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Abstract: Since the outbreak of the global COVID-19 pandemic in Wuhan, China, in 2019, its impact has been seen worldwide. Early
identification of COVID-19 is very crucial, as it keeps the infected people isolated from other people, thus minimizing the risk of
further transmission. The standard diagnostic approach is based on RT-PCR. However, due to the scarcity of PCR kits in some regions
and the costs associated with this technique, there is a growing demand for alternative solutions. Recently, diagnosis of COVID-19
by medical imaging has been recognized as a valid clinical practice. Meanwhile, the massive increase in COVID-19 cases has put
considerable pressure on radiologists responsible for interpreting these scans. This paper introduces an automated detection approach
as a rapid alternative for COVID-19 diagnosis. We present a deep CNN model to differentiate between normal and pneumonia cases,
as well as patients with COVID-19. Our approach is based on EfficientNet-B7 architecture and improved with Squeeze and Excitation
block as an attention mechanism. In addition, we propose an innovative architecture that combines CNN with SVM to achieve the best
performance. Experimental results show that the proposed framework provides better performance than existing SOTA methods, with
an average accuracy of 97.50%, while the precision and recall of COVID-19 are both 100%.
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1. Introduction
Coronaviruses form a diverse group of respiratory infec-

tious viruses causing a variety of disorders, from the com-
mon cold to severe pneumonia. In 2019, a new coronavirus
variant appeared in Wuhan, China, identified as SARS-
CoV-2. The appearance of this variant, commonly known
as COVID-19, has prompted a global state of emergency,
straining healthcare systems worldwide [1]. This perilous
viral infection has had a major impact on many people’s
lives, being five times more fatal than influenza, with serious
illnesses and deaths [2]. Similar to many viruses, COVID-
19 can mutate when it propagates among individuals, giving
rise to variants like Delta and Omicron. These variants
can present variable levels of transmission, symptoms, and
disease severity. COVID-19 generally incubates from 2 to
14 days after initial exposure. and can infect either the
superior respiratory system (nose, throat,..etc) or the inferior
respiratory system (windpipe and lungs) [3].

Currently, there is no antiviral that has been clinically
approved for COVID-19, underlining the crucial role of
rapid diagnosis and isolation of infected individuals in
limiting the spread of the virus. The most reliable diagnostic
technique is the RT-PCR test [4]. Nevertheless, this test
still has limitations in terms of availability and high costs.
Recently, several clinical studies have shown that chest
imaging can also help to identify and diagnose COVID-

19 at an early stage [5]. CT scans have emerged as the first
option for lung imaging diagnosis of suspected COVID-19
cases, particularly when patients present with respiratory
disorders. However, CT scanning is not widely used due to
the practical problems of transporting patients to CT centers
and the associated risk of radiation exposure, particularly
for pregnant women and children [6]. On the other hand,
chest X-rays (CXR) are a promising alternative that reduces
the risk of radiation exposure and offers a faster, and more
effective alternative.

Recently, the rapid propagation of the virus has imposed
a significant workload on radiologists, increasing the po-
tential risk of medical diagnosis errors. For this reason,
computer-assisted diagnosis systems can be an interesting
alternative, providing radiologists with a valuable tool for
faster, and better interpretation of chest radiographs. A va-
riety of automated techniques for medical imaging analysis
have achieved significant progress in recent years, but deep
learning (DL) was the major innovation. Its application in
medicine has led to many research studies focusing on the
identification of various illnesses, including brain disorders
from MRI [7], various brain disorders from EEG [8], and
skin diseases [9]. Moreover, in certain cases of medical
imaging, the literature has shown that the classification
performance of DL models can achieve or surpass the
performance of clinicians [10]. In the framework of chest
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radiography, deep learning has shown its ability to diag-
nose various thoracic pathologies, such as pneumothorax,
pneumonia, effusion [11], and recently COVID-19 [12].

Motivated by these findings, we conducted a study for
the classification of chest radiographic images to distinguish
normal cases from pneumonia or COVID-19 using the
largest COVID-19 open-source dataset. We present a deep
model based on EfficientNet-B7 architecture and attention
mechanism. We chose EfficientNet-B7 as it is known to
be highly accurate, faster, and smaller than the best CNN
model (66M parameters vs Gpipe with 556M) [13]. Mean-
while, the attention mechanism enables the network to
highlight only significant features of the chest X-ray, while
reducing the importance of features that are not significant
to the classification task. Furthermore, to achieve the best
performance, we train an SVM algorithm with deep features
extracted from our CNN architecture. The relevance and
novelty of this study lie in the fact that it integrates a
DL model with a traditional ML algorithm. The results
demonstrate that our solution outperforms state-of-the-art
(SOTA) approaches.

The main novel contribution of this work can be
illustrated in the following way:

1)- The adaptation of EfficientNet-B7 architecture for
COVID-19 diagnosis, namely : COVID-EfficientNetB7-
Basic.

2)- The use of an attention mechanism to enhance the
deep extracted features. We add the SE block at the top of
EffecientNetB7.

3)- The proposal of a combination of CNN and SVM.

4)- A comparative study with SOTA techniques.

The paper is structured as follows. Section 2 summa-
rizes existing studies. Section 3 describes our methodology.
Section 4 presents the evaluation of our approaches using
the COVIDx dataset, as well as the experimental results.
Then, in section 5 we conclude and suggest potential
improvements.

2. Related work
The spread of coronavirus worldwide has made chest

imaging a crucial diagnostic technique that can control the
propagation of the disease. Due to the increasing need
for rapid radiological analysis, the artificial intelligence
research community has focused its efforts on developing
AI algorithms to improve diagnosis precision [14].

Most studies on the identification of COVID-19 from X-
rays have been inspired by earlier research on the detection
of pneumonia. Researchers have used a variety of deep
learning frameworks, including CNN, RNN, autoencoder, as
well as hybrid networks such as CNN-RNNs and CNN-AEs

[15]. Farooq et al [16] presented a pre-trained ResNet-50
[17] on ImageNet [18] (called COVIDResNet). The head of
the model is substituted by an alternative head made up of
a series of adaptive pooling, dropout, batch normalization,
and fully connected layers. This fine-tuning produced re-
markable results, with an accuracy of 96.23% for all classes,
including normal, bacterial, viral, and COVID-19 cases,
with only 41 epochs on the COVIDx dataset. Haghanifar
et al, [19] presented a hierarchical DL model. In the early
stage, the model differentiates chest radiographs into two
categories: normal or radiographs with pneumonia. Then,
in the next stage, it improves its classification by distin-
guishing between COVID-positive cases and pneumonia
cases. This approach yielded impressive results, with a
global accuracy of 87.21% and f1-scores of 92.00% for
COVID-19 and 85.00% for pneumonia. Rahimzadeh et al
[20] trained multiple deep-learning models to classify chest
radiographs into distinct classes: normal, pneumonia, and
COVID-19. They developed a novel approach by fusing
Xception [21] and ResNet50V2 [22] models. Their ap-
proach obtained the better performance, with the highest
accuracy observed on a test set of 11,302 images. They
yielded an impressive overall accuracy of up to 91.40%
across all classes, along with an accuracy of 99.50% specif-
ically for COVID-19 cases. Apostolopoulos et al. [23], in
their research, evaluated the performance of SOTA pre-
trained CNN architectures introduced in medical imaging
classification in recent years. These architectures included
VGG19 [24], MobileNetV2 [25], Inception [26], Xception
[21], Inception-ResNet v2 [27]. Fine-tuning performance
has shown the effectiveness of using CNNs with transfer
learning method for the classification task. Their best-
performing model achieved remarkable accuracy, and recall
rate of 96.78%, and 98.66%, respectively. Turkoglu [28]
proposed COVIDetectioNet. In this approach, features were
used from AlexNet. Then, a feature selection was carried
out using the Relief algorithm to identify the most relevant
features. Finally, the selected features were used for clas-
sification using SVM. Remarkably, the author achieved an
outstanding accuracy rate of 99.18% on a dataset containing
609 images, including 21 cases of COVID-19 pneumonia.
Pan et al [29] designed multi channel feature DNN. To
address the issue of imbalanced data, they employed an
oversampling technique to mitigate the deviation in prior
probability of MFDNN algorithm. As a result, they achieved
an accuracy of 93.19%.

While the approaches mentioned have shown promis-
ing results, it is essential to note that many of these
research studies performed their evaluation on relatively
small datasets, often using a restricted set of COVID-
19 images. In addition, given the recent appearance of
the pandemic, standardized research databases did not yet
exist. As a consequence, each study relied on a different
database, which contributed to a lack of uniformity between
research studies. In contrast, in [12], the authors used a
comprehensive dataset comprising 13,800 X-ray images
from 13,645 individuals, with 182 images of COVID-19 pa-
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Figure 1. The EffecientNet-B7 architecture.

Figure 2. The overview of the proposed architecture COVID-EffecientNetB7-Basic (Baseline). EffecientNetB7 is used as a features extractor,
followed by fully connected layers that perform the classification task.

tients. In addition, they designed a deep CNN model called
COVID-Net to distinguish normal cases from pneumonia
and COVID-19. In particular, COVID-Net presents signifi-
cantly reduced architectural and computational complexity
in comparison to well-known architectures such as VGG-
19 [24] and ResNet-50 [17], while providing better results.
They achieved a test accuracy of 93.30% and a COVID-19
recall rate of 91.00%.

With the appearance of this new dataset, Khobahi et al
[30] introduced a novel semi-supervised learning approach
employing AutoEncoders, and a CNN network as a classi-
fier. The authors reported an average accuracy of 93.50%.
Ratul et al [31] presented a novel CNN model based on Mo-
bileNet enhanced with residual connections and attention
mechanism. They reached an average accuracy of 95.30%.
Chowdhury et al [32] presented ECOVNET, an ensemble
of CNN based on EfficientNet architectures (from B0 to
B5) [13]. They obtained an average accuracy of 97.00%,

while the precision and recall of COVID-19 are both 100%.
Also, Luz et al [33] introduced a series of CNNs built
upon the EfficientNet architecture. They proposed a hierar-
chical classification strategy employing two classifiers: one
focused on distinguishing between Normal and Pneumonia
classes, and another dedicated to discriminating between
different pneumonia types, including COVID-19 and non-
COVID pneumonia. Their approach achieved an average
accuracy of 93.50%. Bhadouria et al [34] have introduced
a framework based on the following steps: first, images are
pre-processed using histogram equalization and segmented
with a U-network. Next, features are extracted via VGG-16
and an SVM model is used for classification. They obtained
an average accuracy of 96.36%. Szczepanski et al [35] used
multi task neural network based on U-Net and ResNet50.
They reached an average accuracy of 90.30%. Rahhal et
al [36] adopted a siamese deep learning architecture based
on Vision Transformer. They achieved an average accuracy
of 94.62%. Rangel et al [37] presented a Capusl CNN
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network. They used dilation rate instead of max-poling as
a novel contribution. Their approach achieved an average
accuracy of 90.00 %. Ullah et al [38] presented a dense
CNN network based on attention mechanism. The authors
reported an average accuracy of 97.22%, with 96.87% the
COVID-19 detection rate. Anwar et al [39] introduced a new
self-supervised learning approach with a vision transformer
model. Their approach reached an average accuracy of
96.00%.

3. The proposed solution
This section, describes our method for COVID-19 diag-

nosis. We present the approach and implementation details.

A. Adapted Efficient-B7 for COVID-19 diagnosis
Recently, Tan et al [13] explored the relationship be-

tween the depth and width of CNN models, revealing a
more efficient strategy for designing models with reduced
parameters while improving classification accuracy. The
authors presented a pioneering paper describing a novel
class of CNN known as EfficientNet models.

The fundamental component of the EfficientNet model
family [13] is the Mobile Inverted Bottleneck Convolution
(MBConv), enhanced through SE optimization. EfficientNet
variants integrate a variable set of these blocks, derived
from concepts initially introduced in MobileNet [25]. In
addition, EfficientNet introduces Swish as a new activa-
tion function. It takes a comparable form to ReLU and
LeakyReLU, sharing some of their performance advantages.
Furthermore, the key importance of EfficienNet lies in the
fact that it uses a new scaling method to generate seven
distinct models from EfficientNet-B0 (baseline), namely:
EfficientNet-B1, EfficientNet-B2,..., EfficientNet-B7. As we
move from EfficientNet-B0 to EfficientNet-B7, several key
attributes, including model width, depth, resolution, and
complexity, progressively increase, resulting in improved
accuracy. These architectures have shown superior accuracy
to a large number of convolutional neural networks while
maintaining considerably enhanced computational capabil-
ities.

In our study, we use the EfficientNet-B7 as a backbone
in our architecture, Figure 1. The features generated are then
transmitted through our custom top layers, which consist
of three fully connected layers. The initial layer, denoted
as ”fc1” with 512 units, and the subsequent layer labeled
”fc2” with 128 units, use ReLU, while the last layer, ”fc3,”
is activated with softmax, which plays an important role
in the ultimate stages of the classification process (Figure
2). The proposed architecture has been trained using the
transfer learning technique. This approach aims to take
advantage of knowledge transfer between domains [40]. It
allows certain fundamental features such as shapes, corners,
edges, and intensity to be shared among various tasks,
which speeds up the training process and improves overall
model performance.

Instead of initializing the network weights randomly,

Figure 3. The Squeeze and Excitation block. Input: features map. B:
batch size, H: height, W: width, C: number of channels; r: reduction
factor. Output: re-weighted features map.

the model weights are initialized with those derived from
a pre-trained model on ImageNet [18]. ImageNet’s pre-
trained weights have shown robust performance in image
analysis and demonstrated superior results in several studies
involving chest X-ray data, as reported in [10] and [41].
These weights only provide an initial starting point and are
fine-tuned to suit the specific characteristics of the X-ray
images.

B. Attention mechanism
The convolution process generates a feature map with

variable channel numbers, determined by the filter param-
eters. Typically, these channels are processed uniformly in
the following operations, implying an equal level of impor-
tance for each of them. However, this uniform processing
approach may not be the most optimal. As a significant
improvement, the attention mechanism can be used to
introduce a capability into the neural network, enabling it to
prioritize particular features by giving them distinct weights
[42]. This attention technique has found applications in
various areas of deep learning, including image recognition
[43], speech recognition [44], object detection [45], and
NLP [46].

To enhance the performance of our proposed framework,
we incorporated the SE block [47] as a channel atten-
tion mechanism with the feature extractor; EfficientNet-
B7. Figure 3 shows the global structure of this block.
It’s a component designed to enhance the representational
power of convolutional neural networks (CNNs) by explic-
itly modeling channel-wise relationships and recalibrating
feature maps. It consists of two main operations: squeezing,
which aggregates global information across spatial dimen-
sions, and exciting, which learns channel-wise dependencies
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Figure 4. The overview of the proposed architecture COVID-EffecientNetB7-Attn. The SE block is used to improve the network’s representational
capability by focusing on relevant features and removing less useful ones.

Figure 5. The overview of the proposed architecture COVID-EffecientNetB7-Attn based SVM.

to generate importance scores. This lightweight attention
mechanism improves feature discrimination without sig-
nificantly increasing model complexity, leading to better
performance in image classification, object detection, and
semantic segmentation tasks. Instead of dealing with all
channels in the same way, the SE block allows the network
to assign distinct weights to each channel, to reinforce the
interdependencies between these channels. The advantage
of this approach is that these weight values are learned
just like any other parameter during the learning process.
Finally, the SE block yields an output shape of (1 x 1 x
channels), representing the weights associated with each
channel, which are used to rescale the initial features. Fol-
lowing this operation, the feature map retains only relevant
information, improving the representation capability of the
network.

Given a CXR image, feature map is extracted from
our EffecientNetB7 model which was previously trained
in a supervised way on the COVIDx dataset. Then, this
feature map underwent a ”squeeze” operation, through a

global average pooling layer, yielding a channel descriptor.
This descriptor captures a representative embedding of the
overall distribution of feature responses across the channel
dimension enabling all network layers to access information
about the global receptive field. Following aggregation, we
introduce an ”excitation” operation, comprising two fully
connected layers. The first layer significantly reduces the
number of features by a factor ”r” (where choosing r = 8
strikes a good balance in terms of accuracy and complexity).
This layer uses a ReLU activation function, while the
second layer employs a sigmoid function to transform
the values into a range between 0 and 1. The excitation
operation essentially take the simple form of a self-gating
control mechanism. It received the embedding as input and
generated a set of modulation weights, with one weight per
channel. These weights are then scaled to the feature maps
derived from the EfficientNetB7 model. If a weight value is
close to 0, it implies that the corresponding channel is less
critical, leading to a reduction in the feature channel value.
Conversely, if the weight value approaches 1, it indicates
that the channel is significant, and pixel values are preserved
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to a greater extent. After the full process, we transmit the
scaled feature map to the custom top layers through three
fully connected layers, which perform classification task,
Figure 4.

C. Combined COVID-EffecientNetB7-Attn with SVM model
To improve the efficiency of our proposed architecture,

we introduce an advanced hybrid architecture that merges a
SOTA CNN model with a traditional classifier; SVM [48].
Building on the capabilities of these two proven image
recognition components, our hybrid system exploits the
unique strengths of each classifier, resulting in an enhanced
architecture. We use our architecture EfficientNet-B7-based
SE block as a feature extractor. Then, the deep features
extracted from the penultimate layer (128 D) are used
as input to train the SVM classifier, Figure 5. In other
words, we replace the softmax function with a multiclass
linear SVM. The key idea behind the application of SVM
is to use a supervised learning algorithm to identify the
hyperplane that allows optimal separation of features in a
high-dimensional space [49]. Along this learning process,
we aim to minimize a margin-based loss, in contrast to the
more traditional approach of using a cross-entropy loss.

The motivation for using linear SVM in our study stems
from its simplicity and effectiveness in classification tasks.
Unlike ANNs, which involve complex architectures and
parameter settings, SVM offers a straightforward approach
by finding the optimal hyperplane to separate classes in our
data. In addition, SVM tends to generalize well and is less
susceptible to over-fitting, especially in high-dimensional
data scenarios, which is a common problem with ANNs.
Consequently, given the trade-off between complexity and
performance, linear SVM appears to be a practical choice
for our classification challenge. To determine appropriate
values for the penalty parameter C, we performed a small
grid search over the values 0.0001, 0.001, 0.01, 0.1, 10, and
100 ultimately selecting c=10. Then, the proposed hybrid
architecture is trained using the validation set.

4. Experiments
The experiments carried out in this study are based

on the COVIDx dataset [12]. We conduct model testing
using the test set made available by the authors, which
includes 400 images of three different groups: COVID-19,
pneumonia, and normal lung. Then, we performed extensive
cross-validation on the entire dataset; 30530 images.

A. Dataset
We used the COVIDx [12] dataset, the largest X-ray

open-source dataset for automatic COVID-19-19 identifi-
cation. The authors have used various publicly available
data repositories to build up the data set: RSNA Pneumonia
Detection Challenge dataset [50], Covid-chest x-ray-dataset
[51], Actualmed [52], Figure 1 [53], BIMCV-COVID19+
[54], COVID-19 Radiography Database V3 [55], [56].

The experiments conducted in this study rely on the lat-
est subdivision provided by the authors, known as COVIDx

Figure 6. Example of chest radiograph samples from the COVIDx
dataset.

TABLE I. Distribution of COVIDx V9A images between the classes
and partitions of the training and test sets [12]. Number of patients
between brackets.

Subset COVID-19 Normal Pneumonia Total
Train 16490 (2808) 8085 (8085) 5555 (5531) 30130 (16424)
Test 200 (178) 100 (100) 100 (100) 400 (378)

V9A, Table I. This version includes three distinct categories:
COVID-19, pneumonia, and normal. To our knowledge, it’s
the largest open-source dataset for automatic COVID-19
identification. Sample images from this benchmark dataset
are shown in Figure 6. The training set includes 30,130
images from 16,424 patients, distributed as follows: 8,085
images representing healthy human lungs, 5,555 images
representing lungs with pneumonia, and 16,490 images
representing lungs with COVID-19. On the other hand, the
test set consists of 400 images derived from 378 patients
including 100 images of normal lungs, 100 images of
pneumonia cases, and 200 images of COVID-19.
It is essential to note that the COVIDx dataset is evolving
continuously [12]. New patient cases are constantly being
incorporated and regularly made available to the public.
This study is based on a specific snapshot of the dataset,
representing its status at a given time.

B. Environment setup
The experiments were conducted in a virtual environ-

ment with the following specifications:

• RAM of 12.70 GB.

• TPU with 8 cores.

C. Implementation details
In the model training process, we randomly split the

training set in a train set and a validation set. Specifically,
we kept 20% of data for the validation process, as shown
in the table II. We made sure there was no overlap of
patients between the sets. The primary reason for this
division is to assess the model’s generalization on unseen
data, simulating real-world scenarios. The training set is
used to tune the model’s parameters, while the validation set
provides an independent dataset to evaluate its performance
and tune hyperparameters. In addition, to optimize these
hyper-parameters, we carry out experiments involving the
adjustment of learning rate (lr), dropout rate, and epochs.
We also explored different activation functions, including
ReLU, Swish, and others, eventually choosing ReLU as the
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TABLE II. Distribution of images between the classes and their
partitions within each set.

Subset COVID-19 Normal Pneumonia Total
Train 13182 6479 4443 24104
Validation 3308 1606 1112 6026
Test 200 100 100 400

activation function. In the pre-processing step, we resize
each image to 600x600, which corresponds to the resolution
parameter of the EfficientNet-B7. Next, we normalize the
image vectors by dividing all pixel values by 255.

Due to the nature of our multi-class challenge, we
use categorical cross-entropy. It is specifically designed for
scenarios where the target variable has multiple classes,
and it computes the dissimilarity between the predicted
probabilities and ground truth distributions, as described
below:

LOSS = −

output
size∑
i=1

yi · log ŷi (1)

Where ŷi is the predicted value, and yi is the rele-
vant class label. The dimension is the number of classes,
specifically 3 in this scenario. By optimizing the model to
minimize this loss, we encourage it to learn accurate and
well-calibrated probability distributions over the classes.

For both architectures, COVID-EffecientNetB7-Basic
and COVID-EffecientNetB7-Att, we train the entire model
with Adam optimizer for only 30 epochs on TPU using a
batch size of 64. Each batch of input data is distributed
among the TPU replicas, with each replica receiving an
input size of 8. To enhance the model’s generalization, we
introduce a 1% dropout on the fc1 and fc2 layers, and we
initialize the lr to 0.0001 for the baseline architecture and
0.001 for COVID-EfficientNetB7-Attn. Then, reduce the lr
by a coefficient of 10 when the validation loss reaches a
plateau after every 5 epochs. The selected model is the one
associated with the least validation loss. Table III illustrates
the Hyper-parameters configuration of our models.

TABLE III. Hyper-parameters configuration.

COVID-EffecientNetB7 C0VID-EffecientNetB7
Basic Attn

Optimizer Adam Adam
Epoch 30 30

Batch size 8 * 8 TPU cores 8 * 8 TPU cores
Learning rate 0.0001 0.001

Dropout 1% after dense layers

The loss curves for both architectures are presented
in Figures 7a and 8a. The training loss is a metric that
quantifies how well the model is learning from the training
data data during the training phase. On the other hand, the
validation loss is crucial for assessing how well it gener-

alizes to new, unseen data. The gap between these curves
serves as an indicator of potential overfitting. Notably, both
curves exhibit a gradual decline, signifying a continuous
improvement in our models as they undergo training. A
favorable fit is characterized by minimal disparity between
the final training and validation loss values, indicative of
effective generalization. In Figures 7b and 8b as well,
we can observe the training and validation accuracy. For
each architecture, model performance steadily advances
with training experience but eventually reaches a plateau,
suggesting that further learning becomes challenging.

D. Results
To assess the effectiveness of the suggested approaches,

we used a set of measures: accuracy, precision, recall
(sensitivity), and F1 score. This approach enables us not
only to evaluate our architectures but also to facilitate
comparisons with other relevant studies. These metrics are
described as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(2)

Precision =
T P

T P + FP
(3)

Recall =
T P

T P + FN
(4)

F1 − S core = 2 ∗
Precision ∗ Recall
Precision + Recall

(5)

AvgAccuracy =

∑n T P+T N
T P+T N+FP+FN

n
(6)

Accuracy is a measure of the succeeded predictions
compared to the total number of predictions. Precision
quantifies the proportion of successfully predicted true
positives among all predicted positive instances. Recall
represents the rate at which the model correctly recognizes
positive samples. The F1 score tries to strike a balance
between precision and recall. Avg Accuracy is a measure
of the performance of the classification method.

1) COVID-EffecientNetB7-Basic (without attention)
We evaluate our baseline architecture on the test set

given by the authors of the dataset [12]. The performance
are summarized in Table IV. As shown, the accuracy
achieves 100%, 78.00%, and 94.00% for COVID-19, Nor-
mal, and Pneumonia categories, without data augmentation
and with an imbalanced training set. The proposed CNN
shows a high recall rate for COVID-19; 100%, which
is particularly relevant, as it indicates the efficiency of
our solution to minimize the number of missed cases. In
addition, we obtain a good precision rate of 97%, indicating
a minimal number of false-positive detections of COVID-19
cases.
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Figure 7. Learning curves of COVID-EffecientNetB7-Basic.(a) Loss. (b) Accuracy.

Figure 8. Learning curves of COVID-EffecientNetB7-Attn. (a) Loss. (b) Accuracy.

Figure 9. Confusion matrix, (a): COVID-EffecientNetB7-Basic (baseline) architecture, (b): COVID-EffecientNetB7-Attn.
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TABLE IV. Classification results of the proposed architectures on COVIDx dataset.

Architecture Class Precision Recall F1-score AvgAccuracy
(%) (%) (%) (%)

COVID-19 97.00 100 99.00
COVID-EffecientNetB7-Basic (without attention) Normal 96.00 78.00 86.00 93.00

Pneumonia 83.00 94.00 88.00
COVID-19 99.00 100 99.00

COVID-EffecientNetB7-Attn (with attention) Normal 94.00 93.00 93.00 96.50
Pneumonia 95.00 93.00 94.00

TABLE V. Patients and images distribution in each fold.

Fold COVID-19 Normal Pneumonia
Patients Images Patient Images Patients Images Overall(images)

Fold 1 293 1663 810 810 576 580 3053
Fold 2 297 1670 820 820 563 563 3053
Fold 3 296 1663 820 820 564 570 3053
Fold 4 301 1672 800 800 579 581 3053
Fold 5 303 1673 827 827 550 553 3053
Fold 6 300 1667 835 835 545 551 3053
Fold 7 302 1675 818 818 560 560 3053
Fold 8 298 1668 807 807 576 578 3053
Fold 9 295 1666 850 850 536 537 3053
Fold 10 301 1673 798 798 582 582 3053

TABLE VI. Performance metrics for each class label of the COVID-EffecientNetB7-Basic with 10-fold cross-validation strategy.

Fold COVID-19 Normal Pneumonia
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Fold 1 99.00 100.00 99.00 95.00 97.00 96.00 95.00 90.00 92.00
Fold 2 100 100 100 95.00 94.00 95.00 92.00 93.00 92.00
Fold 3 99.00 99.00 99.00 94.00 93.00 94.00 89.00 91.00 90.00
Fold 4 100 100 100 95.00 92.00 94.00 89.00 93.00 91.00
Fold 5 100 99.00 99.00 88.00 94.00 91.00 90.00 83.00 86.00
Fold 6 99.00 100.00 99.00 93.00 97.00 95.00 96.00 86.00 91.00
Fold 7 100 99.00 99.00 94.00 94.00 94.00 91.00 93.00 92.00
Fold 8 99.00 100 99.00 92.00 89.00 91.00 87.00 88.00 88.00
Fold 9 99.00 100 100 93.00 95.00 94.00 92.00 88.00 90.00
Fold 10 100 100 100 92.00 97.00 94.00 95.00 87.00 91.00

TABLE VII. The support-weighted average performance of the COVID-EffecientNetB7-Basic within cross-validation.

Fold1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average ± SD
Accuracy 97.00 97.00 96.00 97.00 94.00 97.00 96.00 95.00 96.00 97.00 96.20 ± 0.97
Precision 97.00 97.00 96.00 97.00 95.00 97.00 97.00 95.00 96.00 97.00 96.40 ± 0.80
Recall 97.00 97.00 96.00 97.00 94.00 97.00 96.00 95.00 96.00 97.00 96.20 ± 0.97
F1-score 97.00 97.00 96.00 97.00 94.00 97.00 97.00 95.00 96.00 97.00 96.30 ± 1.00

In cases where the data set is relatively small, as is
the case in our study (with only 400 images in the test
set), the use of cross-validation becomes crucial to ensure
a fair evaluation of the classification method. To evaluate
the effectiveness of the solution and ensure robustness in
its performance assessment, we employ a 10-fold cross-
validation approach as our chosen validation method. We

first combined the train and test sets, giving a total of 30,530
images. Then, we divided this dataset into ten equal subsets,
each fold containing 3,053 images, as shown in Table V.
Importantly, we ensured that there was no patient overlap
between these subsets. In each iteration, we keep only 10%
of data for the test. Specifically, the 10th subset served as the
test set, while the other nine subsets constituted collectively
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the training data. A summary of the performance metrics for
each class at each fold is presented in the table VI. While
the support-weighted average of performance measures is
mentioned in Table VII. An average accuracy of 96.20%,
precision of 96.40%, sensitivity of 96.20%, and F1-score of
96.30% were obtained.

2) Enhanced Efficient-B7 with attention mechanism
To assess the contribution and impact of the SE block,

we perform an ablation study. The initial model is called
COVID-EfficientNetB7-Basic, while the second model is
called COVID-EfficientNetB7-Attn. The classification re-
sults on the test set are presented in table IV. Compared
to the proposed baseline, the use of SE block enables a
significant improvement in prediction performance, with an
accuracy of 96.50%, while the precision and sensitivity
for COVID-19 identification are 100% and 99.00% respec-
tively. As illustrated by the confusion matrix in Fig. 9, all
200 COVID cases are accurately identified. Similarly, for
both normal patients and those with pneumonia, 93 out
of 100 cases are correctly classified, with only 7 cases
being misclassified into other categories. Experimental re-
sults demonstrate that COVID-EfficientNetB7-Attn offers
superior performance for all metrics. The introduction of the
SE block results in a significant improvement, increasing
recall by around 15% for the normal class, precision by
around 2% for the COVID-19 class, and by 12% for
the pneumonia class, underlining its effectiveness. More
specifically, precision and recall rates for the COVID-19,
normal, and pneumonia classes can be summarized as
follows P: (99.00/94.00/95.00) and R: (100/93.00/93.00)
respectively. Furthermore, the benefits of incorporating an
attention mechanism into the EfficientNetB7 architecture
are evident in the significant improvement in F1 scores
across all classes compared to using EfficientNet-B7 alone.
This improvement exceeded the baseline approach by at
least 7% for the normal class and 6% for the pneumonia
class.

The SE block measures the relevance of each feature
channel through a learning process. By selectively amplify-
ing informative features and suppressing less relevant ones,
the SE block facilitates the extraction of more discriminative
representations from the input data. This enables the model
to better capture complex patterns and variations, ultimately
leading to improved accuracy. Also, through global average
pooling followed by excitation, the SE block integrates
global context information into the feature representation
process. By considering the relationships between different
channels, the model can capture higher-level semantic in-
formation that may be crucial for accurate prediction. In
contrast, without an attention mechanism, the model treats
all features equally, potentially diluting the importance of
crucial information and hindering its ability to discern subtle
patterns.

To demonstrate the effectiveness of our approach, Figure
10 provides a visualization of the attention weights learned

Figure 10. Activation attention maps for various CXR images. The
heatmap highlights the important areas detected by the model. (a)
: COVID-19 sample. (b) : Pneumonia sample. (c): No findings
(normal).

by the architecture, where intense colors show higher at-
tention levels. In Figure 10a, which represents a COVID-
19 case, our model accurately localizes bilateral shadow
patterns in the lungs (known as Ground Glass Opacity), a
significant sign of COVID-19 [57]. The presence of blue
color in the lungs indicates abnormalities in the chest X-
ray image. Figure 10b depicts a pneumonia case, where the
heatmap distinctly highlights the white spots (opacity) in
the lungs. As well, Figure 10c shows normal cases, where
the heatmap predominantly focuses on regions outside the
lungs or in proximity to the heart. These results demonstrate
the importance of the attention mechanism in extracting
significant features and enhancing the performance of the
classification task.

3) Combined COVID-EffecientNetB7-Attn with SVM model
The performances of the hybrid architecture are summa-

rized in Figure 11 and Table IX. Using the penultimate fully
connected layer of the COVID-EffecientNetB7-Attn archi-
tecture with a linear SVM classifier produces significantly
improved results compared to the conventional softmax
function. The hybrid model achieves the best performance
as it combines the key characteristics of CNN, SE Block,
and SVM. We can see that COVID-EffecientNetB7-Attn-
based SVM outperforms the other methods on several
metrics. We achieve an accuracy of 97.50%, while the
precision and recall rate of COVID-19 detection both reach
100%. In addition, a considerable improvement in F1-score
is achieved in all classes. The lower recall rate (93.00%)
on the pneumonia class is probably a consequence of the
limited number of cases in our patient population.
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TABLE VIII. A comparison of the proposed architectures with state-of-the-art on COVIDx dataset. The year of the research study is in brackets.

Method Number of images COVID-19 AvgAccuracy
COVID Non-COVID Precision (%) Recall (%) (%)

COVID-Net. (2020) [12] 358 13617 98.90 91.00 93.30
CoroNet. (2020) [30] 99 18430 90.00 90.00 93.50
RAM-Net. (2020) [31] 358 13617 99.00 92.00 95.30
ECOVNet. (2020) [32] 589 14904 100 100 97.00
Luz et al. (2021) [33] 183 13587 100 96.80 93.90
Bhadouria et al. (2021) [34] 470 2000 98.02 98.71 96.36
POTHER. (2022) [35] 353 14357 100 95.00 90.30
ViT model. (2022) [36] 358 13604 92.84 90.00 94.62
DR CapsNet. (2023) [37] 1770 14919 - - 90.00
DAM-Net. (2023) [38] 2442 14920 96.87 95.54 97.20
ViT-S + SS-CXR. (2023) [39] 16194 14299 99.70 95.50 96.00
COVID-Efficient-Attn (Ours) 16690 13840 99.00 100 96.50
COVID-Efficient-Attn + Linear SVM (Ours) 16690 13840 100 100 97.50

TABLE IX. Performance of the COVID-EffecientNetB7-Attn based
SVM on COVIDx dataset.

Class Precision Recall F1-Score AvgAccuracy
(%) (%) (%) (%)

COVID-19 100 100 100
Normal 93.00 97.00 95.00 97.50
Pneumonia 97.00 93.00 95.00

Figure 11. Confusion matrix of the proposed COVID-
EffecientNetB7-Attn based SVM.

4) Comparative study
In this research, we have conducted a comparative

study of the results obtained by the proposed architectures
against SOTA methods. Table VIII presents an overview
of the comparison across several metrics; average accu-
racy, sensitivity, and precision. The results range from an
accuracy of 90.00% in [37] to 97.20% in [38]. The pro-
posed architecture COVID-Efficient-Attn-based linear SVM
shows better results than all SOTA methods. It achieves
a relatively high average accuracy of 97.50%, precision,
and sensitivity of 100% for COVID-19 detection. This

underlines the importance of feature extraction using an
optimized model that takes into account three critical as-
pects: increased depth and width, as well as wider image
resolution. These considerations enable finer details to be
captured, ultimately improving classification accuracy. On
the other hand, it is essential to highlight the challenge
posed by the limited availability of COVID-19 images in
the majority of these studies. Many SOTA methods rely on
small datasets containing a limited number of images, with
only a few COVID-19-positive patient samples. In contrast,
our proposed architecture has been developed and evaluated
using a large COVID-19 benchmark, which contains the
largest number of COVID-19-positive cases (16690 X-ray
images). It is therefore better adapted to new and unseen
images than any existing work in the literature.

5. Conclusion and futur works
Through this study, we introduce an artificial

intelligence-based approach that improves the radiological
diagnosis of COVID-19. We presented a robust deep-
learning architecture designed to accurately identify visual
features of COVID-19 and influenza virus pneumonia
in radiological images. Our solution holds promise for
complementing and aiding radiological diagnosis by
facilitating accurate and timely differentiation between
COVID-19 and influenza virus pneumonia. Furthermore,
the proposed approach is flexible, making it applicable to
a wide range of classification tasks beyond this specific
application.

In the future, potential directions of research could
involve incorporating lung segmentation techniques to
further improve the model’s performance. In addition,
when more data become available, it will be possible to
extend our experimental work by approving the method on
larger datasets. Furthermore, we look forward to extending
our diagnostic system to other lung pathologies, like
chronic obstructive pulmonary disease, bronchitis, etc,
to assess its validity and reliability in a broader clinical
context.
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Data availability : The dataset generated during
and/or analyzed during the current study is
available to download from the following links:
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
and https://github.com/lindawangg/COVID-Net.
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