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Abstract: Text processing plays a prominent role in dealing with the ever-growing volume of information available on the internet
as well as digital platforms. Abstractive text summarization and categorization, in particular, aims to generate concise and coherent
summaries by paraphrasing the source text while preserving its core meaning and context. This research work focuses on enhancing
abstractive text summarization and categorization for the large corpora through the application of a robust deep neural network
architecture. With the increasing volume of information available, the need for efficient summarization techniques becomes critical. A
pre-training strategy using diverse datasets is employed to improve the model’s statistical performance and generalization capabilities.
Furthermore, to address the challenge of information overload, an attention-based content selection mechanism is introduced, which
highlights essential information from the source text to guide this process. The model’s effectiveness is also extended to multi-document
summarization, ensuring coherence across related documents. To evaluate the performance, various statistical performance metrices are
exploited. In order to judge the novelty of adapted strategy, a benchmarking has been carried out with some state-of-the-art existing
frameworks. The obtained results demonstrate the significant potential of this approach in effectively summarizing large corpora and

managing the overwhelming amount of textual data available.
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1. INTRODUCTION

Natural Language Processing (NLP) is an specific do-
main dedicated to developing methodologies that enable
computing machines to process and interpret textual data
composed in natural languages, the languages employed
in human-to-human communication such as English. This
is markedly different from programming languages that
prescribe rigidly defined expressions. Natural languages
lack inherent constraints, although they typically adhere to
an internal arrangement. Nonetheless, their structure and
semantics aren’t directly machine-readable, necessitating
specialized solutions for the processing and analysing of
such data. Furthermore, natural language texts often exhibit
high complexity, ambiguity, and expressive variations. The
exploration of Natural Language Processing (NLP) is a
multifaceted endeavour that entails the understanding and
processing of language at its various layers morphological,
syntactic, semantic, and pragmatic [1]. It involves analysis
from both linguistic and computational viewpoints and
incorporating fundamental models and algorithms pertinent
to NLP. Properly understanding certain statements often
requires broader world knowledge, posing significant chal-

lenges in processing natural languages [2]. Despite these
complexities, the field of NLP has seen exponential growth,
particularly since the advent of the new millennium. Several
factors have contributed to this technological acceleration
(Elsevier 2018) [3]. Early NLP solutions were predom-
inantly based on manually constructed rule sets, which
entailed the time-consuming task of formulating explicit
rules that a computer system would adhere to. However,
since the late 20th century, the focus has shifted towards
statistical NLP approaches leveraging machine learning,
primarily supervised learning. These statistical models ne-
cessitate annotated datasets featuring input-output pairs,
bypassing the need for explicit rule sets [4]. This approach
is generally more efficient and flexible, permitting the
application of similar algorithms across various problems,
given the availability of appropriate data. The exponential
increase in textual content availability, brought about by the
expansion of the Internet and the advent of Web 2.0, has
significantly benefited NLP [5]. As most of the Internet’s
data is text-based for human communication, the field has
benefited from the surge in data. Concurrent advancements
in hardware capabilities and computing power have facili-
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tated the efficient processing of larger datasets, propelling
the adoption of statistical models that outperform rule-based
solutions on most NLP tasks. This rapid evolution in the
field of NLP has spurred increased interest in commercialis-
ing NLP solutions, further stimulating research endeavours
in this area.

Considerable commercial applicability has made the prob-
lems of semantic text processing among the most popular
in current research. Semantic problems in natural language
processing include a large number of tasks that imply or
aim at a correct understanding of the meaning of texts, such
as analysis of sentiments and emotions in the text, deter-
mination of semantic similarity, detection of paraphrases,
answering questions, retrieving information, creating text
summaries, text simplification, machine translation, natural
language inference, etc [6]. Within this, the problems of
processing short texts are especially highlighted, where,
due to the limited length of the available textual content,
semantic processing is noticeably more difficult than with
longer documents. Although there is no firmly established
definition, short texts are usually understood to be one or
two sentences long, i.e., texts ranging from a few words
to a paragraph. Texts of this length are often found on the
Internet in product descriptions, headlines and summaries
of news and articles, visitor comments on websites, forums
or social networks, etc [7].

A. Text summarization

Text Summarization is a critical sub-field of NLP that
focuses on creating abbreviated, coherent, and accurate
renditions of longer documents or pieces of text. The
objective is to generate summaries that retain the primary
ideas and essential information in the source content. It is an
efficient way to condense large volumes of text data, making
it quicker and easier for users to understand the text’s
main points without reading it in its entirety [8]. There are
primarily two types of text summarization: “Extractive” and
”Abstractive”. Table I compares Extractive and Abstractive
Text Summarization.

B. Evolution of large text Corpus

The evolution of large text corpora has been a key
development in NLP and computational linguistics. One of
the main aspects to consider when discussing the evolution
of large text corpora is their size. Let’s denote the size
of a corpus (Number of words) as N. Traditionally, N
has increased over time due to storage and processing
technology advancements. For instance, in the 1960s, N
was typically in the order of 10* (tens of thousands of
words). Nowadays, it is not uncommon for N to be in the
order of 10° (billions of words) or even larger. The size
of a text corpus plays a crucial role in many NLP tasks
[9]. For instance, larger corpora generally lead to more
accurate models when training language models. This can
be formalized in equation 1:

TABLE 1. Comparison between Extractive and Abstractive text

summarization
Extractive Abstractive
Summarization | Summarization

Technique Selecting Understanding
key sen- | and  rewriting
tences/phrases source text
from source text

Advantages Simpler, less | More  natural,
error-prone, versatile, and
retains original | concise; better
phrasing mimics human

summarization

Disadvantages | May lack | More complex,
coherence, risk of generat-
does not | ing incorrect or
reduce  length | nonsensical sen-
significantly tences

Application News News headline

Examples aggregation, generation,
search  engine | chatbots
snippets

PWilWips1s - -, wi1) = Countwipit, -, i) (H

Count(Wi_ps1, ..., Wi—1)

where P(w;jlwi_n+1,...,w;—1) is the probability of word
w; occurring given the previous n — 1 words, and
CountWi_p41,...,w;) and Count(W;_p41,...,Wi_1) are
the occurrences of the respective sequences of words in
the corpus. As N increases, these counts become more
accurate, leading to more accurate probabilities and, thus,
a more accurate language model.

However, the evolution of large text corpora is not
only about size. Diversity and quality of the data are also
important. For instance, a corpus that includes text from a
wide range of domains will likely lead to a more robust and
versatile language model. Similarly, a corpus with clean,
well-formatted text will generally be more beneficial than
a corpus with lots of noise and errors. Advancements in
technology have driven the evolution of large text corpora
and have significantly impacted the field of NLP. These
corpora’s size, diversity, and quality are crucial factors that
influence their usefulness for various NLP tasks.

C. Deep Neural Nets

Deep Neural Networks (DNNs) are a category of Arti-
ficial Neural Networks (ANNs) with more than one hidden
layer. These multiple layers provide the model its “depth”,
leading to the term “deep learning”. Using multiple hidden
layers, DNNs can model intricate, non-linear relationships
in the data. This feature has led to their significant success
in NLP tasks, where data is inherently sequential, and the
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relationships between elements can be highly complex. A
typical Deep Neural Network (DNN) is composed of a
specific input layer, several hidden layers, and a final output
layer. Within each hidden layer, a group of neurons are
present, with each neuron forming connections to every
neuron in the preceding and succeeding layers. The training
process involves learning the weights associated with these
connections. In the context of NLP, the input to the network
is usually a sequence of words or characters, transformed
into numerical representations or embeddings, capturing the
semantic and syntactic properties of the words or characters
[10].

One of the most prevalent types of DNN used in NLP is
the Recurrent Neural Network (RNN). RNNs are structured
to handle sequential data, making them an excellent fit for
NLP tasks. They achieve this by maintaining a hidden state
vector as a “memory” of past inputs [11]. The hidden state
vector evolves at each time step, incorporating the present
input and the prior hidden state. This enables the network to
capture temporal dependencies within the data. Equations 1
and 2 represent the computational update:

hy = c(Wpnhi—1 + WX, + by) )
yi = c(Wpyh; + by) ©)

where In this context, 4, signifies the hidden state at the
moment #, x, denotes the input at the same time point,
and y, represents the output at time ¢. The weight ma-
trices are Wy,, Wy, and Wy, while b, and b, are the
bias vectors. The activation function, often the hyperbolic
tangent function, is indicated by o. While Recurrent Neural
Networks (RNNs) have the theoretical ability to capture
dependencies over long time spans, they face challenges
with these tasks due to the vanishing and exploding gradient
computational problems. More advanced RNN architectures
have been proposed to mitigate these issues, such as LSTM
[12] and GRU [13]. These structures incorporate gating
mechanisms, regulating information flow in the network
and facilitating the learning of long-range dependencies.
The Transformer model, a recent advancement, employs
self-attention mechanisms to capture dependencies among
all elements in the input sequence, irrespective of their
distance. This model has emerged as the standard for
numerous Natural Language Processing (NLP) tasks. The
self-attention mechanism assesses the significance of each
input element in output computation, enabling the model to
focus on the most pertinent aspects of the input. Despite the
achievements of deep learning in NLP, numerous challenges
persist, such as:

e Training deep learning models necessitates substantial
volumes of annotated data, posing challenges in terms
of both difficulty and expense.

e These models often lack interpretability, making it
difficult to comprehend why they make certain pre-
dictions.

e Additionally, they are sensitive to changes in the input
distribution and can make unpredictable predictions
when faced with inputs differing from their training
data.

D. Contribution Highlights
The core contributions aligned into this work are as
follows:

e A robust DNN architecture is developed to enhance
abstractive text summarization and categorization.
This architecture improves upon previous models by
incorporating advanced computational primitives.

e The effectiveness of this approach is demonstrated
on large corpora, indicating the model’s scalability
and ability to handle high volumes of data without
a significant loss in performance quality and catego-
rization accuracy.

e This work also devises an efficient training process
to optimize the model’s parameters, ensuring that the
deep neural network quickly converges to a solution
that provides high-quality text categorization.

e Comprehensive analysis and benchmarking of the re-
sults is also performed with other existing techniques,
highlighting the robustness of the proposed strategy.

E. Structure of the Paper

The organization of the paper is as follows: In Section
2, a comprehensive literature review scrutinizes previous
studies and models pertinent to the field. Section 3 presents
the Adapted Framework, describing our robust and scalable
approach for handling the challenges identified in the litera-
ture review. This section details the design of the framework
architecture, including the underlying system architecture
and the algorithms employed. Section 4, Computational
Analysis, offers a theoretical analysis of our methodology,
assessing its computational complexity, efficiency, and scal-
ability. In Section 5, we present an Experimental Evaluation
of our approach. We detail the experimental setup, including
the data used, the evaluation metrics, and the results of the
experiments. This section provides a quantitative analysis of
our framework’s performance compared to existing meth-
ods, demonstrating its accuracy, efficiency, and robustness
advantages. Finally, in Section 6, we delve into potential
avenues for future research.

2. LITERATURE REVIEW

In machine learning, binary classification focuses on
two-class problems, for example, distinguishing between
spam and non-spam emails. On the other hand, multi-class
classification deals with scenarios where more than two
labels need to be assigned, for instance, categorizing text
into positive, neutral, or negative sentiments or detecting
various emotions. While researchers have invested consid-
erable efforts in two areas, (1) enhancing learning models
tailored to specific text classification problems [14], and (2)
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designing (neural) architectures specifically suited for text
classification [15], there has been comparatively less work
on developing universal models capable of handling multi
class problems irrespective of the task and the objects to be
classified.

A. Generated sentence detection

Currently, many generated sentence detection methods
use deep learning. However, detection by deep learning has
two problems. The first problem is that learning is necessary
for highly accurate detection. This may cause a problem of
delay in response when a new and advanced language model
is devised. By using only the distributed representation of
the results, we are able to handle sentences generated from
an unknown language model without learning and, at the
same time, achieve extremely high execution speed [16].
The second problem is that these previous studies are based
on the condition of inputting a single sentence. Current text
generation methodology can output sentences with higher
accuracy by identifying the direction of sentences to some
extent by learning conversational responses by humans and
adjusting hyperparameters. Therefore, when this generation
of technology is used, it is highly likely that a human being
writes the beginning of the sentence or that the condition
is similar. However, since the conventional method uses
all sentences for detection, there is a possibility that the
sentence written by a human at the beginning may be falsely
detected [17]. Therefore, in this research, we aim to detect
sentences that combine sentences written by humans and
sentences generated by machines, making it a more practical
method. In addition, in this research, unlike conventional
generated sentence detection, the research subject is not
only news but also novels and Wikipedia sentences, etc.,
making it a highly versatile detection method.

B. State-of-the-art

For increasingly massive data labelling needs, unsuper-
vised learning is once again becoming one of the main
challenges of data science. As a result, clustering and visu-
alization, for example, can be very useful for creating value
from unlabeled data, particularly textual data. Currently,
a wide range of textual data representations is offered
to practitioners, including sparse word bags or Bag-Of-
Words (BOW) [18] and dense word bags such as Word2vec
[19]. and GloVe [20], also called static word embeddings.
More recently, text/document representations provided by
Transformer-based Pre-trained Language Models (MLPT)
like BERT [21] and RoBERTa [22] which produce different
representations to represent a document. Despite the mul-
tiplication of embedding methods, there is no clear answer
regarding the expected performance in an unsupervised con-
text where no label is available. In particular, Transformer-
based embeddings are attracting more and more interest,
performing very well in many automatic language process-
ing centric tasks such as question answering and Semantic
Textual Similarity (STS), but are much less present in the
unsupervised domain.

Moreover, [23] demonstrated that the performance obtained

by BERT on the unsupervised version is inferior to that
obtained by Glove. However, the study solely focused on
the last layer of BERT and did not include post-processing.
It has been shown that this approach is far from being
the most effective strategy to leverage MLPT’s capabilities
fully. In our experiments, we extend the analysis to all
the representations provided by a multi-layer Transformer
model, not just the one provided by the last layer. To
improve the quality of MLPTs, several retraining strategies
are proposed in the literature, such as the one proposed
by [24], which retrain a Siamese MLPT on NLI and STS
tasks, thus improving the performance obtained by the last
layer of BERT and RoBERTa on the N-STS task. This
approach is supposed to be well suited for unsupervised
tasks, including clustering, but has not been evaluated on
the latter. DVBERT [25] is also retrained on a supervised
task based on word interactions. On the other hand, several
unsupervised approaches are proposed ([26]; [27]; [28]),
all based on self-supervised objectives and requiring no
labeled data. All the aforementioned approaches have been
exclusively evaluated on the N-STS task, and whether they
are well suited for clustering is unknown. Another way to
improve the results obtained by these representations is to
rely on post-processing techniques applied to the output
vectors. These approaches mainly exploit dimensionality
reduction (DR) based on PCA, which has proven to be
efficient enough to capture semantic information while
reducing dimensions. In the case of static embeddings, a
PCA-based approach proposed by [29] is used to halve the
dimensions without altering the performance.

Work by [30] have utilized two transformer-based language
models, specifically the Bidirectional and Auto-regressive
Transformer (BART) and the Text-To-Text Transfer Trans-
former (T5), on the CNN dailymail dataset. Compared
to other models mentioned in existing literature for the
same task, this model delivers superior performance. Subse-
quently, authors in [31] suggested improvements to current
architectures and models for abstractive text summariza-
tion, focusing on fine-tuning hyper-parameters and testing
specific encoder-decoder combinations. They conducted nu-
merous experiments on the widely-used CNN DailyMail
dataset to evaluate the effectiveness of various models.
However, one limitation of their adapted approach is its
significant computational demand, which may not be feasi-
ble for environments with limited resources. Additionally,
the approach may not generalize well to datasets that differ
significantly in style or content from the CNN/DailyMail
dataset. Lastly, the models could potentially overfit to
specific textual patterns within the training data, leading
to less robust performance on unseen texts.

C. Limitations of existing approaches

Acknowledging some inherent limitations that may af-
fect its practical application is essential. One notable lim-
itation is the computational complexity of deep neural
networks, especially when dealing with extensive corpora,
which could lead to increased resource requirements and
longer processing times. Additionally, overfitting is a con-

https://journal.uob.edu.bh/


https://journal.uob.edu.bh/

¥

f\i J'-;)\J
& ke iy
Int. J. Com. Dig. Sys. 16, No.1, 329-339 (Jul-2024)  “=- 333
cern in deep learning, and the proposed architecture may @ @ Output Layer

suffer from this issue, affecting the model’s generalization
on new and unseen data. Furthermore, abstractive sum-
marization requires a deep understanding of context and
language ambiguity, which may challenge the proposed
model in generating coherent and contextually accurate
summaries. Moreover, evaluating the performance of ab-
stractive text summarization models can be subjective, as
existing metrics may not fully capture the quality and
nuances of generated summaries. Despite these limitations,
the paper’s contribution provides valuable insights into
advancing abstractive text summarization techniques and
addressing these challenges can lead to further improve-
ments in the field [1]. A prominent drawback of recently
published approaches is their considerable computational
requirements, which might be impractical for settings with
restricted resources. These approaches demand substantial
processing power and memory, which can limit their ap-
plicability in environments lacking advanced computational
infrastructure. Furthermore, these models often struggle to
adapt to datasets that vary markedly in style or content
from the CNN/DailyMail dataset, indicating a lack of
generalizability. This limitation hinders their effectiveness
across diverse textual domains, potentially affecting their
utility in real-world applications where data variability is
common. Additionally, there is a risk that these models may
overfit to specific patterns and idiosyncrasies within their
training data. This overfitting can lead to a degradation in
performance when the models encounter new, previously
unseen texts, thereby reducing their overall robustness and
reliability in practical scenarios.

3. ApAPTED FRAMEWORK

This section outlines the overview of our modified
framework, where we deviate from utilizing BERT purely as
a feature extraction model and instead adopt the fine-tuning
approach. In this adaptation, we extend the BERT model by
incorporating an additional end-to-end deep network layer,
referred to as RNN. The process entails BERT generating
contextualized embedding vectors for each word, which are
subsequently fed through the RNN deep network layers. A
visual representation of this procedure is illustrated in Fig-
ure 1. The feature vector is constructed by concatenating the
output neurons for each word from the intermediate layer.
Following this, each vector undergoes dimension reduction
through a densely connected neural network. The final
reduced vector is subjected to classification using PReLu.
Additionally, we integrate three additional learning algo-
rithms—Word2Vec, Glove, and fastText with pre-trained
word embeddings to augment the overall performance of
the model.

A. Forward inference with RNNs

Forward inference in an NN maps a linear or non-
linear input sequence to corresponding output sequence. In
RNN, forward inference is almost identical to FFNs. To
compute the output y, based on the input x;, the output
values of the hidden layer h, are essential. This process

PReLu

Concatenation

Qutput

Hidden RNN Layer

Input

BERT Layer

Input Layer

Word 1 Word N

Figure 1. Representative mechanism of BERT to RNN in word
categorisation

entails multiplying the input x, by the weight matrix i.e.,
W and the output of the previous time step’s hidden layer
h,—; by the weight matrix i.e., U. These resulting values are
then added together, and this sum is processed through the
relevant activation function g to compute the current hidden
layer’s output value, &,. After determining the values for the
hidden layer, the typical calculation for the output vector is
carried out.

hy = g(Uhi—y + Wx;) “

vi = f(Vhy) 5)

Let’s denote the dimensions of the particular input, hidden
(intermediate), as well as output layers as d;,, d;, along with
d,u, respectively. Using these notations, our three weight
matrices are W € R%¥din_ 7 € R4 and V e Réow>dn,

In the frequently encountered scenario of mild classifi-
cation, the computation of y involves applying a softmax
function, providing a probability distribution across the
potential classes.

v, = softmax(Vhy) (6)
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Definition1.2.1(softmax).Mappingsoftmax:
R* - R",n € N, zax € R" defined by:

exp(x)
ip eXp (x)
we call softmax. Here, exp represents an exponential func-

tion by component darkness, and the division is also by
components.

(N

softmax(x) =

B. BERT

Bidirectional Encoder Representations from Transform-
ers (BERT) [21] is a computationally innovative model
derived from the encoder component of the Transformer
model. BERT is most specifically crafted for pre-training
deep bidirectional representations from the unlabeled text,
utilizing both the left as well as right contexts across all
layers. The unique feature of BERT allows a pre-trained
model to be further fine-tuned for diverse variety of tasks by
simply adding an additional output layer, without requiring
substantial modifications to the task-specific architecture.
This process of refining an already pre-trained model is
referred to as fine-tuning. In the context of BERT, the focus
is on downstream tasks—tasks that aim to be addressed by
adapting a pre-trained model.

1) Description of BERT

The BERT framework primarily comprises two essential
phases i.e, pre-training along with fine-tuning. During pre-
training, the model is exhaustively trained on a set of
unlabeled data, tackling different tasks. In the specific
fine-tuning stage, the model starts with parameters from
the pre-training phase and then fine-tunes all parameters
with labeled data tailored to a specific downstream task.
While each task results in a uniquely adjusted model,
they all originate from the same foundational pre-trained
parameters. BERT’s unified architecture remains consistent
across diverse tasks, with minimal variations between the
pre-trained and downstream architectures. N denotes the
count of layers, dyodel the length of the output of sub-
layers, dyf the internal dimension of the FFN layer, and
h the number of the attention head, we list two models
in BERT: BERTBASE (N = 12, dmgdel = 768, dff = 3072,
h = 12, total parameters = 110M) and BERTarge (N =
24, dipoder = 1024, dyp = 4096, h = 16, total parameters =
340M).

s as} a

NSP M*kLM MiLM \

() (a7 -
BERT

=] [Elem [=]

BERT
(o lemnle ] [a]

T
Question * Paragraph /
Question Answer Pair

Fine-Tuning

Pre-training

Figure 2. BERT pre-training and refinement procedure

Figure 2 shows the overall BERT pre-training and
refinement procedure. With the exception of the output
layers, identical architecture is employed in both pre-
training as well as fine-tuning. The identical set of pre-
trained parameters initializes the model for various down-
stream tasks. Throughout the tuning process, all parameters
undergo adjustment. The inclusion of special tokens is
noteworthy—CLS — serves as a unique token added to the
start of each input, while SEP — is a distinctive separation
token (eg it separates the question from the context to be
answered).

Also BERT does not use ReLU activation function
[32] but GELU (Gaussian Error Linear Unit) [33]. GELU
proved to be a better alternative for the ReLU function
and is used in most Transformer models. It is defined
using the distribution function of the normal (Gaussian)
distribution, i.e. using the random variable X ~ N(0, 1)
and one can mathematically approximate the GELU with
0.5x (1 + tanh | V277 (x + 0.044715x%) ) orxor(1.702x):

GELU(x) := xP(X < x) = x®(x) = x - %[1 +erf(x/V2)]
3

In order for BERT to handle various downstream tasks,
it exploits an input representation that can represent both a
single sentence and a pair of certain sentences in a single
sequence of statistical tokens. Therefore, a “sentence” can
also be a text of several sentences in the context of BERT.
A 7sequence” represents a sequence of BERT input tokens,
and it can be either a single sentence or the consolidation
of two sentences consolidated together.

INPUT turn mark heat event radio entry | (stones| minister [ email spin

Ewm | | Emark | | Eneat | |Eevent | | Eradio
+ + F +
Ea

TOKEN
EMBEDDINGS

SEGMENT

emseppiNgs | A | [ FA || Ea [ [ Ba || Ea || s |
+ &
POSITION | E, 5, £ £,

EMBEDDINGS

Figure 3. Representation of the BERT input — (Input investments
are the sum of token, segment and position investments)

BERT employs WordChunk embeddings with a vocabu-
lary comprising 30,000 tokens. The initial token in every se-
quence is consistently a special categorization token (CLS).
The last hidden state associated with this token serves as
the aggregated sequence representation for the categoriza-
tion task. Sequences consist of pairs of sentences grouped
together. The sentences are differentiated in two ways: first,
by the inclusion of a special token (SEP) between them,
and second, through appending learned embeddings to each
token, which identify whether it is part of sentence entity
A or B. As depicted in Figure 3, the input embeddings are
represented by E. The final hidden non-linear vector of the
special [CLS] token is indicated by C € R%w and the
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final hidden vector for the i input token is represented as
T; € R%w  The input depiction for each token is formed by
summing the respective token, segment, as well as position
embeddings.

2) BERT Pre-training and Post-training

Here, BERT is used similarly to a language model, ie.
as a model that predicts input sequences which is the next
token in the sequence. But BERT will not predict the next
word, but we mask some particular percentage of the input
tokens randomly, and then BERT predicts those masked
tokens. The authors of BERT call this procedure MLM
(masked language model). In this scenario, the ultimate
hidden vectors linked to the masked tokens are directed
to the output softmax. Although this approach enables
the development of a bidirectional computationally pre-
trained model, it introduces a notable disparity between pre-
training along with fine-tuning stages due to the absence of
the [MASK] token in fine-tuning. To mitigate this, BERT
intermittently replaces “masked” words with the [MASK]
token, rather than consistently. The exhaustive training data
generator randomly selects 15% of the token positions
for the prediction purposes. If the i token is empirically
chosen, it is then replaced with:

e MASK token specifically 80% of the time.
e Random token in 10% of cases.

e Neglect the original token in 10% of cases. Then, T;
is exploited to predict the empirically original token
with the cross-entropy centric loss.

Post-training:

Tuning the BERT model is relatively straightforward, owing
to the inherent design of Transformer’s self-aware mecha-
nism. The flexibility of this architecture allows BERT to
be applied to a diverse array of downstream tasks, regard-
less of whether these tasks require processing of a single
text or pairs of texts. This versatility is achieved by the
model’s ability to adapt to different task-specific inputs and
outputs. When preparing to utilize BERT for a particular
downstream task, we simply substitute the task-specific
inputs and outputs into the model. To illustrate, if the task
involves sentiment analysis, the input would be the text to
be analyzed, and the output would be the sentiment label.
Similarly, for a text summarization task, the input would be
the original text, while the output would be the summary
text. One of the keys to BERT’s broad applicability is its
process of fine-tuning, wherein all the parameters of the
model are adjusted for the specific task at hand. Fine-tuning
enables the model to perform optimally on the task by
adjusting to the idiosyncrasies of the specific data and task
requirements. Finally, the output layer of BERT is utilized
differently based on the nature of the task. For token-
level tasks, such as question answering or named entity
recognition, token representations are passed to the output
layer. Each token representation captures the semantics of
a specific word in the context of its surrounding words.

Alternatively, for classification tasks, the representation of
the special [CLS] token is passed to the output layer. The
[CLS] token, which is added at the beginning of the input,
encapsulates a representation of the entire sequence, and is
thus suitable for tasks that require a holistic understanding
of the input text. The choice of proposed architecture and
technique type i.e., RNN (e.g., LSTM, GRU) in this work
is fundamental due to their differences in handling long-
term dependencies and memory management. LSTMs are
designed to avoid the long-term dependency problem of
vanilla RNNs by incorporating memory cells that allow
them to store and access information over long sequences.
This makes LSTMs particularly suited for tasks that require
understanding complex context over large text spans. GRUs,
on the other hand, provide a simpler but often equally
effective alternative to LSTMs, with fewer parameters and
a more streamlined architecture. Specifically, LSTM is
preferred over GRUs in this work.

As a pre-training method, GloVe is leveraged. GloVe is
designed to capture both global statistics and local context
of words in a corpus, potentially complementing BERT’s
deep bidirectional context understanding. Combining these
embeddings could enhance the model’s linguistic under-
standing and adaptability to different contexts or domains.
Self-attention mechanism within BERT architecture is used
here as a key feature that allows it to capture the context
of words from both directions in a sentence. We introduced
attention heads with varying focuses, that allows the model
to better capture different types of relationships in the text,
improving performance on tasks like entity recognition or
sentiment analysis.

4. ComPUTATIONAL COMPLEXITY ANALYSIS

BERT is exploited as a computational module for
Transformer-based model with a structure that’s divided
into multiple layers, attention heads, and tokens. It has a
significant computational complexity, and it’s specifically
denoted as O(8?) due to the self-attention mechanism
where S is the sequence length. Suppose, model size as S,
the number of self-attention heads in each transformer are
‘H and input sequence length as L then the computational
complexity is estimated as O(S.H.L?). Additionally, in case
of RNNs, consider Hidden Layer size is @ and sequence
length is vy then the computational complexity of this
module would be = O(a.y + €).

Addressing the three significant limitations (Computa-
tional complexity, Over-fitting, Contextual understanding
and ambiguity) in the context of large corpora and abstrac-
tive summarization tasks offers a clear perspective on the
model’s practical applicability and the challenges it may
face in real-world scenarios.

e In the context of large corpora, computational com-
plexity is a crucial concern because it directly impacts
the feasibility and scalability of the proposed model.
Abstractive summarization tasks, which involve gen-
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erating concise summaries that capture the essence
of large texts, require processing and understanding
extensive sequences of data. Given that the complex-
ity of some NLP models, including those based on
transformers, scales quadratically with the sequence
length, deploying such models for summarization
tasks involving large documents or datasets can be
computationally prohibitive. This limitation is es-
pecially pertinent when considering real-time appli-
cations or environments with limited computational
resources.

e Opvertfitting is a critical issue in computationally intel-
ligent models trained on extensive datasets, as it can
lead to models that perform well on training data but
poorly generalize to unseen data. This is particularly
relevant for abstractive summarization tasks where
the model needs to generate summaries for a wide
range of texts not encountered during training. The
risk of over-fitting increases with the complexity of
the model and the specificity of the training data.

e For abstractive summarization tasks, the ability of a
model to understand context and resolve ambiguity
is paramount. These tasks often require the model
to interpret complex narratives, discern relevant in-
formation, and generate summaries that are coherent,
concise, and reflective of the original text’s intent. The
limitations in a model’s ability to handle contextual
understanding and ambiguity can lead to summaries
that are inaccurate, misleading, or lack the nuance of
the source material.

5. EXPERIMENTAL EVALUATION AND BENCHMARKING

This section presents a detailed description of the
dataset, the experimental setup, and the computational li-
braries utilized. It also discusses the statistical performance
evaluation metrics employed, and provides an overview of
the simulation pipeline together with the results obtained.

A. Dataset description

We have used BBC dataset [34] for simulation and
experimental evaluation in this work. The BBC dataset is
a collection of text documents compiled by the BBC for
text categorization tasks, often used for machine learning
research. The dataset is public and a popular resource for
researchers and practitioners in Natural Language Process-
ing (NLP) and related fields. This dataset consists of 2,225
articles in five topic areas/labels i.e., (Business, Entertain-
ment, Politics, Sport, and Tech), with approximately equal
representation for each category. This dataset is used for
text categorization tasks, including topic classification and
sentiment analysis.

It is taken from the Kaggle platform and originated from
BBC News [34], containing 2225 comments classified into
five classes shown in Table II.

TABLE II. Technical characteristics of the BBC-text dataset

ID | Active Classes | Count of Examples
0 Business 510
1 Entertainment 386
2 Politics 417
3 Sport 511
3 Tech 401
Total 2225

B. Experimental setup, tools and computational libraries

exploited

We have performed experiments on large text corpora,
specifically news articles. The primary purpose of these
experiments was to assess the performance of our proposed
Robust Deep Neural Network Architecture in generating
coherent and informative summaries. To implement our
model, we primarily used Python programming language
because of its vast support for scientific computing libraries.
We leveraged the power of several libraries such as:

o TensorFlow and Keras: For designing, training, and
evaluating our deep learning models. TensorFlow
offered a comprehensive and flexible platform for
machine learning, and Keras provided a high-level
neural networks API that was user-friendly and easy
to prototype.

o NumPy and Pandas: These were used for handling
numerical computations and data manipulation tasks,
respectively.

o NLTK and Spacy: These were exploited for prelim-
inary processing tasks like tokenization, identifying
parts of speech, and recognizing named entities.

o Gensim: This was used for training word embeddings
and handling other unsupervised text analytics tasks.

Our experimental setup involved pre-processing the data,
splitting it into training, validation, and testing sets, and
then feeding the training and validation sets into our model
for training. The model was then evaluated on the unseen
testing set to gauge its performance.

C. Statistical performance evaluation metrics used

Table III depicts statistical performance of simulation.
The performance of our framework, powered by a Robust
Deep Neural Network Architecture, is statistically evaluated
using several statistical metrics i.e.,

e Accuracy: This is one of the simplest and most
straightforward evaluation metrics. It computes the
fraction of predictions our model got empirically
feasible.

¢ ROUGE (”Recall-Oriented Understudy for Gist-
ing Evaluation”): ROUGE comprises metrics uti-
lized for the assessing automatic summarization as
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TABLE III. Statistical performance

Parameter | Training Loss | Model Accuracy
Epoch 1 0.715 0.411
Epoch 2 0.495 0.677
Epoch 3 0.246 0.896
Epoch 4 0.102 0.966
Epoch 5 0.056 0.988
Epoch 6 0.049 0.989
Epoch 7 0.280 0.991

well as machine translation. Its methodology in-
volves comparing an automatically generated sum-
mary or translation with a set of reference sum-
maries. The primary variants of ROUGE we used
are ROUGE-N (precision, recall, and F-score of n-
grams), ROUGE-L (longest possible common subse-
quence), and ROUGE-S (skip-bigram).

e Precision: Precision is another fundamental metric. It
quantifies the number of correctly predicted words or
phrases present in the summarization output. A higher
precision indicates fewer false-positive results.

e F1 Score: The F1 score, ranging from O to 1 with
1 being the highest achievable score, represents the
harmonic mean between precision and recall, offering
a comprehensive assessment of these two metrics.

These statistical performance evaluation metrics, collec-
tively, allowed us to objectively gauge the efficacy of our
model.

D. Simulation pipeline and Obtained Results

Initially, the selected dataset is ingested as the input
to the proposed deep neural network architecture. This is
followed by an extensive data preprocessing stage, where
normalization, tokenization, and possibly other transforma-
tions are conducted to make the data compatible with the
model’s requirements. Upon the completion of preprocess-
ing, the prepared data is utilized for the training phase.
This phase involves the use of sophisticated optimization
algorithms to adjust the model’s parameters, aiming to min-
imize the discrepancy between the model’s predictions and
actual outcomes, thus constructing the optimal model. After
the training phase, the model undergoes a comprehensive
evaluation process. The test dataset, independent from the
training set, is employed in this step to assess the model’s
generalizability and predictive performance. This ensures
that the model’s performance is not merely memorized from
the training data, but that it can also efficiently handle new,
unseen data.

A Test instance:
predict(device, model, “Deputy Prime Minister John
Prescott said a good deal had been secured.”)
The predicted class is: politics
Figure 4 presents the performance graph for text catego-
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Figure 4. Depiction for text categorization performance

rization proposed framework. Ultimately, various statistical
performance parameters, such as - accuracy, recall, pre-
cision, and Fl-score, among others, are computed. These
metrics generally provide quantitative measures of the ef-
fectiveness and robustness of the finalized model, guiding
the judgement of its performance and illuminating potential
areas for improvement. This methodical process underpins
the proposed architecture’s capacity to handle complex
text summarization and categorization tasks. Dataset is
divided as (85 : 15)% corresponding to training and {
validation; testing }. Total number of Epochs were chosen as
7 and learning rate = 0.0005. Upon evaluation of the deep
neural network model using the independent test dataset,
we achieved a remarkable accuracy of 99.2%. This result
implies that the model correctly predicted the category or
summarization of the text for 99.2% of the instances in
the test data, underpinning the effectiveness and robustness
of the architecture in handling complex text summarization
and categorization tasks.

6. ConcrLusioN AND FuTurRE WORK

In concluding this work, we introduced a robust deep
neural network (DNN) architecture specifically engineered
to advance the processes of abstractive text summariza-
tion and categorization. This architecture incorporates ad-
vanced computational primitives that mark a significant
improvement over earlier models. It has shown notable
scalability when applied to large data sets, maintaining
high performance quality and categorization accuracy with-
out considerable degradation. Moreover, we developed an
efficient training regimen that swiftly steers the network
toward finding the optimal solution, thereby facilitating
high-quality text categorization. The robustness of our
proposed approach was thoroughly validated through ex-
tensive benchmarking against existing techniques. In these
comparisons, our model consistently demonstrated superior
outcomes, highlighting its effectiveness and potential as a
leading solution in the field.

Looking ahead, We aim to enhance the model’s efficiency
by integrating advanced methodologies such as transfer
learning and multi-task learning. These techniques are ex-
pected to further elevate the model’s performance across
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diverse datasets. Additionally, the model’s ability to handle
noisy or imperfect data has not yet been fully explored,
presenting an opportunity to increase its practical utility in
real-world applications. It is also critical to evaluate the
model across different languages and domains to determine
its generalizability and adaptability to various contexts. The
findings from this research open up exciting possibilities
for future investigations and developments in abstractive
text summarization and categorization. The implications are
significant, offering a roadmap for subsequent research that
could redefine the standards and capabilities of current text
processing technologies.
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