
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 15, No.1 (Feb-24)

http://dx.doi.org/10.12785/ijcds/150147

A Hybrid Approach Based On Boosting Algorithm For
Effective Android Malware Detection

Brijesh Y. Sathwara1 and Palvinder Singh Mann2

1,2Graduate School of Engineering and Technology-Gujarat Technological University, Ahmedabad, Gujarat, INDIA. 382424.

Received 10 May. 2023, Revised 6 Jan. 2024, Accepted 21 Jan. 2024, Published 1 Feb. 2024

Abstract: Mobile phones are being used much more often and play a crucial role in everyday lives. These gadgets hold a tonne of
personal information and provide a variety of functions and services. Mobile devices have become indispensable for those who utilise
technology and communication since they are practical and effective. However, mobile systems are vulnerable to virus assaults just
like any other type of information system. The development of hardware technologies has increased the complexity and performance
of mobile apps. Additionally, the danger of security breaches and data theft rises with continued usage of mobile devices. Malicious
actors may use mobile system flaws to obtain sensitive data, such as login passwords, financial information, and personal information.
Mobile device makers and app developers are constantly changing their software to enhance security and performance in order to solve
these issues. For instance, to safeguard user data, many mobile operating systems now have built-in security measures like firewalls,
encryption, and two-factor authentication. In this paper, we present a linear regression model for detecting malware on the Android
platform. This technique can assist in the prompt identification and obstruction of Android malware assaults, as well as improve app
security by flagging any unnecessary permissions. Additionally, developers can use this approach to enhance the security of their apps
and protect user data from unauthorized access.
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1. Introduction
Android smartphones dominated the mobile OS market,

taking more than 82 percent of the market share. The open-
source structure of Android and a large number of freely
available applications are mostly attributed for this rise. Due
of this advantage over other operating systems, a significant
portion of users now favour Android. Android smartphones
are becoming more widely available to people all over the
world because to the large selection of alternatives they offer
at various price points. Additionally, the Android platform
is flexible and customized, allowing users to modify their
devices to meet their own requirements and tastes.Despite
its global domination, Android has encountered issues such
as security concerns and fragmentation as a result of the
wide variety of devices and versions available. However,
the Android development team has worked to solve these
concerns, routinely delivering updates and security patches
to assure the platform’s security and stability.Overall, as
more people seek inexpensive and configurable mobile de-
vices, the popularity of Android smartphones is projected to
expand in the future years. Android is expected to continue
its position as the industry leader in the mobile operating
system area, thanks to its open-source foundation and enor-
mous library of applications.Google Play, Android’s official
app store, boasts over a billion apps and a massive amount

of downloads per day. To protect against malware, the shop
initially depended on a security technology called Bouncer,
however this strategy proved ineffective against zero-day
malware, which allowed hackers to take consumers’ confi-
dential data. Google Play now uses Google Play Protect to
prevent insecure applications from being installed, however
users may still disable this function during the installation
process. This flaw has resulted in a considerable increase in
the number of malware programmes posted to services like
VirusTotal. Antimalware solutions address this issue with
signature-based detection, which necessitates regular signa-
ture database updates and is vulnerable to code restructuring
to evade detection [1].

Cloud-based malware detection solutions have been
created to circumvent processor and energy constraints.
Manual inspection and malware definition extraction, on
the other hand, might result in false negatives, making
it difficult to efficiently investigate new malware vari-
ants as their number grows.New approaches for studying
fresh malware variants have been presented to answer
the pressing demand for more efficient malware analysis
tools. These strategies are intended to overcome the limits
of current malware detection systems and minimise the
frequency of false negatives. Instead than depending en-

E-mail address: brijeshsathwara5@gmail.com, asso psmaan@gtu.edu.in https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/150146
https://journal.uob.edu.bh/


642 Brijesh Y. Sathwara, et al.: Boosting Algorithm For Effective Android Malware Detection.

tirely on signature-based detection, one interesting strategy
involves employing machine learning algorithms to detect
malware based on behavioural patterns.Sandboxing is an-
other common strategy that includes running the virus in a
controlled environment to study its behaviour and discover
any dangerous behaviours. Sandboxing can also aid in the
prevention of malware propagating to other computers and
networks.Overall, with the increasing quantity of malware
apps, it is critical to create new, effective approaches for
identifying and analysing these threats. It may be able to
stay ahead of thieves and keep consumers’ data safe by
combining several strategies and constantly improving on
them.Because of the continuously rising number of Android
apps, unauthorised developers, and existing security holes
in the Android operating system, malware makers are
incentivized to attack these vulnerabilities in order to steal
users’ private information. [2].

As previously stated, the faulty Android OS provides
an ideal environment for attackers. Some of the security
vulnerabilities that can arise on Android phones include
unauthorised app access, permission escalation, repackaging
apps to incorporate malicious code, collusion, and Denial
of Service (DoS) attacks. Given these flaws in the present
Android design, several efforts have been made to remedy
these concerns. In addition to Android’s built-in security
measures, such as sandboxing and the Android permission
model, several security and privacy solutions, such as var-
ious resource management systems and security solutions
that use different techniques and approaches, have been
proposed to deal with the existing Android OS vulnerabil-
ities. We will go deeper into these strategies, approaches,
and tools.Antivirus software, intrusion detection systems,
and firewalls are some of the security techniques used
to reduce Android vulnerabilities. These technologies can
aid in the detection and prevention of malware infecting
devices and stealing personal information.To discover and
address security flaws, developers might employ coding
principles, secure coding frameworks, and code analysis
tools. Furthermore, developers can use cryptographic tech-
niques like as encryption and digital signatures to safe-
guard data privacy and prevent unauthorised access.Finally,
Android vulnerabilities are a major source of concern for
both consumers and app developers. While Android OS’s
open-source nature allows for innovation and flexibility,
Android users and developers, on the other hand, may better
defend themselves from harmful assaults and data breaches
if suitable security measures are in place and rigorous
development practises are followed [3].

The frequency of cyberattacks on mobile devices re-
mained stable in Q1 2022 compared to the end of 2021
Fig.[1]. However, the general trend for the number of
assaults continues to decline. this quarter is notable for the
growth of fake apps in legitimate app stores. these applica-
tions frequently display inflated ratings and pleasant phoney
reviews. This sort of programme is included in seven of
the twenty applications on our Q1 malware ranking. Since

Figure 1. Number of attacks targeting users

last year, applications that offer social advantages have
been a common fraud approach. These applications bring
users to a homepage where they are requested for personal
information and shown a significant quantity of money to
which they are allegedly entitled. Users must, however, pay
a commission for transfer charges or legal aid in order to
enjoy the advantages.

A. Mobile threat statistics
During the first quarter of 2022, Kaspersky discovered

516,617 malware-infected installation packages Fig.[2].
This figure fell by 79,448 from the previous quarter and
by 935,043 from Q1 2021.According to Kaspersky, the
fall in malicious installation packages is mostly due to
a decrease in the popularity of adware and potentially
unwanted programmes (PUPs) among attackers. While the
total number of detections has fallen, Kaspersky cautions
that the number of unique malware samples has climbed
by 24% compared to the previous quarter, indicating that
attackers are increasingly utilising new and more complex
malware variants.

Figure 2. Number of detected malicious packages

B. Distribution of detected mobile malware by type
As shown in Table [I], approximately half of the iden-

tified risks (48.75%) were classified as possibly unwel-
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come RiskTool applications in the first quarter of 2022, a
3.21 percentage point reduction from the previous quarter.
The bulk of these applications (61.37%) were from the
SMSreg family, which has long been prominent. Adware
applications came in second (16.92%), with a 10.01 per-
centage point decline. The Ewind family (28.89%) was
among the worst adware offenders, being discovered more
frequently than any other adware. Following that were the
Adlo (19.84%) and HiddenAd (12.46%) families. Trojans
were placed third, accounting for 14.68% of all threats,
a 10.32 percentage point increase. The families Mobtes
(44.35%), Piom (32.61%), and Boogr (14.32%) had the
greatest influence on trojans.

Figure 3. Distribution of newly detected malware

The Fig.[3] demonstrate the persistent problems faced
by potentially unwanted programmes, adware, and trojans.
The drop in the number of RiskTool programmes and
adware may signal some progress in combating these risks,
but the increase in trojans is troubling. The fact that certain
trojan families, such as Mobtes, Piom, and Boogr, are
having a substantial influence on this category of threats
emphasises the importance of ongoing awareness and ag-
gressive actions to combat them.It is also important to
note that, while the SMSreg family is the most usually
discovered potentially unwanted software, it is critical to
recognise that there are several other types of RiskTool
applications that represent a risk to consumers [4].

TABLE I. Distribution of newly detected mobile malware

No Malware Q4 2021(%) Q1 2022(%)

1 RiskTool 51.96 48.75
2 Adware 26.93 16.92
3 Trojan 4.36 14.68
4 Trojan-Banker 6.43 10.44
5 Trojan-Spy 2.10 3.66
6 Trojan-Dropper 3.65 2.12
7 Trojan-SMS 1.63 1.11
8 HackTool 0.48 0.71
9 Backdoor 0.69 0.43

10 Trojan-Ransom 0.72 0.38
11 Monitor 0.39 0.36
12 Trojan-Downloader 0.32 0.27
13 Other 0.32 0.17

C. Geography of mobile threats
Iran (with a proportion of 35.25%) remains the country

with the most infected devices in the Q1 2022 assessment.
The most common threat in this site was annoying adware
from the Notifier and Fyben family lines. China came in
second (with a proportion of 26.85%), with Trojans being
the most often encountered threats.AndroidOS.Boogr.gsh
and Trojan.AndroidOS.Najin.a are also present. Yemen
came in third (with a rate of 21.23%), with the most com-
mon mobile threat being Trojan-Spy.AndroidOS.Agent.aas
malware.

To summarise the Q1 2022 report Fig.[4], Iran had
the highest percentage of infected devices (35.25%), owing
primarily to vexing adware from the Notifier and Fyben
families. China came in second with 26.85%, facing Tro-
jan.The most frequent threats are AndroidOS.Boogr.gsh and
Trojan. AndroidOS.Najin.a. Yemen came in third position
with 21.23%, with the Trojan-Spy.AndroidOS.Agent.aas
malware being the most prevalent mobile threat.

Figure 4. Map of attempts to infect mobiles with malware

As per Table [II], Iran stays at the top of the list
(35.25%) for having the most infected devices in the first
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quarter of 2022. The annoying adware from the Notifier
and Fyben clans was the most common menace in this
region. China (26.85%) came in second, with the Tro-
jan.AndroidOS.Boogr.gsh and Trojan.AndroidOS.Najin.a
being the most common threats. Yemen took third place
(21.23%), with the Trojan-Spy.AndroidOS.Agent.aas mal-
ware being identified as the most prevalent mobile threat
[5].

TABLE II. Countries by share of users attacked by mobile malware

No Countries User Attacked by Mobile malware(%)

1 Iran 35.25
2 China 26.85
3 Yemen 21.23
4 Oman 19.01
5 Saudi Arabia 15.81
6 Algeria 13.89
7 Argentina 13.59
8 Brazil 10.80
9 Ecuador 10.64

10 Morocco 10.56

Figure 5. APK design components

It should be noted that risky permissions are deemed
high-risk since they may jeopardise the user’s privacy and
security. As a result, developers must justify the necessity
for risky permissions in their programme and guarantee that
their software only utilises the rights required for optimal
operation. To improve security even further, Android allows
users to remove permissions provided to an app after
installation. This provides consumers more control over
their device and aids in data security. Overall, Android’s
permission-based architecture is an important component of

its security system, helping to protect user data and privacy
while giving consumers more control over their device [6].

D. Android Application Permission
To restrict apps from accessing sensitive information

like as the system network, GPS, and contact information,
Android employs a permission-based security approach. De-
velopers use the element in AndroidManifest.xml to indicate
certain permissions, which imposes constraints during app
installation. Normal permissions are provided automatically
upon app installation and pose no substantial risks to users,
system apps, or the device. They can be modified later in the
application settings and include permissions like INSTALL
SHORTCUT, SET WALLPAPER, and SET ALARM. Dan-
gerous permissions, on the other hand, fall into the high-
risk category since they grant access to sensitive data and
essential device APIs. READ SMS, SEND SMS, and GET
LOCATION are examples of these permissions Fig.[5] .

It is critical to remember that Android permissions are
critical in ensuring the privacy and security of the user’s
data. As a result, it is suggested that you thoroughly verify
the app permissions before downloading them. Furthermore,
some apps may request additional permissions while run-
ning. Users can, however, accept or reject these rights. Users
should be cautious when providing these rights, especially
to applications they do not trust or that require sensitive
data. To avoid any security breaches, it’s also a good idea
to maintain the operating system and loaded apps up to date
[?].

E. Android Vulnerabilities and Attacks
While the Android operating system is generally re-

garded as secure, it is still vulnerable to a variety of
attacks. When a rogue programme is downloaded into a
device, it can pose serious security issues. According to
the Mobile Security Threats and Vulnerability Report 2019-
20, high-risk vulnerabilities are found in around half of
Android operating systems, compared to 40% in iOS. Figure
8 depicts this information.suggested a flow analysis for
app pairings that calculates the amount of risk associated
with prospective communications.Their technique may offer
extensive security rules for inter-app ICC risk assessment by
statically analysing the sensitivity and context of each inter-
app transaction based on inter-component communication
(ICC). The authors conducted an empirical analysis on
7,251 apps from the Google Play store to discover whether
apps interact via ICC channels.

The analysis sought to uncover the exact applications
posing the greatest threats to Android security. The authors
were able to generate a more thorough knowledge of the
possible security concerns connected with each app by
analysing the ICC interactions between the apps. According
to the report, a large number of apps in the Google Play
store communicate via ICC channels, and many of these
apps have access to sensitive user data. Users should be
cautious while downloading and installing programmes,
especially those that require access to sensitive data, to
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reduce the dangers associated with these vulnerabilities.
Furthermore, keeping the Android operating system up to
date with the most recent security patches can help to reduce
the risk of an attack [7].

The following are the most critical types of vulnerabil-
ities in the Android system Fig.[6] :

1) Flaws in security mechanisms implementations:
It is critical to conduct thorough testing to find and
analyse security issues during the implementation
of security measures. If these defects go unnoticed,
attackers can remotely exploit them and gain access
to the system’s root level.

2) Application source code vulnerabilities: These
flaws affect the native source code of Android
applications. Using a code regeneration approach,
an attacker may insert a malicious payload into the
original APK file.

3) Misconfiguration: These vulnerabilities exist in
Android applications as a result of incorrect security
setups, making them easily exploitable by altering
the contents of configuration files.

It should be noted that these assaults might have serious
effects, and users should take the appropriate steps to avoid
them. This includes keeping their devices up to date with the
most recent security updates, employing strong passwords
and two-factor authentication, and refraining from installing
apps from unknown sources.

Figure 6. Critical android vulnerabilities

Furthermore, app developers should prioritise security
throughout the development process by performing regular
security testing, employing secure coding practises, and
adhering to the Android security guidelines. They may
limit the risk of vulnerabilities in their apps by using
these techniques. Finally, the Android system contains

a number of vulnerabilities that can be exploited by
attackers, resulting in the loss of sensitive user data and
other serious consequences. To reduce these threats, users
and app developers must both take the required procedures
to maintain the security of their devices and applications [8].

In this paper, a hybrid model based on a linear
regression classifier for detecting malware on the Android
operating system is presented which can assist in the
prompt identification of Android malware assaults, and
will improve application security by flagging off any
unnecessary permissions. Moreover, developers can use
this approach to enhance the security of applications and
protect user data from unauthorized access.

2. RelatedWork
Several recent research have focused on detecting An-

droid malware using machine learning or deep learning
approaches. The approaches used to identify malware are
classified as static, dynamic, or hybrid based on how
machine learning or deep learning properties are gathered.
Static analysis extracts information without running ap-
plications, whereas dynamic analysis obtains features by
executing apps on a physical or virtual device. Although
dynamic analysis can detect zero-day threats, it might be
difficult to set up. Static analysis is faster, however some
forms of malware may be missed. Various Android malware
detection solutions employ a hybrid approach that blends
static and dynamic methodologies.

However, there are numerous challenges to using ma-
chine learning and deep learning algorithms for malware
detection. One of the key issues is the shortage of labelled
data, as it is difficult to collect enough high-quality labelled
data for training models. In addition, attackers might escape
detection by altering their malware to make it harder to
detect. Furthermore, machine learning and deep learning
models can be computationally costly, making them unsuit-
able for low-end devices.

The authors [9], provides a unique technique for iden-
tifying Android malware using multiple linear regression
models-based classifiers. To train multiple linear regression
models, the proposed method employs a collection of static
and dynamic characteristics retrieved from the Android
application package. On a dataset containing 5,560 Android
applications, the system achieved a detection rate of 99.1%
and a false positive rate of 0.5%. In terms of accuracy, false
positive rate, and processing time, the authors’ technique
surpassed other state-of-the-art detection algorithms. The
suggested method detects numerous forms of malware and
has the potential to be useful in both academic and practi-
cal contexts.The findings shown that feature selection and
weighting strategies may greatly increase the performance
of the suggested strategy, emphasising the necessity of prop-
erly choosing and weighing characteristics. LinRegDroid’s
capacity to identify a wide range of malware categories,
as well as its potential for enhancing malware detection
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accuracy, underline its relevance and significance in the
field of Android malware detection.Overall, the study adds
to the area of Android malware detection by offering a
unique strategy that combines linear regression models with
feature engineering approaches to achieve high detection
accuracy. The efficacy, speed, and resilience of the sug-
gested technique make it a viable option for identifying
Android malware, with potential implications for increasing
mobile device security and user data protection.According
to the experimental results, the record contains an excessive
number of permissions, making it difficult to create effective
linear regression models. On Lopez’s dataset, two LinReg-
Droid models earn an accuracy score of 0.9175, while an
ANN method achieves an accuracy score of 83.75 and an
f-measure score of 0.8359.

The authors [10], presents a method for identifying
malware on Android devices that makes use of autoen-
coders in deep learning. To train an autoencoder model,
the proposed approach uses a collection of characteris-
tics collected from the Android application package file.
The model can then categorise Android apps as benign
or dangerous. The approach’s efficacy was tested on a
dataset of 10,000 Android applications, with a detection
rate of 98.4% and a false positive rate of 1.1%. The
suggested method has the potential to provide an effective
solution for identifying Android malware in both research
and practical contexts.The scientists also compared their
methodology to other cutting-edge detection methods in
the publication, indicating that the suggested method beat
these methods in terms of detection accuracy and false
positive rate. Furthermore, the authors investigated the effect
of various autoencoder topologies and training settings on
the performance of the suggested technique.Overall, the
findings suggest that the proposed deep learning technique
employing autoencoders can detect Android malware and
has the potential to provide an efficient and reliable solution
for detecting changing threats. The suggested technique
may also be used to various types of malware detection
jobs, exhibiting its adaptability and scalability. The final
component of Data Set 1 was DTestBeign, a harmless
test set containing a fraction of the acquired malware and
benign software used for training. As a software testing tool,
DTestBeign was used. The AE-1 network was trained using
the DTrain training dataset, the DTestMalware malware
testing dataset, and the DTsafe safe data training dataset.
The reconstruction error of the DTestBeign test set was
used as input during the training phase, however a large
reconstruction error occurred when a fresh input dataset was
provided through Test. The dataset discriminated between
safe and malicious software.It is worth mentioning that
in the dataset, all reports of safe software and malware
were indistinguishable. The study’s goal was to see how
effective the suggested methodology was in detecting and
distinguishing between malware and safe software.

The article [11], presents a hybrid evolutionary strategy
to identifying Android malware in highly skewed data.

The suggested method integrates feature selection, particle
swarm optimisation, and random forest classification into
a single algorithm. The paper assesses the efficacy of the
suggested method using a dataset of benign and ransomware
Android applications. The findings suggest that the pro-
posed method is highly successful at identifying Android
ransomware.Furthermore, the study reveals that the sug-
gested method surpasses existing cutting-edge approaches
in terms of accuracy, recall, and F1-score. The feature
selection and optimisation procedure aids in reducing the
dimensionality of the data and improving the classification
model’s accuracy. The paper also covers the difficulties and
limits of identifying Android ransomware in highly skewed
data, such as the paucity of malware samples and the
difficulty of separating ransomware from innocuous applica-
tions. Overall, the suggested hybrid evolutionary technique
looks promising for identifying Android ransomware in
highly unbalanced data. Given the rising incidence of ran-
somware assaults on mobile devices, the study emphasises
the necessity of creating effective and efficient ways for
identifying ransomware. The essay finishes by emphasising
the importance of ongoing research and development of new
ways to address the shifting nature of Android malware and
improve mobile device security. The article demonstrates
how to utilise a feature fusion approach to classify and anal-
yse Android malware photos. It investigates the technique’s
efficiency in identifying malware and separating it from
benign software. Several tests are being conducted as part
of the research, including an examination of data feature
extraction, malware picture reconstruction, and detection
model performance .

The authors [12], presents a unique way to enhancing
Android malware detection by tackling the issue of adver-
sarial sample assaults. The suggested technique employs a
deep autoencoder neural network and focuses on accurately
discriminating between safe software and malware. The
study examined data feature extraction, malware image
reconstruction effectiveness, and detection model perfor-
mance analysis in several tests to assure the reliability and
correctness of the results.

The study in [13] comprised DTestBeign, a benign
test suite that includes both malware and benign software
intended for training. The AE-1 network was trained using
the DTrain training dataset, the DTestMalware malware
testing dataset, and the DTsafe safe data training dataset.
During the training phase, the reconstruction error of the
DTestBeign test set was used as input, and a considerable
reconstruction error was created when a fresh input dataset
was provided through Test. The technique suggested
overcomes the susceptibility of standard Android malware
detection systems to adversarial example assaults by
concentrating on more correctly discriminating between
malware and safe apps. The study sheds light on how
deep autoencoder neural networks may be used to improve
the detection of Android malware, and its findings have
far-reaching implications for mobile device security.
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Below is a comparison of the past literature as men-
tioned in Table [III]:

TABLE III. Comparison of past literature

Article Methodology Features Accuracy

[9] A Linear regression models Uses Permissions, API calls. 94.7%
[10] Deep learning-based strategy Uses Encoded attributes 99.4%
[11] Hybrid evolutionary strategy Uses GA and AIS model 98.6%
[12] Using photos of app displays Uses texture, colour, and form 98.4%
[13] Neural network-based classifier Uses noise as the input data 98.2%,

All articles describe successful approaches for identify-
ing Android malware that employ a variety of techniques
such as linear regression models, autoencoders, evolutionary
algorithms, image analysis, and adversarial defence mecha-
nisms. Each approach produces excellent levels of accuracy
ranging from 94.71% to 99.4%. The approach used will
be determined by the application’s unique needs, such as
computing efficiency and attack resistance. Furthermore,
the papers train their classifiers using a variety of data,
including permissions, API requests, texts, pictures, and
encoded information. The features used are determined by
the availability of data as well as the unique characteristics
of the virus being identified.

Overall, the literature illustrate the efficacy of multiple
detection approaches and feature sets for Android malware.
As the threat of malware grows, it is critical to continue
developing and upgrading detection systems in order to
remain ahead of attackers. It’s worth significant that each
publication evaluates their suggested strategy using a
different dataset.

3. ProposedMethodology
This section describes the methodology of the proposed

work in terms of the suggested classification algorithms,
which are carefully developed to achieve high detection
rates while minimising false positives. Finally, the architec-
ture for detecting Android malware based on permissions,
which includes the characteristics and classifiers outlined in
the preceding sections is described.

A. Data Pre-processing
The Android operating system distributes and installs

mobile apps using the Android Package Kit (APK) file
format. These files include the application’s source code,
permissions, and media assets like as photographs and
videos. APK files are an essential part of the Android
operating system. Android apps are generally written in
Java and then compiled and translated into byte code. This
byte code, however, cannot be run directly on the Android
operating system. For the Dalvik Virtual Machine to ex-
ecute the programme on the device, it must be translated
into executable Dalvik byte code.The method of extracting
information from APK files by reversing the compilation
process is known as decompilation. It is typically done to
better understand how an app works or to customise it for

specific reasons. While this is beneficial, decompilation is a
complicated process that may not always return the actual
source code. Converting Java source code to executable
code on Android devices entails several processes, includ-
ing compilation, byte code translation, Dalvik byte code
conversion, and execution via the Dalvik Virtual Machine.

B. Proposed Classifier
XGBoost is a robust open-source machine learning

package for creating decision tree models for classification,
regression, and ranking tasks. It is an abbreviation for ”Ex-
treme Gradient Boosting” and is well-known for its speed,
accuracy, and scalability. XGBoost is built on a gradient
boosting architecture that uses boosting to merge numerous
weak learners into a single strong learner. It also makes use
of a variety of regularisation approaches to avoid overfitting
and increase model generalisation. XGBoost supports CPU
and GPU processing, enabling quicker model training and
prediction on huge datasets. To analyse the performance
of the models, the library also provides numerous assess-
ment metrics such as accuracy, precision, recall, and AUC.
XGBoost is extensively utilised in a variety of industries,
including banking, healthcare, e-commerce, and advertising,
where accurate and efficient machine learning models are
critical. It has won multiple data science contests and is
widely regarded as one of the most advanced machine
learning libraries. The library is continuously updated with
new features and enhancements thanks to a big and active
community of contributors and users.

C. Working of XG Boost algorithm
XGBoost is an ensemble machine learning technique

that makes predictions by combining numerous decision
trees. The algorithm functions as follows:

1) Initialization: The algorithm starts with a single
decision tree with one leaf node. The leaf node
represents the average of the target variable.

2) Boosting: In the next step, additional decision
trees are added to the ensemble to improve the
accuracy of the predictions. Each new tree is trained
to correct the errors of the previous trees in the
ensemble.

3) Tree construction: The trees are constructed using
a greedy algorithm that selects the split point that
maximizes the information gain or reduction in
variance.

4) Regularization: XGBoost uses several
regularization techniques to prevent overfitting
and improve the generalization performance of the
model. These include L1 and L2 regularization,
which add a penalty term to the loss function, and
tree pruning, which removes nodes that do not
contribute to the overall performance of the model.
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5) Prediction: Once the trees are constructed, the
model can make predictions by taking the average
of the predictions of all the trees in the ensemble.

6) Dataset: An appropriate malware dataset
DTestBeign, is chosen for the proposed model
at the beginning of the suggested approach.The
proposed model is trained using the DTrain training
dataset, the DTestMalware malware testing dataset,
and the DTsafe safe data training dataset. During
the training phase, the reconstruction error of the
DTestBeign test set was used as input.

The XG Boost algorithm Fig[7] is then used in the
approach to evaluate various performance measures,
including accuracy, false positives, and F-measure.

Figure 7. The Process of XG Boost algorithm

The development of the proposed method begins with
the selection of an appropriate malware dataset for the
model. Subsequently, the XGBoost algorithm is utilized
as per the proposed methodology Fig[8]. The algorithm is
executed, and various performance metrics are measured,
such as accuracy, false positives, and F-measure. Following
the evaluation of the model, a summary report is created
to outline the study’s discoveries, thus concluding the
proposed method.

1) Step 1 : First choose the malware dataset which are
used in the model.

2) Step 2 : We are using the XG boost algorithm of
my proposed methodology.

3) Step 3 : Implement the algorithm and they find
results like this Performance Metrics: Accuracy ,
False positive , F-measure.

4) Step 4 : After the Evaluation of the model there is
an analysis report and to the end of the method.

5) Step 5 : Based on the analysis report,
• We can identify the strengths and weaknesses

Figure 8. Flow chart of proposed method

of the proposed method.XG boost is less prone
to overfitting as the input parameters are not
jointly optimized.

• The accuracy of weak classifiers can be im-
proved by using XGboost.

• XGboost is being used to classify text and im-
ages rather than binary classification problems.

• The main disadvantage of XGboost is that
it needs a quality dataset. Noisy data and
outliers have to be avoided before adopting an
XGboost algorithm.

6) Step 6 :- Once the proposed method has been fully
developed and evaluated, it can be used to detect
malware in real-world situations. It is important
to continue monitoring and refining the model to
ensure that it remains effective and up-to-date.
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D. Pseudo Code of XGBoost algorithm
Ensemble learning is a well-known approach for im-

proving classifier performance. The XGBoost method, for
example, operates by merging numerous weak classifiers to
generate a stronger one. This is accomplished by iteratively
training the weak classifiers using a weighted version of
the training data. In each cycle, the weights of improperly
classified cases are increased, and a new weak classifier
is trained using the altered weights. The accuracy of the
classifier determines its weight, and the weights of the bad
classifiers are merged to generate the final classifier. XG-
Boost has been demonstrated to be successful in enhancing
the accuracy of classification tasks in a range of real-world
circumstances.

The XGBoost method has gained popularity in various
machine learning problems, particularly in data science.
Its capacity to handle a wide range of input data types,
including numerical, category, and textual data, is one of
the reasons for its appeal. Furthermore, the method can
efficiently manage missing data, making it resilient to real-
world data settings. Natural language processing, picture
recognition, and anomaly detection have all made use of
the XGBoost method. XGBoost has been used in natural
language processing to categorise text and do sentiment
analysis. It has been used in image recognition for object
recognition, face detection, and picture categorization. It
has been used in anomaly identification to find outliers and
anomalies in huge datasets.

Overall, the XGBoost Pseudo Code Fig.[9] is an effec-
tive machine learning and data science tool. Its capacity
to handle a wide range of data formats and its resilience
to missing data make it an appealing choice for real-world
applications. As the relevance of machine learning grows,
the XGBoost algorithm will surely play an important role
in many fields of research and development.

4. Results and Discussion
In order to accomplish the aims of this study, we

thoroughly examined methods for detecting Android
malware and identified the constraints of current models.
From there, we devised a hybrid model that merges the
advantageous features of existing models while addressing
their shortcomings. This newly proposed approach utilizes
a regression classifier to identify malicious patterns in
Android apps. To assess its effectiveness, we implemented
the model and conducted experiments. We extensively
investigated approaches for identifying Android malware
and discovered the limitations of existing models. From
there, we developed a hybrid model that combines the
best characteristics of previous models while resolving
their flaws. A regression classifier is used in this newly
suggested strategy to discover harmful trends in Android
apps. We put the idea into action and ran trials to see how
effective it was. Experiment findings show that our hybrid

Figure 9. Pseudo Code of XGBoost algorithm

model surpasses existing models in terms of accuracy,
precision, and recall. The suggested model yields a 98%
accuracy rate, which is much greater than current models.
Furthermore, our model has good accuracy and recall
values, indicating that it can categorise both harmful and
non-malicious apps appropriately.

The proposed hybrid technique also has the advantage
of being able to detect previously undiscovered varieties
of malware, which is a critical element for assuring the
model’s long-term success Fig.[10]. Overall, our suggested
model is an excellent method for identifying Android
malware that has the potential to be applied in real-world
mobile security apps. According to the evaluation findings,
the proposed hybrid strategy outperformed the conventional
models in terms of accuracy, f-measures, and confusion
matrix. The hybrid approach was able to recognise and
categorise more malware cases. The hybrid approach com-
bines the strengths of signature-based and behavior-based
detection techniques, which explains its effectiveness.
The suggested hybrid Approach for Android malware detec-
tion has outperformed existing models, making it a promis-
ing route for further exploration. The model’s adaptability to
new threats and cheap computing cost make it an attractive
answer for future study in this field, particularly given the
fast increase of mobile devices and the rising sophistication
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Figure 10. Confusion Matrix

of malware assaults. The model may lead the development
of new malware detection techniques and tools, which is a
significant addition to the field of mobile security. With
continued study and development, the hybrid paradigm
might lead to more advanced and effective security solutions
for detecting Android malware and improving Android
device security. The Table [IV], shows results demonstrate
the performance of various algorithms. The Naive Bayes
algorithm achieved an accuracy of 83.75%, an F-measure
of 83.00%, and a recall of 92.00%. The KNN algorithm
achieved an accuracy of 88.75%, an F-measure of 89.00%,
and a recall of 88.00%. The Logistic Regression algorithm
achieved an accuracy of 93.75%, an F-measure of 94.00%,
and a recall of 89.00%. However, the proposed Xgboost
algorithm outperformed all other algorithms, achieving an
accuracy of 98.00%, an F-measure of 97.00%, and a recall
of 97.00%. These exceptional accuracy, f-measure, and
recall scores are attributed to the proposed XGboost model.

TABLE IV. Comparison of Algorithms

S.No Algorithms Accuracy(%) F-Measure(%) Recall(%)

1 Naive Bayas 83.75 83.00 92.00
2 KNN 88.75 89.00 88.00
3 Logistic Regression 93.75 94.00 89.00
4 Proposed XG Boost algorithm 98.00 97.00 97.00

Regression classifiers might be used in one such hybrid
strategy. Regression classifiers are machine learning algo-
rithms that use input information to predict a continuous
value, such as a probability score. Regression classifiers
might be trained on a dataset of labelled malware and be-
nign applications in the context of Android malware detec-
tion, with variables such as permissions, API calls, and file
system activity utilised as inputs. The regression classifiers
might then be used in conjunction with other approaches,
such as static and dynamic analysis, to increase detection
accuracy. Static analysis entails inspecting an app’s code
and metadata without running it, whereas dynamic analysis
is running the app in a controlled environment to watch its
behaviour.

Fig.[11] shows the accuracy rates attained by different
methods. The precision of the Naive Bayes algorithm was
83.75%, while that of the KNN method was 88.75% logistic
regression methods achieved 93.75% accuracy, respectively.
Finally, the accuracy rate for the proposed model, which
employs the XGboost algorithm, was best at 98.00%. This
suggests that the accuracy rate of proposed algorithm is

Figure 11. Comparison of Accuracy

very impressive. The hybrid method can harness the benefits
of each technique while mitigating their drawbacks by
combining regression classifiers with static and dynamic
analysis.Future study in this area might include evaluating
the performance of several types of regression classifiers,
such as logistic regression and support vector regression,
in Android malware detection. Incorporating additional ap-
proaches like as deep learning and anomaly detection might
also increase the hybrid approach’s accuracy and efficacy.
Finally, the creation of larger datasets of labelled Android
malware and benign applications might aid in the training
and validation of regression classifiers, allowing for the
creation of more effective malware detection systems.
Fig.[12] presents the Naive Bayes algorithm had an F-

Figure 12. Comparison of F-measures

measure of 83.00%, the KNN algorithm had an F-measure
of 88.00%,the Logistic Regression algorithm had an F-
measure of 94.00%. An impressive precision of 97.00% F-
measure was attained with the proposed model. Threfore,
XGboost algorithm, demonstrating a better performance in
terms of F-measure.

Fig.[13] shows the recall rate for the Naive Bayes
algorithm is 92.00%, whereas the recall rate for the KNN
algorithm is 88.00%.while the recall rate for the Logistic
Regression algorithm is 89.00%. With a strong recall
rate of 97.00%, though the proposed XGboost algorithm
surpass the competitors.

5. Conclusion
The manuscript presents a hybrid method for detecting

Android malware with a greater accuracy and precision.
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Figure 13. Comparison of Recall

The proposed approach is evaluated on various data sets
and its accuracy is analysed with state of the art existing
algorithms. The hybrid strategy which incorporates boosting
algorithm and employs machine learning approach such as
regression classifiers, in particular might increase detection
accuracy and reliability. In future, the study would examine
the performance of other types of regression classifiers,
such as logistic regression and support vector regression,
in detecting android malware. Combining the hybrid
approach with other approaches such as deep learning
and anomaly detection might boost the accuracy of the
detection methods .
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