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Abstract: The Electroencephalogram (EEG) stands as a burgeoning frontier in the study of neuronal activity, offering a rich tapestry
of information crucial for identifying abnormalities and addressing cognitive disorders and irregularities. This paper delves into the
examination of EEG from subjects exhibiting abnormalities, contrasting them with those from normal subjects. Various topographical
features such as Mean, Entropy, and Wavelet bands are meticulously evaluated and compared.Inspired by the adaptive hunting strategies
observed in coyotes, this study introduces a novel hybrid computational model that integrates deep learning architectures, aiming to
amplify diagnostic accuracy. The methodology hinges upon the development of a unique computational algorithm inspired by the
intricate hunting behaviors of coyotes, seamlessly fused with the potent data-driven capabilities of deep neural networks. This hybrid
model is meticulously applied to scrutinize EEG data for the detection of brain disorders, capitalizing on both the biologically-inspired
algorithm and the data-centric strengths of deep learning.
The results obtained from this innovative approach are highly promising. The proposed scheme exhibits a remarkable diagnostic
accuracy, achieving an impressive rate of 98.65 per for training (True Positive - TP) and 98.82 per utilizing k-fold validation. These
preliminary findings underscore the potential efficacy of the hybrid methodology in accurately discerning brain disorders from EEG
signals. However, it is essential to acknowledge that these results represent an initial success and form just a fragment of the extensive
evaluation process.This study marks a significant stride towards leveraging interdisciplinary insights, blending principles from ethology
with advanced computational techniques to tackle complex neurological challenges. By harnessing the sophisticated strategies observed
in nature alongside cutting-edge technological advancements, this research endeavors to carve a path towards more nuanced and precise
diagnostic tools for understanding and addressing brain disorders. Further exploration and refinement of this hybrid model hold promise
for revolutionizing the landscape of neurodiagnostics, offering hope for more effective interventions and treatments in the realm of
cognitive health.
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1. INTRODUCTION
”Epilepsy, a neurological disorder characterized by re-

current seizures, poses a significant public health chal-
lenge globally. According to the World Health Organization
(WHO), it is estimated that up to 65 million people in India
are affected by epilepsy, making it a devastating reality
for individuals, families, and the entire society (WHO).
This statistic highlights the profound societal impact and
underscores the urgent need for accurate diagnostic methods
and effective interventions in managing this condition.”
Electroencephalogram (EEG) shows graph of electrical ac-
tivities of brain recorded from scalp. [1] It can be done
either invasive or non-invasive. Most probably used method
is non-invasive where electrodes are placed on scalp using

10-20 electrode system. These recordings resemble the
actual working of brain. Epilepsy can cause changes in
behavior, movement or alertness. It may last a few seconds
or a few minutes. The exact cause of epilepsy is often
unknown but risk factors include head injuries, stroke,
brain tumors and genetic factors. Treatment for epilepsy
is often with medication but more severe cases may require
surgery or dietary therapy. Epilepsy is also known as
a seizure disorder, since that is characterized by having
recurrent seizures. These seizures vary from insignificant to
significant and can manifest differently in each individual.
Treatment for epilepsy usually involves medication but,
in some cases, may also include surgery or diet therapy.
So, in case of any abnormalities or unwanted functions in
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brain, abnormal EEGs are recorded. Any such abnormal
functions of brain can be identified by analyzing normal
and abnormal EEGs. [2] The database used consists of brain
seizure EEGs as well as normal EEGs. Numerous geogra-
phies are extracted. These features are further diversified
using simple classification methods. With proper diagnosis,
treatment and management, it can be made possible for
people with epilepsy to lead full and independent lives.
[3] The primary objective of this study is to investigate
the effectiveness of a hybrid CoPrO-Deep Convolutional
Neural Network (DCNN) classifier in identifying epilepsy
based on EEG data. Existing methods for classification
often face limitations in terms of accuracy, efficiency, and
robustness. Traditional machine learning classifiers struggle
with complex and high-dimensional data where features are
not well represented or easily separable. Many classifiers,
especially deep neural networks, are prone to overfitting
when dealing with small datasets or noisy data, leading
to poor generalization performance on unseen data. Class
imbalance within the dataset can bias the classifier towards
the majority class, leading to poor performance for [4] mi-
nority classes. By combining the strengths of convolutional
neural networks and probabilistic modeling, the hybrid
CoPrO-DCNN classifier aims to overcome the limitations of
existing methods and achieve superior performance across
various classification tasks. The study aims to address the
gap in existing literature by investigating the efficacy of
the hybrid CoPrO-DCNN classifier in automating epilepsy
detection from [5] EEG signals.

2. Literature Survey
Several studies have explored diverse methodologies

for epilepsy identification, ranging from traditional sig-
nal processing techniques to advanced machine [6] learn-
ing approaches. Traditional methods often rely on feature
extraction and manual analysis of electroencephalogram
(EEG) signals, which can be labor-intensive and subjective.
With the rise of machine learning, automated approaches
have gained prominence. Traditional methods for epilepsy
identification often involve visual inspection by trained
neurologists. While effective, this approach is subjective,
time-consuming, and may [7] lack consistency. The need
for automated and objective methods has led to a surge
in research exploring various computational techniques.
Dinghan Hu et al. [8] explores opportunity of combining
traditional hand-crafted features with DL designs to identify
epilepsy states from EEG recordings. Paper is highly rele-
vant to the current study as it introduces a fusion framework
that combines traditional hand-crafted features with deep
learning designs. This method directly addresses the chal-
lenge of improving the accuracy and efficiency of epilepsy
detection from EEG signals. The paper proposes a multi-
model fusion framework that exploits the characteristics of
both methods and their complementarities. The outcomes
presented that fusion model outperforms its constituent
components for all datasets. Compared to presentation of
individual models, the fusion framework improved the
Fscores on average from 0.81 to 0.94, from 0.82 to 0.95

and from 0.79 to 0.91 in CHB-MIT, Freiburg and Puhua
datasets respectively. Therefore, the paper demonstrated
that fusing multiple deep learning models and hand-crafted
features, as well as learning the complementarity between
them, can significantly improve the capacity of EEG for
epileptic state classification. This paper by Furui et al.
proposes utilizing a multivariate scale mixture model for
detecting non-Gaussianity in Epileptic [9] EEG signals.
Model is designed to describe non-Gaussianity that often
appears in EEG data due to various physiological factors
such as scalp potential or signal cross-correlation. The
model uses the Laplacian distribution to capture the non-
Gaussianity in a multivariate manner. To demonstrate the
efficacy of the model, it was tested on EEG datasets from
six epileptic patients. The outcomes presented that model
could accurately detect non-Gaussianity in brain signals.
Furthermore, model was also able to identify seizure onset
and termination more accurately than a traditional Gaussian-
based approach Different sleep disorders were studied by
Loretta Giuliano. Giuliano [10] used polysomnography to
assess a sample of 30 patients with focal epilepsy in
order to evaluate frequency of arousals, presence of sleep
disordered breathing events and sleep variants. Giuliano
realized that meaningfully developed arousal frequency in
epileptic persons is always present. In addition, Giuliano
found that Periodic Limb Movements (PLM) in sleep were
also present in greater frequency among those with fo-
cal epilepsy. Giuliano also noted that physiological sleep
variants, such as obstructive sleep apnea-hypopnea, were
present in much higher frequency in these patients. By
highlighting the prevalence of sleep disorders in epilepsy
patients and their impact on overall health, this study con-
tributes to the broader understanding of epilepsy manage-
ment. A prospective controlled study conducted by Melanie
Bergmann explored the disruption of sleep patterns in drug
resistant epilepsy (DRE). The study had two phases: a pre-
intervention phase in which baseline data was captured
and a post-intervention phase in which measures of sleep
disturbance were assessed after an intervention. The study
targeted 54 participants with DRE, of which 26 being part
of intervention cluster and the rest being part of control
cluster. First cluster participated in five-week sleep hygiene
program, which involved education about healthy sleep
habits and utilizing sleep diaries to facilitate improvements
in sleeping and also the assessment of influence of [11]
sleep disturbance. Results indicated that intervention group
had an overall improvement in consideration with sleep
disorders. That the intervention had a positive effect. The
study concluded that a sleep hygiene intervention program
was effective in reducing harshness of sleep disorders
for DRE patients and it improved their quality of life.
Continuous Positive Airway Pressure (CPAP) treatment is
normal treatment for OSA that can also help to control
seizures in people who have epilepsy and OSA. In this,
[12] Martina V examined CPAP treatment consequences
in adults affected with OSA and epilepsy. Review found
that CPAP was generally seen to be effective in controlling
seizures in co-morbid OSA and epilepsy. Seizure Freedom
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rate increased with CPAP treatment from 40-100 per. Addi-
tionally, CPAP therapy showed positive effects in patients’
life. Early CPAP treatment proved as important task for
achieving seizure freedom and improving symptoms. The
study suggested that further research could be conducted to
investigate the exact mechanisms by which CPAP improves
seizure control. CPAP can lead to improved seizure control.
Marine Predators Algorithm (MPA) is a nature-inspired
metaheuristic optimization algorithm introduced by Afshin
Faramarzi. It is based on the social foraging behavior of
marine predators and interaction between the predators
and their environment. The main idea behind MPA is
that a predator’s search area is determined by mixture of
both environmental factors present, as well as the internal
knowledge acquired from past experiences. Like real-life
predators, the MPA algorithm herds multiple individuals
within its own group to explore new areas in search [13]of
prey. The parameters of MPA can be set to simulate varying
levels of aggressiveness, which will affect the exploration
rate. As such, MPA always strives to balance exploration
and exploitation in order to locate and target the most
relevant prey in an efficient and effective manner. Each
predator operates using a local search strategy focused
on exploring its vicinity. The predators use a mechanism
called ‘inter-predator communication’ which enables them
to synchronize their search behavior in between them.
This mechanism allows the predators to adjust their search
efforts so as to avoid hunting the same prey twice and to
maximize their overall hunting success. MPA is tested and
tested for various benchmark problems like the Traveler
Salesman Problem and bi-objective optimization. It seems
to be relatively new algorithm, so additional investigation is
required to further expand upon its potential applications.

3. Methodology
The study utilizes EEG data collected from individuals

with and without epilepsy. This data undergoes preprocess-
ing to enhance signal quality and remove noise. Feature
extraction techniques is then applied to capture relevant
characteristics indicative of epileptic activity from the EEG
signals. These features will serve as input to the hybrid
CoPrO-DCNN classifier, [14] which combines convolu-
tional neural networks with probabilistic modeling. The
classifier is trained on labeled EEG datasets to distinguish
between epileptic and non-epileptic patterns. Performance
evaluation will involve metrics such as accuracy, sensitivity,
and specificity. Finally, the performance of the hybrid
classifier is compared with existing methods for epilepsy
detection. The data input utilized in this research is gathered
from Cyclic Alternating Pattern (CAP) dataset (DT) [15],
which is referred as a persistent action of EEG signal
that appears in non-rapid eye movement sleep, which is
separated into cerebral activating and non-activating periods
in less than a minute, as well as real-time DT, that is
gathered from Smt. Kashibai Navale Medical College and
General Hospital. The collected dataset includes Normal
data from 26 males and 16 females having an average age
of 20.63 and Epileptic data from 21 males and 21 females

Figure 1. Methodology

with an average age of 24.76. This data, sampled at 256
Hz and band-pass filtered between 0.53 to 70 Hz, is likely
used for epilepsy monitoring or diagnosis. Recordings are
made using 24 or 32 channels, providing comprehensive
coverage of brain activity. CHB MIT DT [16] with the
EEG record gathering of 22 pediatrist subjects with un-
manageable captures and annotation of 182 captures is also
studied. Figure 1 shows the steps used in this research work.
There is possibility of adding any unwanted signals known
as artifacts while acquiring EEG. So, first task is to remove
artifacts from acquired EEG using different pre-processing
techniques such as band pass filtering, notch filtering. [17],
[18] During the data collection, it is significant to verify
whether gained data are artifacts less to avoid the difficulty
during investigation of EEG, which determines that gained
data retrieves only value of human brain electrics, thus
extracting the artifacts in [19] the data. EEG signal process-
ing is significant for the effective detection of the human
brain disorders. The process includes the under-sampling
of the fresh EEG signals and then BPF is utilized to
remove unnecessary noises and other EEG signal artifacts,
[20] in addition, the prevalence range that is less than
0.05 Hz and more than 75 Hz is reduced from data input
in order to produce even functioning of [21], [22] EEG
signals. The preprocessing steps, including under-sampling,
BPF, and removal of frequencies outside the prevalence
range, collectively contribute to the removal of artifacts
and enhancement of EEG [23] signal quality. Frequencies
outside the prevalence range (less than 0.05 Hz and more
than 75 Hz) are reduced to enhance the functionality of EEG
signals. BPF is employed to remove unnecessary noises
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and EEG signal artifacts while retaining the frequencies
[24] of interest. Once the filtered signal is obtained, for
each EEG signal various features are extracted. EEG signal
revels some of the features in frequency [25] domain too.
So, time domain and frequency domain analysis are done
so as to extract features like mean. variance, entropy, band
[26] power, skewness.The features that are extracted are
Kurtosis, Wavelet features, Skewness, Hjorth features, Spec-
tral features, Statistical features, Tsallis entropy, Common
spatial pattern and [27], [28] Band power.
A. Feature Extraction and selection: Following features
have been extracted from each recorded EEG signal. EEG
signal is decomposed in to frequency bands and features
are calculated for each [29] sub band.
Mean: Mean of each frequency band is calculated and
tabulated.
Variance: Variance represents typical grade to which indi-
vidual point varies as compared [30] to mean.
Kurtosis: Kurtosis estimates the level of indisposed infor-
mation in the data distribution, which computes to identify
whether the input information is distributed strongly or
weakly in a usual distribution, which is arithmetically [31]
presented as Kurtosis = (M4[x(n)])/(M2

2[x(n)])(1)
Skewness: The skewness transfers the aligned signal curve
present in DT and estimates the similarity in the data
through calculating whether input data is behaving strongly
or weakly, which is expressed as, It donates asymmetric
form that diverges from [32], [33] symmetric curvature.
S kewness = (E[(x(n) − (U + 03BC))3])/(U + 03C3)3(2)
Dispersion: It is calculated as second root of the variance.
Band power: Power of each EEG sub band is calculated
using periodogram. The estimation of power spectral mass
as well as power in a certain bandwidth medium is referred
as band power. The signals of EEG are the collection of
varied types of subsets for discovering the alterations in the
human brain in the means of different levels of prevalence
theta from 4–8 Hz, delta from 0.5–4 Hz, beta from 12–30
Hz, gamma from 30–100 Hz and alpha from [34], [35] 8–12
Hz.
Entropy: The tsallis entropy exhibits a presiding part in
the limited analytical automation as well as multi-fractal
latitude period controls, extended impacts of evocation or
extended level of communications are strongly demon-
strated by the [36] tsallis entropy. As EEG signals contain
an extended communication range, it is relevant to utilize
the limited estimation to demonstrate the impacts of the
[37] extended communication.
Spectral features: The spectral features are majorly depen-
dent on the constituents of prevalence, which is obtained
by transferring the period stand [38] of the waveforms into
the domain of prevalence by establishing the examination
of Fourier such as spectral roll-off, spectral crest factor,
spectral flatness and spectral centric which are estimated
by the functioning of [39], [40] automation signals.
Hjorth features The variables of Hjorth are usually utilized
for the analytical elements present in the functioning of
EEG signal in the time period, which is utilized largely for
estimating the signals of EEG in the extraction [41], [42] of

features. HV=var(x) (3) where, HV is referred to as Hjorth
variables.
Hybrid COPRO-DCNN classifier In order to, predict
changes in brain activity that are helpful for identifying
a neurological disorder, [43] EEG signals [44] are used. A
highly developed system assists to visualize the variation
in brain. To eliminate noises from the electrodes, the EEG
machine and outside sources, the EEG signals from given
database are extracted as well as processed. The proposed
hybrid CoPrO-DCNN classifier combines the strengths of
CNNs with probabilistic modeling to further refine epilepsy
detection from [45] EEG signals. CNNs excel at extracting
intricate features from complex data, while probabilistic
modeling offers a mechanism for quantifying uncertainty
in predictions, enhancing the classifier’s robustness and
interpretability. Following the feature extraction, the RE-
LIEEF [46], [47] filters the removed features by rating
them and sorting them according to the weights calculated.
The features chosen are passed to the DCNN classifier,
which incorporates a hybrid CoPrO-based algorithm [48],
[49] for classifier tuning. The developed research highlights
worth of the hybrid CoPrO-based algorithm for fine-tuning
the inner model structure like bias and weight of DCNN
classifier. This algorithm inherits traits of the long jump
and intelligent [50] environment adaptation. Additionally,
in aim of improving the detection model’s precision, the
features are removed to identify brain irregularities.
a) Input : EEG dataset used consists of CAP data collection,
CHB-MIT dataset and real time epileptic dataset and then
it is forwarded through the pre-processed model for [51]
further processing.
b) Pre-processing and Feature extraction: Brain signals are
applied to preprocessing which reduces the irregularities
present in raw brain signals, moreover processed EEG
signals are given to feature extractor, which is used for in-
formative feature extraction such as Statistical features,[52]
Hjorth features, Common spatial pattern, Tsallis entropy,
Wavelet features, Spectral features and [53] Band power.
This segment demonstrates how to categorize pre-processed
EEG so that it will identify brain abnormalities. Deep
learning techniques are primarily used to diagnose disease,
[54] precisely predict variation in the anatomical formation
of brain, as well as analyses abnormalities in the brain. An
effective machine learning (ML) technique is utilized for
categorizing images is the deep CNN. For effective brain
abnormality prediction, a hybrid CoPrO-DCNN model [55],
[56] is developed. Using the EEG signals, the developed
hybrid optimization-based on DCNN is utilized to calculate
brain disorders. The Artificial intelligence network (ANN)
is constructed through DL, [57] which is a ML model that
is intended for evaluating better quantity of information
travel throughout different neuron layers, [58] which are
the fundamental component of Artificial Intelligence (AI).
EEG is progressed through a deep CNN model, which are
fewer than amount of fake neurons for EEG processing. A
mathematical technique known as ”convolution” is used to
train the classifier using the input [59], [60] EEG signals.
The convolutional network’s architecture contains four lay-
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ers named convolution, pooling, ReLU and FC layer (FCL).
To avoid searching for prey in specific areas, [61] the hy-
brid coyote optimization’s decision-making and adaptability
traits are combined with characteristics of long jump of
the predator,[62] as a result, shows faster convergence and
less time spent is attained looking for prey. The growing
prevalence of these conditions indeed necessitates novel
methodologies to ensure timely and [63], [64] accurate
diagnoses. Hybrid algorithm shown in Table 1 typically
combine elements from multiple algorithms or techniques
to leverage their respective strengths and [65] mitigate
weaknesses. These combinations are often designed to
improve overall performance, efficiency, or robustness. In
the context of CoPrO-based algorithms, CoPrO may refer to
Cooperative Co-evolutionary Optimization, which is a type
of optimization technique inspired by [68], [69] biological
co-evolution.

The developed hybrid CoPrO-DCNN classifier is uti-
lized to assess comparative and experimental findings in or-
der to identify any abnormalities in the brain. The outcomes
of the developed system are utilized for the efficiency of the
anticipated model. MATLAB is used in the experimental
setup[70] to evaluate the efficiency of the developed system.
The suggested approach can be quickly and efficiently used
with Windows 10 . 64-bit operating systems, 16 GB RAM,
a MATLAB tool installed. To evaluate the efficiency of
the developed hybrid CoPrO-DCNN model, the sensitivity,
specificity, accuracy [71], [72] are measured.
Accuracy: The performance can be explained in part by
accuracy, which is a key parameter. Accuracy is referred as
the distance relating the calculated value of the developed
form and the [73] correct value.
Sensitivity: Sensitivity is a necessary component for accu-
rately identifying patients with [74] brain abnormalities.
Specificity: Specificity is measured by its accuracy in iden-
tify brain abnormality of the proposed method. As a result,
the relative amount of true negatives to every real [75], [76]
negative case.

4. Results and Discussions
Figure 2 illustrates the characteristic patterns observed

in epileptic and non-epileptic EEG signals. Key findings
include the presence of sharp waves, spike-and-wave com-
plexes, and high-frequency [77], [78] oscillations in epilep-
tic EEGs, whereas non-epileptic EEGs exhibit smoother,
more regular waveforms.

Nonepileptic EEG plots illustrate the brain’s electrical
activity over time, showcasing different frequency bands. In
a normal EEG:

1) Delta waves (0.5-4 Hz) dominate during deep sleep.
2) Theta waves (4-8 Hz) are associated with drowsiness

and light sleep.
3) Alpha waves (8-13 Hz) are present during wakeful

relaxation with closed eyes.
4) Beta waves (13-30 Hz) are associated with active,

alert mental activity.

Figure 2. Epileptic and Non-Epileptic EEG

The amplitude varies, generally lower in slower frequen-
cies and higher in faster ones. Recognizable and organized
patterns are evident, with clear distinctions between [79]
frequency bands. Variations occur based on wakefulness or
sleep states

Nonepileptic EEG plots indicate various irregularities:

1) Epileptiform activity, such as spike or sharp waves,
[80] suggests epilepsy.

2) Slow waves, like generalized or focal slowing, indi-
cate potential abnormalities.

3) Presence of artifacts from external sources or patient
movement distorted [81] the signal.

Figure 3 represents epileptic signal decomposition.
Epileptic EEG signal decomposition involves the process
of breaking down an EEG recording into its constituent
components to better understand the underlying electrical
activity. This decomposition analyzes epileptic patterns and
events within the [82], [83] EEG signal.

The statistical parameters presents parameters calculated
from EEG signals, such as mean amplitude, frequency
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TABLE I. Hybrid CoPrO-based Algorithm [66], [67]

S.NO Pseudo-code for hybrid CoPrO-based algorithm

1 Input: Initialization of groups with prairie wolf
2 Output: with the optimal fitness
3 Initialization
4 Fitness estimation
5 The adaptability checking for prairie wolf
6 When the condition for termination is not attained then,
7 For every group to perform
8 Leaders position updated
9 Cultural tendency generation

10 For every wolf of the group to perform
11 Social behavior updated
12 New communal activities generation
13 New solution’s origin
14 End for
15 Target’s state updation
16 Search agent’s new position
17 End for
18 End while
19 Best solution selection

Figure 3. EEG Decomposition

distribution, and [84] signal variability. Mean values in-
dicate the central tendency of the data. In general, mean
values for Det1 to Det4 are close to zero for normal
conditions but deviate for [85] epileptic conditions. Det4
shows a noticeable increase in mean for epileptic conditions,
indicating a shift [86] in the baseline.

TABLE II. Mean
Coeff Normal Epileptic
Det1 0.002008 -0.018073022
Det2 -0.00488 0.045201009
Det3 -0.01217 0.029848583
Det4 -0.00539 0.303370375
Aux4 -13.5798 -8.232692563

Variance measures the spread or dispersion of [87], [88]
the data. Variance values are significantly higher in epileptic
conditions for all detectors, suggesting increased variability
in EEG signals during seizures. Standard deviation values
further confirm the increased dispersion [89] in epileptic
conditions for all detectors and the auxiliary signal, [90]
highlighting the variability and volatility of EEG signals
during seizures.

TABLE III. Variance
Coeff Normal Epileptic
Det1 14.97847436 1996.396026
Det2 71.93736903 13709.51105
Det3 189.6150768 40100.41058
Det4 313.4355867 41782.07346
Aux4 886.0344246 33438.78538

TABLE IV. Dispersion
Coeff Normal Epileptic
Det1 3.870203 44.68105
Det2 8.48159 117.0876
Det3 13.77008 200.2509
Det4 17.70411 204.4066
Aux4 29.76633 182.8628

Band power represents the distribution of power in
different [91], [92] frequency bands. There is a substantial
increase in band power for epileptic conditions across
all detectors, reinforcing the notion of altered frequency
characteristics [93] during seizures. Entropy measures the
disorder or unpredictability in [94] the signals. There is
a notable increase in negative entropy values for epileptic
conditions, indicating a higher degree of disorder [95] and
complexity during seizures.
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TABLE V. Band Power
Coeff Normal Epileptic
Det1 14.97482 1995.909
Det2 71.91983 13706.17
Det3 189.5689 40090.62
Det4 313.3591 41771.97
Aux4 1070.228 33498.4

Kurtosis describes the shape of [96] the distribution.
Higher kurtosis in epileptic conditions, especially for Det1
to Det3, [97], [98] suggests a more peaked and heavy-tailed
distribution, potentially reflecting abnormal EEG patterns
during seizures.

TABLE VI. Entropy
Coeff Normal Epileptic
Det1 -218417 -7.6E+07
Det2 -1585715 -6.3E+08
Det3 -4914076 -2E+09
Det4 -8635938 -2E+09
Aux4 -3.4E+07 -1.6E+09

TABLE VII. Kurtosis
Coeff Normal Epileptic
Det1 3.638981 11.62455
Det2 5.158707 10.92533
Det3 5.592646 8.197364
Det4 4.685814 4.561308
Aux4 3.797553 4.019348

Skewness measures the asymmetry of [99], [100] the
distribution. Positive skewness in both normal and epileptic
conditions for most detectors suggests a [101], [102] right-
skewed distribution. The higher magnitude in epileptic
conditions indicates a more pronounced skewness.

TABLE VIII. Skewness
Coeff Normal Epileptic
Det1 0.036866 0.702951
Det2 0.033372 0.88553
Det3 0.037513 0.683605
Det4 0.125821 0.421174
Aux4 -0.17635 0.338782

Results are analyzed depending on performance param-
eters like specificity, accuracy, sensitivity, in which devel-
oped method accuracy seems [103], [104] to be improved
by integrating the extended run and flexible elements which
instructs the algorithm and states that the EEG signals
consist many information about the [105] brain waves. This
approach aligns with the research objectives by providing a
holistic and innovative solution to the challenges of epilepsy
identification from EEG signals. By combining biological-
inspired optimization strategies [106], [107] with deep
learning architectures, the hybrid CoPrO-DCNN classifier
offers a powerful tool for accurately detecting epileptic
patterns in EEG data, ultimately improving diagnostic accu-
racy [108] and patient outcomes in epilepsy management.
Thus, the result shows that the developed hybrid CoPrO-
DCNN classifier achieved an accuracy rate of 97.50 per and

94.56 per respectively [109], [110] depending on Training
Percentage and K Fold, which is comparatively higher than
the existing techniques for Real [111] time dataset.

Ratio Indices

Different EEG indices calculated for real time dataset
are listed below in Table 9. The ratio indices presented in
Table 9 provide insights into [112], [113] various aspects of
EEG signal characteristics and their relevance for epilepsy
diagnosis [114] or classification.

TABLE IX. Ratio Indices

Indices Epileptic Normal Per change
delta/theta 0.215656 0.130671 65.03
alpha/delta 0.522481 0.816094 -35.97
theta/delta 28.66238 10.44697 174.36
theta/alpha 3259.564 284.2535 1046.71
alpha/theta 0.01823 0.015837 15.10

beta/(alpha + theta) 0.2671 0.3288 -18.76

An increase in delta/theta ratio indicates heightened
slow-wave activity relative to theta activity, which is often
associated with abnormal brain states such as [115] epileptic
seizures. A decrease in alpha/delta ratio suggests reduced al-
pha activity relative to slow-wave delta activity, [116] which
may be indicative of abnormal cortical functioning observed
in epilepsy. An increase in theta/delta variance suggests
[117] greater variability in the balance between theta and
delta activity, which could reflect dynamic changes in brain
states associated with epileptic activity. A high positive
skewness in theta/alpha ratio indicates an asymmetric distri-
bution [118], [119] with a longer tail towards higher values,
suggesting dominance of theta activity over alpha activity.
An increase in alpha/theta ApEntropy suggests [120] greater
irregularity or unpredictability in the relative balance be-
tween alpha and theta activity. A decrease in beta/(alpha +
theta) variance suggests reduced [121], [122] variability in
the balance between beta activity and the combined alpha
and theta activity, [123], [124] which reflects altered cortical
excitability observed in epilepsy.

5. Conclusions
Brain signal can be analyzed for spotting brain ailments.

In this research work EEG signals of normal and Seizure
patients have been recorded. By using 4 level decompo-
sition of acquired and filtered signals various features are
extracted. The study likely identified specific patterns or fea-
tures within EEG signals that distinguish between epileptic
and non-epileptic activity. The study addresses limitations in
current diagnostic methods for epilepsy, such as subjectivity
and time-consuming manual interpretation of EEG signals.
Automated approaches, like the proposed hybrid CoPrO-
DCNN classifier, offer potential benefits such as improved
objectivity, efficiency, and scalability in epilepsy detec-
tion. By automating the analysis process, these approaches
can enhance diagnostic accuracy, reduce the burden on
healthcare professionals, and facilitate earlier detection and
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intervention for individuals with epilepsy. By analyzing
EEG signals associated with epilepsy, the study provides
valuable insights into the pathological mechanisms under-
lying seizure generation and propagation. For example, the
presence of specific spectral or temporal patterns in epileptic
EEGs may reflect aberrant synchronization of neuronal
networks or hyperexcitability within certain brain regions.
The coyote predator algorithm is linked to the outcomes
of this study. Thus, the result shows that the developed
hybrid CoPrO-DCNN classifier achieved an accuracy rate of
97.50 per and 94.5 per respectively depending on Training
Percentage and K Fold, which is comparatively higher than
the existing techniques for Real time DT. Finally, it is
settled that brain signals can be analyzed properly and
fed to the classifier to predict the abnormal signals easily.
In turn, patient’s condition can be known earlier so as
to avoid any future consequences by early prediction and
treatment. Moving forward, the study opens up avenues for
further research into EEG-based biomarkers of epilepsy and
the development of innovative diagnostic and therapeutic
approaches. Future studies may explore novel machine
learning algorithms, advanced signal processing techniques,
or multimodal imaging methods to enhance the accuracy
and reliability of epilepsy identification.
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