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Abstract: This paper presents a novel computational framework for blind audio source separation (BASS) that enhances existing 

Independent Component Analysis (ICA) with an adaptive swarm intelligence algorithm (ASIA). The proposed ASIA methodology 

addresses the challenges of optimal parameter determination in stochastic optimization process of swarm intelligence approach for an 

estimation of the precise unmixing matrix. In order to ensure the separated signals are as independent as possible in BASS task, a 

complex and non-convex optimization problem is formulated where the unmixing matrix is customized to minimize mutual 

information and maximize the non-Gaussianity of the signals. To solve our optimization problem the study introduces a weighted 

combination of negentropy and cross-correlation in the fitness function of the proposed ASIA. This unique approach of proposed 

framework ensures maximum statistical independence of the separated signals from the unknown mixed signals. Overall analysis of 

experimental outcome demonstrate that the proposed framework exhibits superior blind separation of mixed audio signals, 

showcasing enhanced computational efficiency and de-mixing accuracy compared to conventional baseline approaches. This paper 

has presented unique approach to blind audio source separation in over-determined scenario that combines adaptive 

PSO with ICA. The main goal of the proposed approach was to find an optimal de-mixing matrix that could efficiently 

separate mixed signals. The presented approach incorporates an adaptive inertia weight and velocity clamping 

mechanism into the traditional PSO, which effectively addresses the challenges associated with parameter 

determination in stochastic optimization techniques 

 

Keywords: Audio Signal; Mixed Signal; Blind Source Separation, ICA; Swarm optimization

 

1. INTRODUCTION  

Blind Audio Source Separation (BASS) is a powerful 

technique that is used to extract individual audio sources 

from a mixture of sounds. It is widely used in many 

auditory signal processing applications such as speech 

enhancement, music processing and Bioacoustics. 

However, separating audio signals from a mixture without 

knowing the source signals or mixing process poses 

significant challenges. This means that BASS algorithms 

must be able to handle the inherent complexity and non-

stationarity of audio signals, each with its unique temporal 

signatures and frequent reverberations. Additionally, the 

blind nature of the separation task makes it inherently 

prone to inaccuracies, requiring careful design of BASS 

algorithms. Independent Component Analysis (ICA) has 

been a traditional method for Blind Audio Source 

Separation (BASS) due to its effectiveness in separating 

statistically independent sources. However, ICA's 

performance is often dependent on the optimal selection 
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of various parameters and the underlying assumption that 

the sources are non-Gaussian and mutually independent. 

These limitations can hinder separation accuracy and 

computational efficiency. ICA-based source separation 

methods often get trapped in local optima and are not very 

robust against non-linear mixtures. Additionally, existing 

ICA-based methods often face slow convergence issues 

and lack precision in estimating the mixing matrix, 

affecting the accuracy of source separation [18]. 
In this paper, the research study proposes a novel 
computational framework that significantly enhances the 
conventional ICA methodology for BASS by integrating 
an adaptive swarm intelligence algorithm (ASIA). The 
proposed ASIA methodology is precisely designed to 
address the common pitfalls associated with optimal 
parameter determination in standard particle swarm 
optimization (PSO) algorithm and as well as to ensure 
reliable unmixing matrix estimation using classical ICA. 
The proposed ASIA employs an adaptive inertia weight 
and a velocity clamping parameter to fine-tune the 
optimization process with higher precision. To further 
strengthen the performance of the BASS task in the 
proposed framework, we introduce a weighted 
combination of negentropy and cross-correlation in the 
fitness function of the ASIA. This unique combination 
serves as a key-enabler in devising an effective objective 
function for solving our optimization problem of 
maximizing the statistical independence of the separated 
signals. The proposed objective function is derived in 
such a way that strategically operates the unmixing matrix 
to minimize mutual information while concurrently 
maximizing the non-Gaussianity of the signals. The 
incorporation of the cross-correlation is ensuring minimal 
similarity between the separated signals, thereby 
significantly enhancing the robustness and efficacy of the 
proposed BASS framework using ASIA driven ICA. The 
rest of the manuscript is organized as follows: Section II 
briefly review some related work in BASS context 
through signal processing and metaheuristic algorithms. 
In Section III, the proposed ASIA scheme is discussed in 
details. Then the obtained results are presented in Section 
IV and finally Section V concludes the paper with core 
findings and future research direction. 

  

2. RELATED WORK 

Numerous research studies have been done in the 

literature to address BASS problem. The existing studies 

includes methods such as time-frequency-masking [7], 

computational auditory scene analysis (CASA) [9], 

beamforming [8], independent component analysis (ICA) 

[10], and principal component analysis (PCA) [11]. Each 

of these methods have their own limitations and may not 

perform optimally in all situations. In addition, many new 

techniques have been introduced in audio BSS research, 

including non-negative matrix factorization (NMF) [12], 

sparse component analysis [13], dictionary learning [14], 

and the application of neural networks [15]. However, 

these methods are very sensitive to noise, an unavoidable 

aspect in many practical applications. Among the 

numerous existing methods, ICA has been widely 

recognized for its effectiveness in solving BASS 

problems. ICA aims to represent a set of mixed signals as 

a linear combination of statistically independent 

components [16, 17]. However, this assumption may not 

always hold true, particularly in complex audio 

environments. Kitamura [19] introduces a computational 

scheme integrating Independent Vector Analysis (IVA) 

and single-channel NMF to separate the mixed auditory 

signal into discrete components in the context of 

determined BSS problem. However, this approach may 

fail to converge to an optimal solution when introduced to 

complex speaker mixing problems. Leplat et al. [20], 

introduced an approach that combines NMF with β-

divergences to measure the discrepancy between the 

mixed signal and its reconstruction. To encourage a 

compact representation in the dictionary matrix, a penalty 

term is employed, promoting basis vectors with reduced 

volume. 

 

Mogami et al. [21] addresses blind multichannel mixed 

audio separation. The proposed approach combines ICA 

with deep learning to estimate the unknown mixing matrix 

and update the time-frequency structures of each source. 

However, the reliance on pre-trained learning models 

limits flexibility and generalizability of this approach. 

Moreover, this work lacks a thorough discussion of the 

computational complexity subjected to the proposed 

scheme. Eldin and Youssif [22] presented a hybrid 

scheme that combines hidden Markov model (HMM) and 

CASA to solve cochannel speech BSS. The HMM is 

applied as a preprocessing method to improve pitch 

tracking, pitch enrichment, and pitch grouping. 

Subsequently, CASA is utilized for speech separation. 

However, HMM is sensitive to initial conditions and 

assumes stationary statistical properties of the input 

signals. Therefore, it may lead to slow convergence 

issues. To improve convergence rate and obtained sub-

optimal solution, Khalfa et al. [23] suggested a PSO with 

high-level exploration mechanism that incorporates 

additional operators namely crossover an application of 

genetic algorithms (GA) and a bee colony optimization 

(BCO) method, to update particle velocity and position. 
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The approach demonstrates robustness in BSS based on 

experimental results. However, the utilization of these 

additional operators, significantly increases algorithm 

complexity and increase algorithm response time. Salman 

et al. [24] suggested lightweight PSO driven ICA with the 

objective of optimizing the mutual information function 

for speech source separation. The PSO method 

implemented in this work is Quantum PSO which is very 

sensitive to initial parameters setup such as quantum gates 

and quantum rotations, which itself is time consuming 

empirical analysis. The work carried out by Zi and Lv 

[28] have studied performance of the several swarm-based 

optimization scheme to solve BASS problem. There are 

also many research works carried out in similar direction 

by applying metaheuristic such as Xia et al. [25], used 

butterfly optimization algorithm, Abbas, and Salman [26], 

adopted an approach of Quantum PSO, while Lee and 

yang [27] used gravitational PSO.  Despite many 

significant research efforts in the field of audio BSS, there 

remains a significant gap between the theoretical 

capabilities of the above discussed methods and their 

practical performance in real-world. This is because of 

following reasons 

 

• The ill-posed nature of the BASS: In the BASS 
task there are infinitely many possible solutions to 
the problem, given a mixed signal. This means that 
it is difficult to find a unique solution that is also 
accurate. 

• The complexity of audio signals: Audio signals are 
complex and non-stationary, which makes it 
difficult to design algorithms that can effectively 
separate them. 

• The presence of noise: In real-world applications, 
the mixed signal is often corrupted by noise and 
interference. This makes it even more difficult to 
separate the source signals. 

The existing statistical techniques and metaheuristic 
optimization methods are versatile and can be applied to a 
wide range of problems. However, when used to solve the 
BASS problem, their effectiveness often diminished due 
to the need for significant modifications to handle the 
complexities of audio signals. A critical aspect of this 
challenge is accurately estimating the true mixing matrix, 
which is of significant practical importance in BASS. To 
address these limitations, we propose a comprehensive 
and flexible system and methodology explicitly tailored to 
address the complexities of BSS in audio environments. 
Our approach is meticulously designed to provide a 
precise, customized solution for BSS, with a particular 
focus on addressing the intricacies presented by complex 
audio environments. 

3. METHODOLOGY 

In this section, the study first details on the theoretical 
basis for the proposed ASIA algorithm and then discusses 
the  implementation procedures to address BASS problem 
effectively. 

A. Mathematical Model 

Consider 𝑛 source signals represented by 𝑆(𝑡) ∈ 

[𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑛] where s𝑖 refers to the 𝑖𝑡ℎsource signal. 

If each signal in 𝑆(𝑡) is statistically independent of each 

other, then the mixing model is described as follows: 

 
            𝑋(𝑡) = 𝐴 × 𝑆(𝑡) + 𝑁(𝑡)                              (1) 

Where, 𝑋(𝑡) ∈ [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), ⋯ , 𝑥n(𝑡)]𝑇is a vector 

of observed mixed signals at time 𝑡 , 𝑇  is transpose 

operator, A is mixing-matrix of size 𝑛 × 𝑛, and 𝑁(𝑡) is a 

vector representing the noise at time 𝑡, such that: 𝑁(𝑡) ∈
[𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡), ⋯ , 𝑛n(𝑡)]𝑇. Thus, from Equ (1) it is 

clear that the observed mixed signal 𝑋(𝑡)  is a linear 

combination of the signal 𝑆(𝑡)  and noise 𝑁(𝑡) . 

Therefore, the prime aim in the BASS task is to separate 

signal 𝑋(𝑡) and reconstruct or recover the 𝑆(𝑡), without 

knowing the actual mixing matrix 𝐴 . The unmixing 

model in BASS task can be described as follows: 
                           𝑌(𝑡) = 𝑊 × 𝑋(𝑡)                                 (2) 

Where, 𝑌(𝑡) ∈ [𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡), ⋯ , 𝑦n(𝑡)]𝑇 is an 
output vector consisting of recovered and separated 
signals 𝑦i(𝑡)  which should be similar to the original 
source signal 𝑆(𝑡), 𝑊 is the mixing matrix, which is an 
approximated form of actual mixing matrix 𝐴. However, 
in the real-world, estimating 𝑊  precisely is quite 
challenging task as 𝐴 is unknown.  

 

Figure 1.  Schematic illustration of the BASS process 

Figure 1 provides a visual representation of the above-

described BASS model. It clearly depicts how multiple 

source signals, 𝑠i(𝑡) are mixed with noise 𝑛i(𝑡) through 

the true mixing matrix 𝐴 to produce the observed mixed 

3



 

 

4           Pushpalatha G: A Novel Blind Audio Source Separation Utilizing Adaptive Swarm Intelligence and 

combined Negentropy – cross correlation optimization 

 

 

 

 

 
http://journals.uob.edu.bh 

 

signals 𝑥i(𝑡). The unmixing or de-mixing matrix 𝑊 aims 

to recover the original source signal as 𝑦i(𝑡)  from the 

mixed signals. 

B. ICA-based BASS Solution 

ICA is one of the popular statistical methods for 
separating mixed signals into their individual components. 
It assumes that the mixed signals are statistically 
independent, and are non-Gaussian, meaning that they 
have no correlations or shared statistical properties. ICA 
algorithm employs two common statistical measures, 
namely negentropy (NE) and mutual information (MI), for 
the quantification of non-Gaussianity and statistical 
independence in the separated signal 𝑌(𝑡) . The non-
Gaussianity is a vital attribute of ICA for the isolation of 
mixed signals into distinct components, while MI assesses 
the degree of mutual dependence between the separated 
signals. The process involves maximizing NE and 
minimizing MI to enhance the non-Gaussian 
characteristics and statistical dependence of the signal, 
thereby facilitating the separation procedure. The 
procedure of ICA is detailed in Algorithm-1. 

 

The algorithm-1 takes mixed audio signals 𝑋(𝑡)  and 

number of iterations 𝑇 as its input and takes mixed audio 

signals 𝑌(𝑡) . It begins with preprocessing operations 

namely data centering and whitening. Data centering 

eliminates first-order statistics from 𝑋(𝑡) and whitening 

ensures the data has unit variance. Next, an unmixing 

matrix 𝒲  of size 𝑁 × 𝑁  is initialized randomly due to 

the blind nature of the problem. The algorithm then 

estimates the separated signals 𝑌𝐸(𝑡), computes NE i.e., 

𝒥(𝑦𝑖)  for each signal in 𝑌𝐸(𝑡) , where, 𝐻(𝑦𝑖
𝐺) is the 

entropy of a Gaussian random   variable with the same 

covariance as the separated signal 𝑦𝑖  and 𝐻(𝑦𝑖)  is the 

entropy of the separated signal 𝑦𝑖 . It then updates the 

values in 𝒲 , and normalizes the columns of 𝒲 . The 

algorithm checks for convergence by computing the MI 

between the separated signals and checking if the 

maximum number of iterations has been reached. The 

quality of the estimated separated signals 𝑌(𝑡) is ensured 

by checking the convergence criteria, which include 

computing MI between separated signals and checking if 

the maximum number of iterations and convergence 

criteria have been met. 

 

Algorithm-1 Estimation of separated signals using 

ICA 

Input: 𝑋(𝑡) (mixed audio signals), T (number of iteration) 

Output: 𝑌(𝑡) (separated audio signals) 

Start 

1.Preprocessing 
               Center and whiten the mixed signals 𝑋(𝑡) 

2. Initialize random unmixing matrix: 𝒲 of size 𝑁 × 𝑁 

3. For each ICA iteration i = 1:T, do 

4.     Estimate the separated signals: 𝑌𝐸(𝑡) = 𝒲 × 𝑋(𝑡)  

5.     Compute NE (𝒥 ) for each separated signal to 

measure 

        non-Gaussianity: 𝒥(𝑦𝑖) = 𝐻(𝑦𝑖
𝐺) − 𝐻(𝑦𝑖) 

6.  Update the unmixing matrix: 𝒲 =
arg 𝑚𝑎𝑥𝒲 ∑ 𝒥(𝑦𝑖)𝑖  
7.  Normalize the column of 𝒲  
8.Check convergence 

9. COMPUTE THE MI BETWEEN THE SEPARATED 

SIGNALS 

           𝑀𝐼(𝑌𝐸(𝑡)) = ∑ 𝐻(𝑦𝑖) − 𝐻(𝑌𝐸(𝑡))𝑖  

10.   CHECK: THE MAXIMUM NUMBER OF ITERATIONS IS 

REACHED AND CONVERGENCE CRITERIA ARE MET 

  If yes  

        go to step 11  

  Otherwise,  

        go back to step 4. 

11. RETURN THE SEPARATED SIGNALS: 𝑌(𝑡)= 𝑌𝐸(𝑡) 

End  

C. Challenges with ICA in BASS 

 The prime objective of ICA is to find the 
unmixing that minimizes mutual information (MI), 
thereby maximizing independence and enhancing the non-
Gaussianity of the separated signals. This objective can be 
mathematically represented as an optimization problem: 

Optimization problem 1: Maximize the sum of NE (𝒥) for 
the i-th separated signal, such that: 

max
𝑊

∑ 𝒥(𝑦𝑖(𝑡))𝑁
𝑖=1                                  (3) 

 Where, 𝒥(𝑦𝑖(t)) = H(𝑦𝑖
𝐺(t)) − H(𝑦𝑖(𝑡))  and 

H(𝑦𝑖
𝐺(t)) is the entropy of a Gaussian random variable 

with the same covariance as 𝑦𝑖(𝑡)  and H(𝑦𝑖(𝑡)), is the 
entropy of 𝑦𝑖(𝑡).  

Optimization problem 2: Minimize the MI between the 
separated signals, such that: 

min
𝑊

𝑀𝐼(𝑌(𝑡))                                        (4) 

 Where, 𝑀𝐼(𝑌(𝑡) = ∑ H(𝑦𝑖(𝑡)) − 𝐻(𝑌(𝑡))𝑁
𝑖=1 is 

the mutual information between the separated signals 
which measures their statistical dependence. The solution 
to this optimization problem will give the optimal 
unmixing matrix that separates the mixed signals into 
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their independent components. However, achieving 
solution to these optimization problems to find an optimal 
unmixing matrix is not without its challenges, especially 
due to the following reasons. 

• Blind nature of solution: ICA is a powerful 
technique for BASS, but it is often difficult to find 
an optimal unmixing matrix. This is because the 
problem is blind (lack of access to ground truth 
source signals). The accuracy of the unmixing 
matrix significantly affects the quality of the 
recovered signals. 

• Sensitivity to Initialization: As shown in the 
Algorithm-1, the unmixing matrix is initialized 
randomly, which can affect the solution that the 
algorithm converges to, in complex search space 
with multiple local optima.  

• Getting Stuck in Local Optima: The search space 
for ICA is complex with multiple local optima. If 
the algorithm converges to a local optimum, the 
separated signals may still exhibit mixtures of the 
original sources, compromising the independence 
of the separated signals. 

• Parameter Selection: The performance of ICA can 
be sensitive to the choice of algorithm parameters 
such as the number of components and learning 
rate. 

• Assumption of Non-Gaussianity: ICA relies on the 
non-Gaussian nature of the source signals. If the 
signals are Gaussian or close to Gaussian, the 
separation might be inaccurate 

D. Need for Optimization in ICA 

The challenges faced in ICA, primarily the problem of 
local optima, highlight the need for robust optimization 
techniques. Optimization is vital in ICA for BASS as it 
helps navigate the complex landscape to find the global 
optimum to estimate optimal unmixing matrix, that yields 
independent components that align with the true 
underlying sources. Considering Equ (3) and (4), the 
optimization problem can be re-formulated as follows:   

{
maximize

𝑊
∑ 𝒥(𝑦𝑖(𝑡))𝑁

𝑖=1       

subjected to: 𝑀𝐼(𝑌(𝑡)) ≤∈
                         (5) 

Where, ∈  is a small threshold value. The problem 
arises when this optimization landscape is highly non-
convex with many local optima.  

In an ideal situation, the optimization landscape is 
subjected to a single global maximum that corresponds to 
the true underlying sources. However, in practice, the 
optimization landscape or solution space have multiple 
local maxima and minima, making it difficult for the 

optimization algorithm to find the global maximum. 
Therefore, the problem of ICA getting stuck in local 
optima can be understood in terms of the solution space 
that ICA is trying to navigate. Mathematically, a local 
optimum refers to a point 𝑊𝑙𝑜𝑐𝑎𝑙  such that there exists ∈
 > 0 where: 

𝑂(𝑊𝑙𝑜𝑐𝑎𝑙) ≥ 𝑂(𝑊), ∀𝑊 ∈ ℬ(𝑊𝑙𝑜𝑐𝑎𝑙)             (6) 

But there exists some global optimum  𝑊𝑔𝑙𝑜𝑏𝑎𝑙  such that:   

𝑂(𝑊𝑔𝑙𝑜𝑏𝑎𝑙)  > 𝑂(𝑊𝑙𝑜𝑐𝑎𝑙)                           (7) 

Where, 𝑂 = ∑ 𝒥(𝑦𝑖)𝑁
𝑖=1 , ℬ(𝑊𝑙𝑜𝑐𝑎𝑙)  is the ball of 

radius ∈ centered at 𝑊𝑙𝑜𝑐𝑎𝑙 . This means that 𝑊𝑙𝑜𝑐𝑎𝑙  is a 
local maximum within a small neighborhood, but not 
necessarily the global maximum. When the algorithm gets 
stuck at 𝑊𝑙𝑜𝑐𝑎𝑙 , it fails to find the true optimal solution 
𝑊𝑔𝑙𝑜𝑏𝑎𝑙  (optimal unmixing matrix) that maximizes the 

non-Gaussianity of the separated signals. This means that 
the separated signals 𝑌 = 𝑊𝑙𝑜𝑐𝑎𝑙  𝑋 may not represent the 
true underlying sources, thus affecting the performance of 
ICA in blind source separation. 

E. PSO as an Optimization Technique  

PSO is a meta-heuristic optimization algorithm based 
on the intelligence of swarms that have ability to explore 
the search space effectively and avoid getting stuck in 
local optima. PSO achieves this by maintaining a 

population of swarm of particles {𝒫𝑖}𝑖=1
𝑁 , traverse the 

search space with each particle's position representing a 
candidate solution. Each particle moves through the 
search space based on its own experience and the 
experience of neighboring particles, allowing for a 
balance between exploration and exploitation. The 
movement of each particle is guided by its personal best-
known position, 𝑝𝑏𝑒𝑠𝑡𝑖 , and the global best-known 
position 𝑔𝑏𝑒𝑠𝑡 among all particles in the swarm.  

 PSO utilizes a fitness function that evaluate how 
good a solution is. Here, the objective function captures 
the essence of the optimization problems in Equ (3) and 
(4) as follows:   

𝑓(𝑊)  ←  max
𝑊

= (∑ 𝒥(𝑦𝑖(t)) − 𝜆𝑀𝐼(𝑌(𝑡))𝑁
𝑖=1 )         (8) 

Where, λ is a weight parameter that balances the two 
objectives of maximizing non-Gaussianity 𝒥  and 
minimizing MI. The fitness function 𝑓(𝑊) then becomes 
evaluating the quality of each candidate solution, i.e., the 
value of W that maximizes this objective function. Then 
the optimal unmixing matrix, 𝑊𝑔𝑙𝑜𝑏𝑎𝑙, corresponds to the 

global best position in the swarm, such that:  

                         𝑊𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑎𝑟𝑔 max
𝑊

𝑓(𝑊)                    

(9) 
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The iterative process of PSO facilitates a balance 
between exploration and exploitation in the search space, 
converging towards 𝑊𝑔𝑙𝑜𝑏𝑎𝑙  by leveraging the collective 

intelligence of the swarm. The rationale behind 
considering PSO algorithm for optimization is that it is 
simple to implement and often converges to the optimum 
solution faster than other optimization algorithms. 

However, PSO is not without its own shortcomings, 
with a significant drawback being the risk of particles 
overshooting the global optimum. In addition to 
addressing these challenges, it is also crucial to consider 
the limitations that arise from relying exclusively on NE 
and MI as objective functions in the optimization process. 
While NE and MI are vital for ensuring that the separated 
signals are non-Gaussian and independent, respectively, 
they do not necessarily guarantee that these signals are 
accurate representations of the original sources. This 
discrepancy can lead to a false positive scenario, where 
the algorithm might incorrectly suggest successful source 
separation, despite the separated signals lacking 
meaningful correlation with the original signals. 
Therefore, the proposed algorithm ASIA considers 
incorporating mechanism of adaptive inertia weight and 
velocity clamping in the PSO algorithm. 

F. Proposed ASIA Algorithm For BASS 

To mitigate the challenges associated with ICA and 
PSO in BASS, this research study proposes ASIA that 
integrates adaptive swarm intelligence and combined 
negentropy cross-correlation (CC) optimization approach. 
Incorporating CC helps to validate that the separated 
signals are true representations of the original sources. If 
the cross-correlation between separated signals and 
original mixed signals is low, it indicates that the 
separated signals accurately represent the original sources 
without any mixing. The computation of CC to ensures 
better separation quality is given as follows:  

       𝐶(𝑌, 𝑋) =
1

𝑁
∑ ∑ |𝑐𝑜𝑟𝑟(𝑦𝑖(𝑡), 𝑥𝑗(𝑡))𝑁

𝑗=1
𝑁
𝑖=1             

(10) 

Where, 𝑐𝑜𝑟𝑟(𝑦𝑖(𝑡), 𝑥𝑗(𝑡)  is the CC between i-th 

component of separated signal 𝑌(𝑡) and j-th component of 
original mixed signals 𝑋(𝑡), and N denotes the number of 
components in the signals.  

1) Proposed Fitness Function: The fitness function 

of proposed ASIA algorithm is a weighted combination 

of (NE), (MI), and CC to find the optimal unmixing 

matrix 𝑊 that maximizes the objective function, thereby 

ensuring that the separated signals are as independent, 

non-Gaussian, and accurate representations of the 

original sources as possible. Therefore, using Equ (10), 

the fitness function is updated as follows:  

𝑓(𝑊) → max
𝑊

= (∑ 𝒥(𝑦𝑖) − 𝜆1𝑀𝐼(𝑌)𝑁
𝑖=1 − 𝜆2𝐶(𝑌, 𝑋 )     

(11) 

Where, 𝜆1 and 𝜆2  are the regularization parameters 

that control the trade-off between maximizing the non-

Gaussianity, minimizing the MI, and minimizing the CC.  

 

2) Adaption to PSO: The performance of PSO 

depends on the number of particles, and the number of 

iterations, with the potential for variations in particle 

velocities to result in overshooting the global optimum 

and lacks a convergence guarantee to 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 . The 

proposed ASIA addresses this by incorporating adaptive 

inertia weight and a velocity clamping parameters to fine-

tune the optimization process of swarm intelligence with 

higher precision, thereby ensuring a balanced 

exploration-exploitation trade-off. The adaptive inertia 

weight 𝑤 , is dynamically adjusted during the 

optimization process to balance global and local search 

abilities, calculated as follows:  

 

         𝑤(𝑡) = 𝑤𝑚𝑎𝑥 − (
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) × 𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡       

(12) 

Where, 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛  are the maximum and 
minimum bounds for the inertia weight, respectively.  The 
velocity clamping is used to restrict the particle's velocity 
within a predefined range to prevent overshooting. The 
updated velocity is calculated as follows:  

𝑣𝑖
′ = min(max(𝑣𝑖 − 𝑣𝑐𝑙𝑎𝑚𝑝) , 𝑣𝑐𝑙𝑎𝑚𝑝)         (13) 

Where, 𝑣𝑖  is the original velocity and 𝑣𝑖
′  is the 

clamped velocity of particle 𝑖  and 𝑣𝑐𝑙𝑎𝑚𝑝  is a velocity 

clamping parameter.  

Algorithm-2 Estimation of separated signals using 

ASIA 

Input: Mixed audio signals (X), Maximum iterations 

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥), Number of particles (N) 

Output: Separated audio signal (Y) 

Start  

1. Initialize Parameters: 

 𝑤𝑚𝑎𝑥 (maximum inertia weight), 𝑤𝑚𝑖𝑛 (minimum 

inertia weight), 𝜆1and 𝜆2(regularization parameters), 

𝑣𝑐𝑙𝑎𝑚𝑝 (velocity clamping parameter), 𝑐1 and 𝑐2 

(learning rates), 𝑊 (random unmixing matrix) 

 

2. Initialize Swarm:  
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Initialize a swarm of N particles {𝒫𝑖}𝑖=1
𝑁  with random 

positions and velocities. 

3. Evaluate Fitness:  

 For each particle, evaluate its fitness using  

𝑓(𝑊) = (∑ 𝒥(𝑦𝑖) − 𝜆1𝑀𝐼(𝑌)

𝑁

𝑖=1

− 𝜆2𝐶(𝑌, 𝑋 ) 

Where 𝑌 = 𝑊 × 𝑋.                                  
4. Initialize Best Positions:  

Initialize personal best positions 𝑝𝑏𝑒𝑠𝑡𝑖  for each 

particle 

Initialize global best positions 𝑔𝑏𝑒𝑠𝑡 

5. Optimization loop 

For 𝑖𝑡𝑒𝑟 = 1 to 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

For each particle i= 1 to N: 

Update the inertia weight 𝑤(𝑡) using Equ (12) 

    Update particle velocity: 

  𝑣𝑖(𝑡 + 1) = 𝑤(𝑡) × 𝑣𝑖(𝑡) + 𝑐1 × 𝛼 + 𝑐2 × 𝛽 

   where, 𝛼 = 𝑟𝑎𝑛𝑑() × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑜𝑠𝑖) 

                      𝛽 = 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑜𝑠𝑖) 

    Clamp velocity:  

    𝑣𝑖(𝑡 + 1) = min(max(𝑣𝑖(𝑡 + 1) −

𝑣𝑐𝑙𝑎𝑚𝑝, , 𝑣𝑐𝑙𝑎𝑚𝑝)) 

   Update particle position 

   𝑝𝑜𝑠𝑖(𝑡 + 1) = 𝑝𝑜𝑠𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

   Evaluate new fitness 𝑓(𝑊) updated position  

   Update 𝑝𝑏𝑒𝑠𝑡𝑖  if new fitness is better. 

   Update 𝑔𝑏𝑒𝑠𝑡 if new fitness is better than current 

   If stopping criteria are met, break the loop 

    End of For  

6. Optimal Unmixing Matrix:  

The optimal unmixing matrix 𝑊𝑔𝑙𝑜𝑏𝑎𝑙  is the position 

corresponding to 𝑔𝑏𝑒𝑠𝑡 

7. Separate Audio signals using  𝑌 = 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 × 𝑋 

8. Return Output: separated audio signals Y 

End 

 

The above-mentioned algorithm-2 begins by setting up 

the necessary parameters and the fitness of each particle is 

assessed by calculating the weighted sum of negentropy, 

mutual information, and cross-correlation between the 

separated and mixed signals. The algorithm utilizes a loop 

structure where, for a specified number of iterations, the 

inertia weight, particle velocity, and position are updated 

in a way that optimally balances exploration and 

exploitation of the search space. Once the optimization 

loop is completed, the global best position is used to 

extract the optimal unmixing matrix. This matrix is then 

used to separate the mixed audio signals into individual 

audio signals. 

 

IV. RESULT AND DISCUSSION  

 

The design and development of the proposed ASIA 

model is done using python programming language 

executed on Anaconda distribution installed on windows 

10 machine. This presents the outcomes for the 

experimental analysis carried with different test cases of 

mixed auditory signals. The study considers male and 

female voice signal from SiSEC-08, dev2 dataset. The 

performance assessment is conducted in terms of both 

visual analysis and numerical outcome analysis. For 

numerical analysis, the study considers three statistical 

parameters namely SIR (Signal-to-Interference Ratio), 

SAR (Signal-to-Artifacts Ratio) and SDR (Signal-to-

Distortion Ratio). 
SIR: This metric quantifies the level of the desired signal 
in relation to the interference caused by other signals, 
computed as follows:  

𝑆𝐼𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑃𝐼
)                       (14) 

 
Where, 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is the power of desired signal, and 𝑃𝐼  is 
the power of the interference from other signals 

 
SAR:  This metric assesses the quality of the separated 
signal by measuring the ratio of the desired signal to the 
artifacts introduced during the separation process. 

𝑆𝐴𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑃𝐴
)                     (15) 

 
Where, 𝑃𝐴 is the power of the artifacts introduced during 
the separation process 

 
SDR: This metric provides a comprehensive evaluation 
by measuring the ratio of the desired signal to the 
distorted signal post-separation.  

𝑆𝐷𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
)                   (16) 

 
Where, 𝑃𝐷  is the power of the distorted signal post-
separation. 

A. Test Case 1: Three male speaker 

In this test case, a mixed signal was created using 

three male speech signals. The proposed ASIA algorithm 

was then applied to separate the mixed signal, and its 

performance was compared with the Fast-ICA algorithm, 

ICA-PSO and the NMF method. Fast-ICA is a 

computational method used to separate a multivariate 

signal into additive, independent non-Gaussian signals. 
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NMF is a group of algorithms in multivariate analysis 

and linear algebra, where a matrix V is factorized into 

two matrices W and H, with the property that all three 

matrices have no negative elements.  Table I illustrates 

the comparative analysis of the SDR for three male audio 

mixed signals. 

TABLE I.  ANALYSIS OF SDR FOR 3 MALE AUDIO MIXED SIGNAL 

Methods/Signals S1 S2 S3 

Fast-ICA 34.75 36.16 30.98 

NMF -19.8 -25.18 -3.55 

ICA-PSO 40.5 37.2 35.5 

ASIA (PROPOSED) 47.86 38.19 43.02 

 

The results demonstrate that the proposed ASIA 

algorithm outperformed both Fast-ICA and NMF across 

all the three signals. The SDR scores of the proposed 

method for S1, S2, and S3 were 47.86, 38.19, and 43.02, 

respectively. These scores are notably higher compared 

to Fast-ICA and significantly surpass the negative scores 

achieved by NMF. The lower scores of NMF indicate a 

considerable amount of distortion in the separated 

signals. This substantial difference in performance is 

attributed to the augmented capabilities of the ASIA 

algorithm. By integrating adaptive swarm intelligence 

and combined negentropy cross-correlation (CC) 

optimization approach, ASIA ensures not only the non-

Gaussianity and independence of the separated signals 

but also verifies that the separated signals are true 

representations of the original sources.  

TABLE II.  ANALYSIS OF SIR FOR 3 MALE MIXED SPEECH SIGNALS 

Methods/Signals S1 S2 S3 

Fast-ICA 34.78 36.16 30.99 

NMF 9.28 3.4 -12.46 

ICA-PSO 45 40 39 

ASIA (PROPOSED) 49 39 45 

 

The above-mentioned Table II illustrates the comparative 
analysis of the SIR for three male audio mixed signals. 
SIR scores demonstrate the effectiveness of ASIA in 
minimizing interference, outperforming Fast-ICA and 
significantly outpacing NMF. 

TABLE III.  ANALYSIS OF SAR FOR 3 MALE MIXED SPEECH 

SIGNALS 

Methods/Signals S1 S2 S3 

Fast-ICA 46.56 69.56 65.36 

NMF -19.31 -23.54 -21 

ICA-PSO 70 75 72 

ASIA (PROPOSED) 66.77 94.09 83.27 

The above-mentioned Table III illustrates the comparative 
analysis of the SAR for three male audio mixed signals. 
The SAR scores confirm that ASIA minimizes artifacts in 
the separated signals, with the highest scores across all 
signals. In contrast, NMF yielded substantially lower 
scores, implying significant artifacts in the separated 
signals. 

B. Analysis of Test Case 2: Three female speaker 

In test case 2, we evaluated the performance of our 

proposed ASIA algorithm on a mixed signal composed of 

three female speech signals. We analyzed the results 

using the SDR, SIR, and SAR metrics, with the outcomes 

presented in the following tables. The results in Table IV 

demonstrate that the proposed method significantly 

outperformed both Fast-ICA and NMF in terms of SDR 

scores, indicating its superior ability to reduce signal 

distortion. 

TABLE IV.  ANALYSIS OF SDR FOR 3 FEMALE AUDIO MIXED 

SIGNAL 

Methods/Signals S1 S2 S3 

Fast-ICA 30.15 35.23 26.46 

NMF 4.49 6.35 8.48 

ICA-PSO 38 42 31 

ASIA (PROPOSED) 45.25 55.32 34.62 

The results in Table IV demonstrate that the proposed 

method significantly outperformed both Fast-ICA and 

NMF in terms of SDR scores, indicating its superior 

ability to reduce signal distortion. 

TABLE V.  ANALYSIS OF SIR FOR 3 FEMALE MIXED SPEECH 

SIGNALS 

Methods/Signals S1 S2 S3 

Fast-ICA 31.61 35.95 26.1 

NMF 5.21 7.39 10.16 

ICA-PSO 40 45 32 

ASIA (PROPOSED) 42.26 55.5 34.63 

As shown in Table V, the proposed method exhibited 

superior interference minimization capabilities, achieving 

higher SIR scores compared to Fast-ICA and significantly 

outperforming NMF. 

TABLE VI.  ANALYSIS OF SAR FOR 3 MALE MIXED SPEECH 

SIGNALS 

Methods/Signals S1 S2 S3 

Fast-ICA 53.54 59.71 55.53 

NMF 13.78 13.79 13.8 

ICA-PSO 63 68 60 

ASIA (PROPOSED) 68.87 69.23 65.42 

Table VI further validates the efficacy of our method, 
with the proposed ASIA algorithm achieving the highest 
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SAR scores, indicating minimal artifacts in the separated 
signals. The combined results from Tables IV, V, and VI 
confirm the consistent superior performance of the 
proposed ASIA method in extracting and preserving the 
quality of female speech signals, effectively  

C. Analysis of Test Case 3 : Single female and male 

speaker 

This section presents a detailed analysis of test case 3, 

where the mixed signal was composed of a single female 

and a single male speech signal. The SDR, SIR, and SAR 

metrics were employed to gauge the performance of the 

different algorithms. The outcome analysis shown in 

Table VII, the proposed algorithm distinctly outshines 

both Fast-ICA and NMF with regards to the SDR metric, 

thereby affirming its superiority in separating speech 

signals with minimal distortion. 

TABLE VII.  ANALYSIS OF SDR FOR SINGLE MALE AND FEMALE 

SPEAKER 

Methods/Signals S1 S2 

Fast-ICA 20.15 25.23 

NMF 6.86 10.34 

ICA-PSO 30 35 

ASIA (PROPOSED) 33.54 42.32 

As illustrated in Table VIII, the proposed algorithm 

demonstrates impressive results in terms of SIR, with 

scores of 33.95 and 47.74 for S1 and S2, respectively. 

This underscores the algorithm's capability to effectively 

minimize interference in mixed-gender speech signals. 

TABLE VIII.  ANALYSIS OF SIR FOR SINGLE MALE AND FEMALE 

SPEAKER 

Methods/Signals S1 S2 

Fast-ICA 21.01 27.55 

NMF 8.11 12.36 

ICA-PSO 32 40 

ASIA (PROPOSED) 33.95 47.74 

 

As evident in Table IX, the proposed method surpasses in 

the SAR metric as well, achieving scores of 43.98 and 

49.79 for S1 and S2, respectively. This indicates a lower 

presence of artifacts in the separated signals obtained 

through the proposed algorithm. 

TABLE IX.  ANALYSIS OF SAR FOR SINGLE MALE AND FEMALE 

SPEAKER  

Methods/Signals S1 S2 

Fast-ICA 29.56 23.49 

NMF 18.25 19.06 

ICA-PSO 42 47 

ASIA (PROPOSED) 43.98 49.79 

 

The extensive evaluation across three different test cases 

demonstrates the robustness and exceptional performance 

of the proposed ASIA for BASS task. 

 

Figure 2.  Visual Analysis for 3 male voice 

 

Figure 3.  Qualitative analysis of test case-2: 3 female voice signals 
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Figure 4.  Qualitative analysis of test case-3: 

The above-mentioned graphical representations 

in Figure 2, 3 and 4 depicts the progression of distinct 

voice signals: from their original source states, through a 

mixed phase, and ultimately to their separated states after 

being processed through an audio separation algorithm. 

the visual analysis of these waveforms provides valuable 

insights into the efficiency and precision of the audio 

separation algorithm. While the mixed signals manifest 

the intertwined complexities of the source signals, the 

separated signals, post-processing, bear a striking 

resemblance to their original counterparts. This 

underscores the algorithm's capability to effectively 

segregate individual male voice signals from a 

convoluted acoustic mixture, preserving the inherent 

characteristics of each voice with high fidelity. 

 

Analysis of the processing time 

 

Figure 5.  Analysis of the processing time 

The above figure 5 illustrates the comparative processing 

times of four different algorithms used for BASS. The 

algorithms compared are Fast-ICA, ICA-PSO, NMF, and 

the proposed ASIA method. Based from the graph trend 

Fast-ICA has the shortest processing time, taking just 1.5 

seconds. This is expected as Fast-ICA is known for its 

computational efficiency due to its simpler, less iterative 

approach to Independent Component Analysis. ICA-PSO 

shows a longer processing time of 2.5 seconds. The 

increased time can be attributed to the hybrid nature of 

this algorithm, which combines the ICA method with 

Particle Swarm Optimization, adding to the computational 

load, while NMF is represented with a processing time of 

2.0 seconds, which is quicker than ICA-PSO but slower 

than Fast-ICA. NMF's time reflects its own iterative 

process of factorizing matrices, which, while complex, 

appears to be less so than the hybrid ICA-PSO approach 

in this instance. On the other hand, the proposed ASIA is 

the most time-consuming, with a processing time of 2.8 

seconds. This suggests that the advanced integrations and 

optimizations within ASIA, aimed at enhancing the 

quality of audio separation, come with a trade-off in terms 

of computational time with slight variation. 

V. CONCLUSION 

This research offered a novel approach to blind audio 

source separation in an overdetermined scenario that 

combines adaptive PSO and ICA. The primary purpose 

of the suggested method was to identify an effective de-

mixing matrix capable of efficiently separating mixed 

signals. The proposed method adds an adaptive inertia 

weight and velocity clamping mechanism into the 
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standard PSO, successfully addressing the issues 

associated with parameter determination in stochastic 

optimization techniques. The ICA method is used to 

maximize the statistical independence of separated 

signals. The optimization problem is formulated as 

finding an unmixing matrix that minimizes mutual 

information or maximizes non-Gaussianity of separated 

signals. The enhanced PSO is then used to globally 

minimize this objective function. Experimental results 

showed that the proposed enhanced PSO-ICA approach 

exhibited superior performance in separating mixed audio 

signals compared to conventional methods. This makes it 

an effective and efficient solution for audio BSS 

problems. Future work will focus on the enhancing 

proposed algorithm to solve underdetermined BSS 

problem using more optimized approach. The results 

clearly highlight the enhanced computational efficiency 

and de-mixing accuracy of our methodology in 

comparison to conventional baseline approaches, thereby 

affirming its potential as a groundbreaking solution in the 

realm of blind audio source separation. 
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