in-
creases. The “curse of dimensionality” refers to the oc-
currence of trouble with classification as the number of
dimensions increases, and it significantly decreases the effi-
cacy of supervised learning [20]. The model may be prone
to overfitting due to a lack of adequate data for training
and/or dependability problems (for example, the training
examples may not contribute any additional features to the
model or may have similar structures). When the number
of frequency bands in the information is significantly less
than the quantity of labelled training data, the Hughes
effect, as described in [21], is noticed. Various variables,
such as extreme variance within the same class due to
uncontrolled reflectance values produced by outside effects
and the existence of instrument noise during the recording
process, may have a negative impact on HSIC [22]. Spectral
mixing is a difficulty caused by the spatial resolution of
HSI being too low or average. When the resolution of
HSI pixels is decreased, they encompass a greater area of
land, causing the problem of mixed spectral signatures. This
makes distinguishing between dissimilar materials utilizing
their spectral reflectance values challenging, especially in
boundary areas where interclass similarity is strong [23].
The following are some of the major issues encountered
when applying DL to HSIC.

A. Difficulties in training procedure
The Nondeterministic Polynomial Time Complete (NP-

complete) problems in the area of DL for HSIC predict
the results of training and optimizing DNNs by altering
parameters extremely difficult [24], [25], [26]. This leads
to the general assumption that training DNNs can be quite
challenging [19], particularly with HSI where a substantial
number of parameters must be adjusted. Nonetheless, the
recent development of numerous optimization methods for
Deep Convolutional Neural Networks (CNNs) has made
the convergence process easier. Among the successful CNN
optimization techniques frequently employed for any clas-
sification task is stochastic gradient descent [27] and its
momentum variant [28], RMSProp [29], Adam [30], diff-
Grad [31], RAdam [32], gradient centralization (GC) [33],
and AngularGrad [34].
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B. Scarcity of Training data
Supervised DNNs require a large amount of training

data in order to prevent substantial overfitting [35]. How-
ever, Hyperspectral Images (HSIs) have a high dimen-
sionality that makes them challenging to handle, which
is exacerbated by the scarcity of annotated training data.
This creates a challenge for DNNs to be effective for HSIC
as it requires extensive adjustments and tuning during the
training phase [36].

C. Huge computational cost
DNNs encounter numerous challenges, particularly

when dealing with significant amounts of data. This necessi-
tates more memory bandwidth a higher processing expense,
and the use of more memory storage [37]. Nonetheless, the
use of modern data processing methods, such as distributed
and parallel systems [38], [39], and high-performance com-
puting (HPC) [23], can aid to overcome this issue. DNNs
can now process enormous volumes of data more effectively
and efficiently because to these strategies. Additionally, the
use of distributed and parallel architectures aids in lowering
the processing cost associated with big data collections.
Furthermore, when dealing with massive amounts of data,
HPC can help increase the performance of DNNs. DNNs
can handle big data volumes using these sophisticated
processing techniques, resulting in better results.

D. Degradation of training accuracy
DNNs are often believed to result in more complicated

characteristics being extracted from data [40]; however,
this may not be the case. As the network grows deeper,
the gradients may erupt or lessen [41], which can have a
significant detrimental effect on the overall performance of
the model [40]. This is because adding more layers to a
network can result in a gradient that is either too large or
too small, which can prevent the model from learning the
optimal parameters. Therefore, simply adding more layers
to a network does not result in higher accuracy for all
systems.

5. Recently developed Deep-Learning models for Hyper-
spectral Image Classification
In recent years lots of DL–based HSIC techniques were

developed with the aim of increased accuracy. In this
section, we will discuss some of the very recently developed
classification models for HSI.

A. HSIC models based on 2D CNN
1) SP-CNN

Convolutional neural network(CNN) based pixel-wised
HSI classification frameworks are already proven meth-
ods for spectral feature extraction, but with the network
depth increment the spatial information of HSI cube losses
gradually which leads to a classification result with lower
accuracy. The training period of the network would be
prolonged if we deepened it due to the necessity of tuning
a large number of internal parameters. To address this issue
F. Xie et al. proposed an HSIC model called Super Pixel

Figure 2. Architecture of Super Pixel Convolution Neural Network
(SP-CNN) [42]

CNN (SP-CNN) [42], where they used CNN architecture for
spectral feature extraction of the HSI cube, and they used
Super Pixel maps to extract the spatial information which
is later fused the spectral features for further classification.
Generally, there are two process modules in their proposed
SP-CNN, the first one is down-sampling and the second
one is Up-sampling. Convolution and pooling procedures
are employed in the down-sampling methodology to derive
the spectral characteristics from the HSI cube. In the up-
sampling process module, the spatial information is recov-
ered with the spectral information. Instead of pixels, they
used Super-pixel which dramatically reduces the number
of classification samples. The overall structure of their
proposed SP-CNN method is shown in Figure 2.

2) FCSN
Similar to the common segmentation jobs we have to

focus on identifying the labels of each pixel for HSI. Recent
researchers have primarily concentrated on the development
of various DNNs to enhance the performance of HSI Classi-
fication for various public HSI datasets. H. Sun et al. found
two major concerning generalization capabilities issues with
those techniques: the first one is whether deep convolutional
networks that have been designed are resistant to changes
in spatial land-cover distributions, and the other question
is the classification whether the results of classification
at the boundaries of land-cover regions are accurate or
not. They posed these two issues because, in actual uses,
the spatial land-cover distributions of HSIs are changeable
and complex due to shifts in imaging viewpoint or urban
renewal. To overcome these issues, they proposed an HSI
classification model called “Fully Convolutional Segmenta-
tion Network (FCSN)” [43]. The fundamental architecture
of the FCSN for HSI classification and the conventional
CNN-based network is similar, but the key distinction is
that the FCSN does not utilize any Fully Connected (FC)
layer, Flattening layer, or Global Pooling layer as core
operations. The use of FC or global pooling layers in CNN-
based techniques may result in spatial information loss in
an HSI cube. This is because these layers are responsible
for transforming the feature maps into vectors, and there
is a risk of losing the spatial connections between the
various spectral bands throughout this conversion. CNN-
based methods generally concentrated on classifying the
center pixel of the HSI cube, whereas their proposed FCSN
concentrated on classifying all pixels of the HSI cube. To

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 419-435 (Jul-24) 423

(a)

(b)

Figure 3. Architecture FCSN [43]: (a) Residual Block, (b) FCSN

implement FCSN they first deploy a residual connection to
build a residual block and then they stack of residual block
to implement their proposed model. The structure of FCSN
and their proposed residual block are shown in Figure 3.

3) LS2CM
CNNs have become among the most common tech-

niques for classifying HSIs. However, one major disadvan-
tage of CNN-based systems is that they are numerically
intensive, despite the large number of internal parameters
they contain. To increase the accuracy of classification more
complex CNN-based models are adopted, which makes
the overall system computationally heavier. To solve this
issue Z. Meng et al. proposed a computationally lightweight
spectra spatial convolutional module LS2CM [44] to replace
the conventional convolution layer of the HSI classification
model, which dramatically reduces the number of parame-
ters. They used two LS2CM based residual blocks in their
proposed model, which were similar to the residual block
of ResNET. In their proposed model they used 1×1 convo-
lution for spectral feature extraction and 3×3 convolution
for spatial feature extraction. Then they combined the input
of the first LS2CM block and the output of the second LS
2CM block by using an additive shortcut operation. After
each layer of the first LS2CM block, they implemented the
BN and ReLU activation layer. They also did not use the
ReLU component in the second LS2CM block. The diagram
of LS2CM is shown in Figure 4.

4) SPRN
X. Zhanag et al. introduced an HSIC method called

Spectral Partitioning Residual Network (SPRN) [45] by
combining the Spectral Partitioning (SP) approach with
2D CNN techniques, which reduced the computational
complexity of the overall methods. The input patches are
partitioned into several groups with uniform breadth and
spectral dimension and passed into some parallel convolu-
tion networks with an order of one group in one network

Figure 4. Diagram of their proposed LS2CM module [44]

for feature extraction in their proposed methods. In real
they used a group of convolutions instead of a parallel
convolution network which gives them a similar outcome.
They deployed residual blocks to make possible commu-
nication between internal convolution layers. Their used
residual block typically has two branches: one local and one
global. S parallel CNNs, which are made up of two paired
convolutional layers, are used to develop the local branch.
They extracted local spectral characteristics in a specific
channel interval using clustered convolutional layers. The
global ramify is made up of two standard convolution layers
which are used for global spectral features from the entire
input channel. They used the gap layer to combine spatial
and spectral characteristics, as well as to fuse local spectral
features with global spectral features. A Homogeneous
Pixel Detection Module (HPDM) was employed by them
to improve the operation of the Deep SPRN they created.
This module generates a weight mask that can identify
the significance of each pixel in a segment of the HSI
cube. Measuring the commonalities between the middle
and neighboring pixels yields the weight mask. The pixels
having similar spectral signatures to respect the center
pixel will get higher scores rather than the pixels having
lower similarities. The architecture of the Homogeneous
Pixel Detection Module (HPDM) and Spectral Partitioning
Residual Network is shown in Figure 5.

5) SpectralNET
In general, two types of CNNs are used in HSIC. The

first is the 3D CNN, which is good for spectral feature
extraction but computationally heavy. The second one is
the 2D CNN, which is computationally light and good for
spatial feature extraction but not good for multiresolution
processing of images. Some researchers also investigated
a composite model composed of 3D CNN and 2D CNN,
although their performance appeared to be limited for many
databases. To overcome these limitations, T. Chakraborty et
al. proposed a two-dimensional CNN-based model called
SpectralNET [46], where they used wavelet transformation
instead of three-dimensional CNN to bring out the spectral
feature maps. On their proposed model they used factor
analysis instead of PCA for the purpose of band selection.
They deployed wavelet transform for spectral feature extrac-
tion and 2D CNN for spatial feature deployment. Then the
feature channels wise concatenated and sent to dense layer
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a. Architecture of Homogeneous Pixel Detection Module

b. Architecture of Spectral Partitioning Residual Network

Figure 5. Architecture of HPDM module and SPRN [45]

for classification. To prevent the problem of overfitting, a
global mean pooling layer was introduced by the authors
at the conclusion of all convolution layers prior to being
transmitted to the dense layer. They also employed two
dropout layers along with a batch normalization layer to
prevent the problem of overfitting.

B. LKSSAN
G. Sun et al. proposed Larger Kernel Spectral and

Spatial Attention Network(LKSSAN) [47] is a patch-based
attention HSI classification network that includes data
preparation, spectral-spatial attention module(SSAM), and
classification components. The problems discussed include
the difficulty of leveraging long-range 3-D features as well
as the computing overhead. Spatial patching generates a
large number of 3-D patches for local feature utilization.
SSAM uses large kernel attention(LKA) and convolutional
feed-forward (CFF) to prioritize informative long-range
information through adaptive weighting. CFF enables the
flexible recovery of spatial information in semantic features.
The classification module refines 3-D feature maps using
simple multilayer perception(SMLP) to produce class prob-
ability maps. In addition, a scale expansion block facilitates
the use of spectral-spatial relationships in multilayer feature
maps.

C. Residual Block
1) HResNETAM

We know that the Hyperspectral Image can have huge
dimensional nonlinear data. Most multiscale feature extrac-
tors built on CNN are incapable of extracting both local
and global characteristics at the same time. Hierarchical
Feature Extractor helps to ease these drawbacks to a certain
degree. However, the use of the layer-wise method may be
responsible for the disappearance of gradients, as it requires

Figure 6. Block Diagram Hierarchical Residual Unit [48]

a large number of labeled samples for training. To solve this
issue Z. XUE et al. proposed a network called Hierarchical
Residual Network with Attention Mechanism (HResNE-
TAM) [48]. In order to enhance the capacity of features
to accurately classify HSI, the proposed approach incor-
porates independent spectral and spatial attention modules
in conjunction with hierarchical spectral and spatial feature
extractors. In their proposed feature extractor, they incorpo-
rated three tiers of residual blocks to produce several feature
map subgroups with various receptive fields. Each residual
block consists of three layers: 1. Convolutional (Conv)
Layer, 2. Batch Normalization(BN) Layer and 3.Rectified
Linear Unit(ReLU) activation layer. They doubled this
hierarchical feature extractor to separately derive the spatial
and spectral characteristics. To depict the interdependencies
between channels, they used a spectral attention module in
conjunction with their spectral feature extractor. They first
reshaped and transposed the original input in the spectral
attention module, then multiplied it with the original input,
and the outcome of multiplication was transmitted into a
softmax activation layer to yield the attention map. The
architecture of their proposed Hierarchical Residual Unit is
shown in Figure 6.

2) Ghostnet
Obtaining information from Hyperspectral Data cubes

is a very challenging and time-consuming problem. As a
solution to this issue, CNNs have been extensively used
for HSIC in recent years. Although CNN-based HSI clas-
sification algorithms are very efficient, processing them
takes a lot of time and consumes a lot of memory. So,
it is very important to develop a lightweight CNN-based
highly accurate HSI classification model that can be used
for today’s applications on mobile and embedded systems
for different platforms. M. E. Paoletti et al. [49] proposed an
HSI classification approach by combining a ghost-module
framework with a CNN-based classifier that reduced the
computational expenses and achieved a higher performance
and accuracy. To reduce the spectral dimension of the input
HSI cube, their proposed network Ghostnet implements a
simple stem unit, which consists of a convolution, normal-
ization, and activation layer. Then they used a stack of three
ghost bottlenecks, which helped their model to avoid the
problem of overfitting and also helped to avoid the problem
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of degradation and gradient loss during the forward and
backward propagation. To address the declining-accuracy
phenomenon, they used the shortcut connection and they
designed their ghost bottleneck block based on residual
bottleneck architecture [50], [51]. In their proposed model
every bottleneck is a combination of two stack ghost
modules. Each ghost module is a combination of a primary
convolution layer to generate essential feature maps of
the input features, and a grouped convolution layer (the
size of the group equals the number of input channels)
which confirms that each linear kernel will be applied on
only on channel of the essential feature maps. Then they
concatenated the output block of the primary convolution
layer with the grouped convolution layer and sent it to the
next ghost bottleneck block. To enhance the channel-wise
feature response, they deployed a Squeeze-and-Excitation
(SE) block between every two ghost module blocks. Their
proposed SE block is a combination of one adaptive average
pooling layer and two pointwise convolution layers. Just
like residual bottleneck [40], except for the first ghost
bottleneck, the number of channels is increased in the
first ghost module and then decreased in the second ghost
module of each ghost bottleneck. We can see that the first
module extends thrice the number of channels, then the
SE module first squeezes and then expands them again
to combine spatial information across the channel, and at
the end, the second ghost module compresses the number
of channels to the desired one. They have to manage the
size of input features by deploying several convolutions in
the shortcut connection before performing the final sum
because the second ghost bottleneck increased the number
of input features at the time of output. Finally, they deployed
a convolution pooling layer that collects all the feature
maps and converts them into a vector before sending it
to a classifier, which is a combination of two layers Fully
Connection (FC), and Multi-Layer Perception(MLP).

D. 3D CNN
1) SCNN

Today’s DL-based HSIC algorithms face the following
key challenges: Mixed pixels undermine the credibility of
original spectral data with spatial information. The Sand-
wich CNN (SCNN) model by H. Gao et al. [52] address
this issue by working on preprocessed data features, sub-
stituting spatial aspects with spectral data. They introduce
a Spectral Feature Enhancement (SFE) module to improve
spectral data extraction and preserve spatial information.
This module includes two spectral blocks, each consisting
of three components: The convolution (Conv) layer, Batch
Normalization (BN) layer, and ReLU activation layer. They
also use a Spatial block for spatial data extraction using
pointwise convolution. A multi-scale feature fusion method
is employed to leverage different spatial scales. After spatial
feature extraction, another spectral feature extraction block,
similar to the first, is used to capture abstract characteristics
from spatially fused spectral features. This enables the uti-
lization of spectral characteristics from multiple positions.
The overview of SCNN is shown in Figure 7.

Figure 7. Block Diagram of Sandwich Convolution Neural Network
(SCNN) [52]

2) SSAD
We all know that every deep learning-based method

has a common problem: it requires a huge number of
labeled samples to achieve higher accuracy. Generally, these
labeled samples can be collected in two ways: 1. Field
Investigation, 2. Visually recognition from high-resolution
images. Labeled samples that are collected from field in-
vestigations can provide higher accuracy, but it is a very
expensive process, and acquiring an adequate number of
marked samples for the training process can be challenging
at times. To address this issue, they posit a method called the
self-supervised learning approach with adaptive distillation
(SSAD) [53] for training DNNs using a multitude of unla-
beled samples. Their proposed techniques are divided into
two modules: 1. Adaptive knowledge distillation with Self
Supervised Learning(SSL) 2. SSL with three-dimensional
transformation. The knowledge distillation strategy in the
adaptive knowledge distillation module is essentially a
transfer learning strategy in which knowledge from one
highly précised larger network is transferred to a small
size network, where the larger network is utilized for soft
label generation and the training of the smaller network is
guided by those generated soft labels. The soft labels are
prepared by comparing the resemblance of the unlabeled
samples to the specified object classes. Their proposed soft
labels, which are adaptive in nature, include the possibility
of unlabeled samples about each preset object class. We all
know that horizontal rotation in the spatial realm has no
effect on pixel prediction in HSI classification. As a result,
in the 3D transformation portion, the Hyperspectral cube is
rotated and mirrored in the spatial domain to improve the
resilience of the HSIC model. By rotating the ground-truth
map horizontally in a similar manner that the input HSI is
turned, the cross-entropy loss can be determined. In their
implementation, they established four horizontal rotations:
0·, 90·, 180·, and 270·. In the spectral domain, they also
rotate the hyperspectral cube to determine the arrangement
of the spectral sequence. They defied two types of spectral
sequences: the first one is the frequencies arranged in
ascending order, which is labeled as 1, and the second
is the frequencies arranged in descending order, which is
labeled as 0. The Progressive Convolution Network (PCN)
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is a full CNN that can perform geometric transformations
in both spatial and spectral domains. The HSI rotates with
the outcome of forward propagation in the PCN.

E. Hybrid Methods
1) Consolidated CNN (C-CNN)

We all know that deep learning technique has a common
problem of overfitting when we use these techniques with
data having higher dimensions. Chang et. al. used ReLU
activation, L2 Regularization, and Dropout to overcome this
issue of overfitting for deep learning with high dimensional
data in their proposed HSI classification model called
“Consolidated CNN (C-CNN)” [54]. They used two units to
build their proposed model. They used one unit for Spectral
feature learning and they used another unit for Spatial fea-
ture learning. In their Spectral Feature Learning unit, they
used three consecutive 3D Convolution Layer having the
convolution and kernel size of (8, (3×3×7)), (16, (3×3×5))
and (32, (3×3×3)). They have deployed a Max-pooling
layer to succeed in the operations of consecutive three
convolution layers. The Spectral feature learning unit was
fed into the Spatial feature learning unit, utilizing three 2D
Convolution layers with convolution kernel sizes of (128,
(1×1)), (256, (3×3)) and (64, (1×1)) that were followed
by a Max-pooling layer. Hyper Spectral Image has a large
number of channels, which may be a concern for higher
computational complexity. To overcome this problem, they
deployed 1×1 2D Convolution to cut down on both the size
of the convolution kernel and the complexity while retaining
all of the features. This type of convolution also provided
them a better learning ability and generalization.

6. Comparitive Evaluation
To demonstrate the benefits and downsides of their rec-

ommendations, research investigations frequently give a full
experimental evaluation. However, different experimental
settings, such as varying numbers or proportions of training,
validation, and evaluation samples, may be used in these
works. To achieve a fair comparison of works of literature,
it is vital to adopt the same experimental circumstances.

The experimental parameters consist of the same sam-
ples (geographic locations should not differ between mod-
els) and the number of samples to be picked for each train-
ing session in the process of cross-validation. Because these
samples are typically picked at random, it is very possible
that they will vary for various models if implemented at
different times.

The majority of current literature has a problem with
training and test sample overlap. Although the training and
validation samples are chosen at random, the complete
dataset is used for testing, resulting in a biassed model
with high accuracy. To avoid this, the samples in this work
are chosen at random, but the intersection between them is
empty.

TABLE I. Overview of three popular HSI datasets

Particulers IP [55] PU [56] SA[58]
Year 1992 2001 2001
Source AVIRIS ROSIS-03 AVIRIS
Spatial 145 × 145 610 × 340 512 × 217
Spectral 220 115 224
Wavelength 400-2500 430-860 -
Samples 21025 207400 54129
Classes 16 9 16
Sensor Aerial Aerial Aerial
Resolution 20m 1.3m 3.7m

A. Utilized Datasets
In order to conduct a comparative experimental eval-

uation, we utilized the three datasets that are most widely
used: Indian Pines(IP), University of Pavia(PU), and Salinas
Scene(SA). These datasets have a wide range of applications
in remote sensing, making them ideal for comparison stud-
ies to gain deeper insights into the methods discussed in the
preceding part. The overall information of the used classes
was presented in a tabular format in Table I and Table II.

The Indian Pines (IP) [55] dataset was acquired using
the AVIRIS instrument from the Indian Pines test location
in northeastern Indiana. The sample had 224 spectral bands
in the wavelength range from 400 nm to 2500 nm after
removing 24 blank and corrupted bands. The image had a
resolution of 20 m per pixel (MPP) and was 145x145 pixels
in size. It was made up of 16 different plant classes, each
with its own description and ground truth maps. Figure 8
depicted the RGB origin and Ground Truth for the Indian
Pines (IP) dataset.

The University of Pavia (PU) [56] dataset is a large col-
lection of hyperspectral images captured by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor [57]
in an agricultural region near Pavia, Italy. The dataset is
610x340 pixels in area and has a resolution of 2.5 m per
pixel (MPP), with 103 spectral bands varying in wavelength
from 430 to 860 nm. Asphalt, fields, gravel, trees, metal
sheets, bare soil, bitumen, brickwork, and shadows are
among the nine types of ground cover. The RGB origin
and Ground Truth for the University of Pavia (PU) dataset
are displayed in Figure 9.

The Salinas Scene [58] dataset is an accumulation of
hyperspectral imaging data that was gathered over Salinas
Valley, California by the AVIRIS sensor. The dataset con-
sists of 145x145 pixels and 224 spectral bands, with each
pixel representing an area of approximately 1.3 meters by
1.3 meters on the ground. The area covered was 512 lines by
217 samples. The image, which included flora, barren soils,
and wine fields, was only available as at-sensor radiance
data. The Salinas ground truth was made up of 16 different
classes. Figure 10 depicted the RGB origin and Ground
Truth for the Salinas scene (SA) dataset.
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(a) (b) (c)

Figure 8. The overview of IP dataset [55]: (a) RGB origin, (b) Ground truths , (c) legend

(a) (b) (c)

Figure 9. The overview of PU dataset [56]: (a) RGB origin, (b) Ground truths , (c) legend
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TABLE II. The landcover categories of the three datasets

Class No. IP [55] PU [56] SA [58]
1 Alfalfa Asphalt Brocoli green weeds 1
2 Corn-notill Meadows Brocoli green weeds 2
3 Corn-mintill Gravel Fallow
4 Corn Trees Fallow rough plow
5 Grass-pasture Painted Metal Sheets Fallow smooth
6 Grass-trees Bare Soil Stubble
7 Grass-pasture-mowed Bitumen Celery
8 Hay-windrowed Self-Blocking Bricks Grapes untrained
9 Oats Shadows Soil vinyard develop
10 Soybean-notill Corn senesced green
11 Soybean-mintill Lettuce romaine 4wk
12 Soybean-clean Lettuce romaine 5wk
13 Wheat Lettuce romaine 6wk
14 Woods Lettuce romaine 7wk
15 Building-Grass-Trees-Drives Vinyard untrained
16 Stone-Steel-Towers Vinyard vertical

(a) (b)

(c)

Figure 10. The overview of SA dataset [58]: (a) RGB origin, (b)
Ground truths , (c) legend

B. Comparative Results and Analysis
The experiments were carried out on a Dell Inspiron

15 Gaming 5577 laptop equipped with an Intel i5 7300HQ
CPU, 8GB DD4 2400MHz RAM, and an NVIDIA GTX
1050 4GB GPU. To guarantee a fair comparison, we re-
stricted the analysis to 15 spectral bands across all datasets
and employed a consistent patch size of 25×25. The datasets
were divided into training and testing sets using a 70:30
ratio, with 70% utilized for training and 30% for testing.
Every method underwent 100s epochs during the training
period.

Several recent studies indicate that certain image clas-
sification methods are effective. SCNN, SpectralNET, SP-
CNN, C-CNN, HResNETAM, LS2CM, FCSN, Ghostnet,
SPRN, and SSAD are some of these methods. These
studies compared the experimental results of these methods,
which are discussed in the previous sections, in order to
determine which are the most effective. We utilized three
metrics to analyze classification performance and selected
the most effective HSIC model based on equations 2, 3,
and 4: Overall Accuracy (OA), Average Accuracy (AA),
and Kappa (K).

OA =

∑Nos
p=1 Curr(p, p)

T
(2)

In equation 2, OA represents the overall accuracy, T
represents the total number of samples for each class, Nos
represents the total number of landcover classes in the
dataset, and Curr(p, p) represents the algorithm’s current
classified samples.

AA =
1
T

∑Nos
p=1(Curr(p,+))∑Nos
p=1(Curr(+, p))

(3)
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Equation 3 uses the following notation: AA stands for
average accuracy, while T represents the total number
of landcover classifications. Curr(p,+) indicates the total
number of samples in which landcover objects are classified
into specific classes, and Curr(+, p) specifies the total
number of samples in which landcover objects actually
belong to specific classes.

K p =
T
∑Nos

p=1 Curr(p, p) −
∑Nos

p=1(Curr(p,+)Curr(+, p)

T 2 −
∑Nos

p=1(Curr(p,+)Curr(+, p)
(4)

In equation 4, the term K p refers to Kappa. Curr(p,+)
defines the total number of samples, in which landcover
objects are split into certain classes. where Curr(+, p)
defines the total number of samples in which landcover
objects genuinely belong to a specific class.

On Table III, Table IV and Table V we have shown
the class wised accuracy of the different HSIC methods for
the which we have studied for the public HSI dataset named
PU, IP and SA respectively. Table VI contains a comparison
table of OA, AA, and Kp values for various methods. This
table allows you to quickly compare the performance of the
methods under consideration.

On Table III, we can see that SpectralNET [46], outper-
forms for all of the classes of University of Pavia datasets.
For the first and eighth class of University of Pavia datasets
named as ‘Asphalt’ and ‘Self-Blocking Bricks’ respectively,
HResNETAM [48] also gives the identical performance like
SpectralNET [46]. In case of the seventh class of University
of Pavia datasets named as ‘Bitumen’ SCNN [52], SP-
CNN [42] gives the similar performance like SpectralNET
[52]. For the nineth class of University of Pavia datasets
named as ‘Shadows’ FCSN [43] can also provides highest
accuracy that is 100% like SpectralNET [46]. HResNETAM
[48] can give more than 98% accuracy for eight classes
out of nine classes of University of Pavia dataset. For the
fifth class of University of Pavia dataset named as “Painted
Metal Sheets” almost all of methods which we have stuidied
give more than 99% accuracy except SSAD [53]. From the
Table III we can find that SCNN [52], SpectralNET [46]
and HResNETAM [48] gives a consistence performance for
almost all of the classes of University of Pavia dataset,
and in case of the other HSIC methods we can see a
performance massive drops for few classes.

We can find from the Table IV, that SpectralNET [46]
outperforms for most of the classes of Indian Pines dataset.
For the nineth class of Indian Pines dataset named as ‘Oats’
SCNN [52] and SP-CNN [42] gives the identical accuracy
and also perform better than SpectralNET [46]. In case of
fifth class of Indian Pines dataset named as ‘Grass-pasture’
SP-CNN [42] gives better accuracy than SpectralNET [46].

In case of seventh class of Indian Pines dataset named
as “Grass-pasture-mowed”, SCNN [52], SpectralNET [46],
SP-CNN [42] and SPRN [45] shows identical performance.
For the eighth, thirteenth and fourteenth class of Indian
Pines datasets named as ‘Hay-windrowed’, ‘Wheat’ and
‘Wood’ SCNN [52] and SpectralNET [46] gives similar
performance. For the first, fourth and sixth class of Indian
Pines dataset named as ‘Alfalfa’, ‘Corn’ and ‘Grass-pasture-
mowed’ SpectralNET [46] and SP-CNN [42] provides the
similar performance. From the Table IV we can found the
that the SCNN [42], HResNETAM [46], LS2CN [47] and
SPRN [45] provides the consistence performance, while
other HSIC methods showcasing a performance drop for
the few classes of University of Pavia datasets.

On Table V, we can see that SpectralNET [46] per-
forms better than other HSIC methods for all of the
classes of Salinas Scene dataset. For the first class of
Salinas Scene dataset named as ‘Brocoli green weeds 1’
SCNN [52] and SpectralNET [46] performs identical, and
for the second class of Salinas Scene datasets named as
‘Brocloli green weeds 2’ SCNN [52], SpectralNET [46]
and SPRN [45] showcasing similar performance. In case
of third class of Salinas Scene datasets named as ‘Fallow’
SCNN [52], SpectralNET [46] and SP-CNN [42] provides
similar performance. In case of nineth class of Salinas Scene
dataset, C-CNN [54] and and SPRN [45] giving similar per-
formance like SpectralNET [46]. For the twelfth, thirteenth
and fourteenth class of of Salinas Scene dataset named
as “Lettuce romaine 5wk”, “Lettuce romaine 6wk” and
“Lettuce romaine 7wk” SP-CNN [42] also provide the
similar performance like SpectralNET [46]. Besides Spec-
tralNET [46], C-CNN [54] also provides very good per-
formance that is more than 97% for all of classes present
in Salinas Scene datasets. On the Table V, it is clearly
visible that SCNN [52], SpectralNET [46], C-CNN [54],
HResNETAM [48], LS2CN [44], FCSN [43], Ghostnet [49]
and SPRN [45] almost giving a consistence performance
for all of the classes in Salians Scene dataset, while SP-
CNN [42] shows a drop of accuracy performance for few
classes of Salinas Scene dataset. We primarily compare HSI
classification methods in this survey using three predefined
datasets: 1. Indian Pines (IP), 2. University of Pavia (PU),
and 3. Salinas Scene. Some methods, however, have only
been tested on one or two of these datasets. The effective-
ness of all the convolutional feature extractors previously
stated has been assessed. The evaluation’s findings are
shown in Table VI. We all know that the results of the
HSIC algorithms are graphically represented in the form
of classification maps. In the resultant classification map,
each pixel is labeled with a specific class in the form of
unique color. Overall, a classification map is very helpful for
detailed understanding and analysis of objects of different
class on earth’s surface. The classification of different HSIC
methods that we have studied for the Indian Pines dataset
and Salinas Scene dataset are shown in the Figure 11 and
Figure 12 respectively.
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TABLE III. Comparison of class wised accuracy for PU dataset
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1. 97.61 100 91.12 97.63 100 96.93 95.31 92.04 98.48 86.63
2. 99.33 100 98.73 99.75 99.83 99.62 92.96 97.77 99.41 84.53
3. 91.84 100 99.67 83.75 96.61 89.51 78.45 82.04 85.36 82.21
4. 99.55 100 78.34 94.63 98.99 94.70 96.32 96.12 95.41 91.62
5. 97.27 100 99.35 99.73 99.27 99.17 99.54 99.13 99.89 93.92
6. 95.65 100 97.10 98.69 98.62 98.26 95.50 71.83 97.82 89.43
7. 100 100 100 95.31 99.81 91.12 93.74 88.01 98.92 91.83
8. 96.51 100 99.46 91.46 100 96.61 95.94 97.23 96.13 89.02
9. 97.54 100 88.46 90.21 99.78 96.38 100 98.16 97.51 90.02
OA 97.83 99.99 93.18 97.08 99.8 97.58 93.79 92.83 97.92 86.80
AA 97.82 99.98 93.78 94.57 99.29 95.81 93.19 91.37 96.75 88.80
Kp 97.64 99.98 92.36 96.13 99.72 96.79 91.86 90.20 97.23 83.40

TABLE IV. Comparison of class wised accuracy for IP dataset (The best performances are marked by bold)
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1. 97.62 100 100 42 97.05 95.95 87.80 82.44 96.560 99.32
2. 99.30 100 89.62 58.15 98.20 99.72 84.44 89.19 98.99 80.91
3. 99.20 100 98.12 54.27 98.77 99.54 86.48 73.19 97.24 79.72
4. 99.53 100 100 18.34 98.32 99.91 93.91 54.95 98.73 83.51
5. 95.86 99.01 99.78 80.90 96.52 96.08 94.24 89.64 95.49 82.12
6. 99.24 100 100 92.99 95.34 98.39 97.26 94.47 99.54 83.02
7. 100 100 100 70.00 98.51 99.63 88.00 0 100 89.42
8. 100 100 99.56 98.47 98.89 99.28 99.78 99.53 99.98 97.82
9. 100 78.003 100 76.50 99.17 99.45 61.12 92.01 94.45 96.01
10. 96.45 100 88.86 67.67 98.90 99.52 80.21 93.36 96.90 80.41
11. 99.32 100 89.36 83.06 98.82 97.72 83.75 89.88 98.15 82.91
12. 99.45 100 95.37 45.38 98.57 99.09 88.18 80.85 98.82 81.21
13. 100 100 99.42 76.06 99.11 99.00 98.91 94.25 98.97 91.51
14. 100 100 99.43 95.70 97.72 99.01 95.51 98.13 99.72 91.82
15. 97.70 100 99.43 54.27 95.42 99.09 74.64 49.72 96.08 87.11
16. 98.81 98.01 100 59.24 99.18 99.45 98.80 74.64 95.95 97.71
OA 98.93 99.86 94.45 73.33 97.08 98.41 87.96 88.31 98.29 84.30
AA 98.90 99.84 96.43 67.06 97.05 97.63 88.31 78.77 97.85 87.8
Kp 98.78 99.98 93.44 69.43 97.08 97.48 86.30 86.30 98.05 79.90
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(a) (b) (c) (d) (e) (f)

Figure 11. Comparison among outputs of different methods for IP: (a) Ground Truth, (b) Using SCNN, (c) Using Spectralnet, (d) Using SPCNN,
(e) Using SPRN, (f) Using SSAD

TABLE V. Comparison of class wised accuracy for SA dataset (The best performances are marked by bold)
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1. 100 100 100 99.94 99.98 93.14 99.16 93.21 99.99 89.02
2. 100 100 99.89 99.63 99.96 99.09 99.94 94.12 100 88.96
3. 100 100 100 99.80 99.92 97.75 97.06 97.32 99.95 99.24
4. 99.89 100 99.89 99.49 99.97 96.73 98.09 98.23 98.70 98.78
5. 99.94 100 98.45 99.08 99.97 99.42 99.21 96.33 98.91 97.89
6. 99.99 100 99.56 99.94 99.94 97.17 98.60 97.05 99.97 98.32
7. 99.99 100 99.26 99.96 99.80 98.77 99.24 99.14 99.97 98.90
8. 99.61 100 95.63 98.39 99.83 95.39 99.82 99.23 93.71 99.48
9. 99.83 100 99.53 100 99.94 97.98 98.31 99.34 100 99.66
10. 99.42 100 99.64 97.92 99.91 94.75 99.20 95.41 97.08 96.60
11. 99.08 100 99.22 99.943 99.97 96.65 98.49 99.23 98.39 95.54
12. 99.26 100 100 99.93 99.97 96.98 99.99 99.32 99.96 94.49
13. 96.72 100 100 99.15 99.90 97.13 99.18 99.14 99.97 98.21
14. 96.55 100 100 98.90 99.96 97.48 99.18 99.31 99.05 98.11
15. 99.36 100 87.36 98.87 99.97 98.51 99.59 98.24 93.32 98.02
16. 99.43 100 99.49 99.29 99.94 95.85 99.34 95.38 98.67 97.52
OA 99.58 100 95.99 99.22 99.93 97.10 97.42 95.43 97.46 96.84
AA 99.27 100 95.97 99.39 99.91 97.37 96.52 96.21 98.45 95.40
Kp 99.53 100 95.46 99.13 99.45 97.09 95.71 91.05 97.17 95.40

TABLE VI. Comparison of OA, AA and Kappa of the described methods (The best performances are marked by bold)

Indian Pines University of Pavia Salinas Scene
OA AA Kp OA AA Kp OA AA Kp

SCNN [42] 98.93 98.9 98.78 98.93 98.9 99.78 99.58 99.27 99.53
SpectralNET [43] 99.86 99.84 99.98 99.99 99.98 99.98 100 100 100
SP–CNN [44] 94.45 96.43 93.44 93.18 93.78 92.36 95.99 95.97 95.46
C–CNN [45] 73.33 67.06 69.43 97.08 94.57 96.13 99.22 99.39 99.13
HResNETAM [46] 97.08 970.5 97.08 99.8 99.29 99.72 99.93 99.91 99.45
LS2CM [47] 98.41 97.63 97.48 97.58 95.81 96.79 97.10 97.37 97.09
FCSN [48] 87.96 88.31 86.3 93.79 94.19 91.86 97.42 96.52 95.71
Ghostnet [49] 88.31 78.77 86.3 92.83 91.37 90.2 95.43 97.46 96.84
SPRN [52] 98.29 97.85 98.05 97.92 96.75 97.23 97.46 98.45 97.17
SSAD [53] 84.30 87.80 79.90 86.80 88.8 83.40 96.84 95.40 95.40
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On the Figure 11, it is clearly visible that the classifica-
tion maps generated by SCNN [52], and SpectralNET [46]
is almost equivalent to original ground truth of Indian Pines
datasets. But in case of the classification maps generated
by SP-CNN [52], SPRN [45] and SSAD [53] we can
find some overlapping of classes. That means SP-CNN
[42], SPRN [45] and SSAD [53] had lower classification
accuracy compare to SCNN [42] and SpectralNET [43] for
the classification of classes of Indian Pines dataset.

On the Figure 12, it is clearly visible that the classi-
fication maps generated by SCNN [52], and SpectralNET
[46] is almost equivalent to original ground truth of Salinas
Scene datasets. But in case of the classification maps
generated by SP-CNN [42], C-CNN [54] and SPRN [45] we
can find some overlapping of classes. That means SP-CNN
[42], C-CNN [54] and SPRN [45] had lower classification
accuracy compare to SCNN [52] and SpectralNET [46] for
the classification of classes of University of Pavia dataset.

(a) (b) (c)

(d) (e) (f)

Figure 12. Comparison among outputs of different methods for SA:
(a) Ground Truth, (b) Using SCNN, (c) Using Spectralnet, (d) Using
SP-CNN, (e) Using C-CNN, (f) Using SPRN

In summary, the comparative results and analysis of the
numerous HSIC approaches reveal a range of strengths and
shortcomings. SCNN significantly improves spectral data
extraction while preserving spatial information, resulting
in high classification accuracy. SpectralNET’s balanced
method, which employs wavelet transformation and 2D
CNNs, improves performance in capturing both spectral
and spatial features. SP-CNN overcomes the challenge of
spatial information loss in deep CNNs by adding super-
pixel maps, resulting in precise classification with minimal

computational overhead. The C-CNN’s separate units for
spectral and spatial feature learning reduce computational
complexity, but it may struggle with complex spatial pat-
terns.HResNETAM’s attention mechanisms enhanced fea-
ture extraction, increasing classification accuracy, but may
necessitate more training data. LS2CM’s lightweight con-
volutional modules provide efficiency without sacrificing
accuracy, but FCSN’s attention to classifying all pixels im-
proves accuracy in complex spatial distributions. Ghostnet
is a lightweight approach with higher accuracy, but SPRN
uses spectral partitioning and residual networks to minimize
computational complexity. Finally, SSAD’s self-supervised
learning strategy takes the benefit of unlabeled examples to
increase performance. Each method has distinct advantages
and disadvantages, emphasizing the necessity of selecting
a suitable strategy depending on the specific application
needs.

7. Conclusion
A common option for practical applications is HSI

data because of the fascinating information it contains.
Its deployment potential is also being improved by ma-
chine learning techniques. With cutting-edge DNNs includ-
ing SCNN, SpectralNET, SP-CNN, C-CNN, HResNETAM,
LS2CM, FCSN, Ghostnet, SPRN, and SSAD, we examined
current advancements in HSIC in this article. We selected a
few of these studies to run tests on benchmark HSI datasets.
The performance of SpectralNET is comparatively better
than its counterparts.

Despite the advancements made in HSIC, further work
is required to improve generality. The dearth of labelled data
is a significant issue because HSI data is hard to come by
and DNNs need a lot of labelled training data. To improve
classification accuracy, simultaneous exploitation of spectral
and spatial data should be investigated. There should be the
development of efficient and parallel HSIC architectures to
satisfy the computing requirements of time-critical HSIC
applications.
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