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Abstract: Osteoporosis, a disorder defined by decreased bone mineral content and changes in bone microarchitecture, poses a 

challenge for accurate classification using X-ray images. This work aims to extract texture features from calcaneal radiographs and 

select the best texture features which can be used to train the machine learning classifier models for detection of osteoporosis. This 

work is based on multiresolution analysis and microstructural analysis to characterize trabecular bone microarchitecture from 

calcaneal radiograph. The image is transformed to extract the feature details using a two-level wavelet decomposition. Structural 

texture methods such as Local Binary Pattern, fractal dimension and Gabor filter are applied to the wavelet decomposed images. The 

most discriminating texture features are selected using independent sample t-test and feature selection methods. Machine learning 

models are constructed by training the classifiers using the best texture features to classify healthy images from osteoporotic images. 

The effectiveness of the proposed approach is evaluated using a public challenge dataset comprising calcaneal radiographic images. 

Notably, the best classification is obtained with k-Nearest Neighbour trained with the features selected using forward feature 

selection, with an accuracy rate of 78.24%. The results indicate the potential of the proposed approach as a possible alternative tool 

for screening osteoporosis. 
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1. INTRODUCTION  

Osteoporosis is a prevalent metabolic disease 

characterized by reduced bone strength, primarily defined 

by bone mineral density (BMD). Osteoporosis is 

operationally recognized by the World Health 

Organization as having a BMD that is 2.5 standard 

deviations or more below average (T-score less than -2.5) 

[1]. The global impact of osteoporosis is significant, with 

an estimated 200 million individuals affected by the 

condition. The International Osteoporosis Foundation's 

statistics show the prevalence of osteoporotic fractures are 

all around the world. According to statistics, one in three 

women aged 50 or older and one in five males will have 

an osteoporotic fracture over their lifetime [2]. In India, 

the prevalence of osteoporosis among adults is estimated 

to be 22.9 percent. The prevalence is higher in females 

(26.3 percent) compared to males (10.9 percent), 

surpassing the global prevalence of 18.3 percent [1].  

Osteoporosis poses a significant medical and socio-

economic threat as it leads to a systemic deterioration of 

bone mass and microarchitecture, increasing the 

susceptibility to fragility fractures. In individuals with 

osteoporosis, the production of new bone fails to keep 

pace with the loss of old bone, resulting in decreased 

BMD. This reduced BMD makes even minor stresses 

potentially fracturing, and the associated chronic pain 

severely limits daily activities [3]. Common sites for 

osteoporosis-related fractures include the hip, wrist, and 

spine [4].  

Various techniques, such as High-Resolution 

Peripheral QCT (HR-pQCT), Magnetic resonance 

imaging (MRI), Quantitative Computed Tomography 
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(QCT), Dual X-ray Absorptiometry (DXA), digital X-ray 

radiogrammetry (DXR) and quantitative ultrasound 

(QUS) are employed for diagnosing osteoporosis [5]. 

DXA is regarded as the gold standard technique; however, 

its availability is limited in low-income economies, and 

the cost of scans is high [6]. Cortical radiogrammetry, a 

cost-effective technique using radiographs, has proven 

useful in detecting bone loss. For the purpose of 

identifying bone disorders including osteoporosis and 

rheumatoid arthritis, the advanced cortical 

radiogrammetric method known as Digital X-ray 

Radiogrammetry (DXR) has been widely explored [7]. 

Cortical radiogrammetry does not examine the texture of 

trabecular bone, it only evaluates cortical bone 

characteristics. Before an apparent decrease in cortical 

bone is seen, osteoporosis first affects the trabecular bone 

structure. Additionally, measuring BMD alone is not a 

reliable way to predict fracture risk. Non-BMD variables 

like microarchitecture can also be used to describe the 

quality and strength of bone. Given the expense and 

limitations of existing diagnostic techniques, there is a 

pressing need to develop a low-cost device that utilizes 

bone microarchitecture for early detection and diagnosis 

of osteoporosis.  

According to several studies, imaging is a potential 

way to support the diagnosis and aid the practitioner in 

making decisions, according to a number of studies. 

Texture analysis and classification enables an easy and 

less intrusive technique to describe the micro-architecture 

of the bone on X-ray images, which should help assess the 

risk of bone fracture and aid in the early detection of 

osteoporosis. Studies have demonstrated the value of 

calcaneal trabecular bone texture analysis in the diagnosis 

and early detection of fractures associated with 

osteoporosis and have reported the ability to distinguish 

between osteoporotic and healthy participants using 

trabecular texture characteristics from calcaneal 

radiographs.  

Reference [8] used calcaneal radiographs of 174 

women which included 87 images in both healthy and 

osteoporotic category. An effective fractal dimension 

estimator known as the anisotropic piecewise Whittle 

estimator was combined with an anisotropic fractional 

Brownian motion model in their oriented analysis 

technique and obtained an accuracy of 71.8% with 72% 

sensitivity, 71% specificity and AUC of 78%. Reference 

[9] used calcaneal TCB dataset which included 58 images 

in both healthy and osteoporotic categories. They made 

use of the gabor filter bank, which is made up of filters 

with 4 different scales and 4 orientations. The 1D-LBP 

histograms are then acquired. LBPs are calculated by 

taking into consideration 8 neighbors with a 1 pixel 

separation and obtained an accuracy of 72.71%.  

Reference [10] used calcaneal TCB dataset which 

included 58 images in both healthy and osteoporotic 

categories. Multifractal analysis has been utilized to 

describe the bone texture. Here, local texture differences 

are effectively described by a set of local fractal 

dimensions rather than a single global fractal dimension. 

The effectiveness of the box-counting approach and the 

regularization dimension method are evaluated. The 

performance is then enhanced by combining both the 

characteristics and obtained accuracy of 55% with 59% 

sensitivity and 52% specificity.  

Reference [11] used the ROIs that are taken from the 

trabecular region of individuals with varied ages and 

osteoporotic diseases using X-rays. They developed a 

fractal model that employs the differential box-counting 

method to calculate the fractal dimension (FD), which is 

done post image preprocessing step that ensures a reliable 

estimation approach and obtained a better result with p 

value of 4.8368e−4.  

Reference [12] presented sparse representation-based 

technique for distinguishing healthy from diseased states 

using medical imaging patterns. Two classifiers based on 

log likelihood function and maximum a posteriori 

probability were developed. In order to handle the 

approximation problem's irregularities and construct a 

classifier ensemble that would produce more precise 

numerical answers than traditional sparse assessments of 

the entire spatial domain of the pictures, they suggest a 

spatial block decomposition approach from which they 

obtained accuracy of  67.8% with specificity  65.5% 

sensitivity 70.1% and AUC of 65%. Reference [13] used 

calcaneal TCB dataset which contains 58 images in both 

healthy and osteoporotic categories. Multifractals are used 

in their research to describe the trabecular bone 

microstructure.  

In order to assess the overall regularity of the pixels, 

Hausdorff dimensions are first calculated for each Holder 

exponent. Finally, the Hausdorff dimensions are used to 

calculate lacunarity and obtained accuracy of 59% with 

59% sensitivity and 59% specificity. Reference [14] used 

calcaneal X-ray image dataset which contains 87 images 

in both normal and osteoporosis categories. The proposed 

method follows different steps. The radiographic images 

are binarized after going through a median filtering stage 

of preprocessing. After computing the multi-fractal 

spectrum, numerous features are obtained to describe the 

microarchitecture of the trabecular bone. Finally, the two 

groups of osteoporotic as well as healthy radiographs are 

classified using the obtained features and obtained 

accuracy of 98.01%, with 97.26% Sensitivity, 98.78% 

Specificity and AUC of 98.37 %.  
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Figure 1.  Calcaneal radiographs obtained from the dataset: (a) and (b) 
are calcaneal radiographs of class 0 category, and (c) and (d) are 

calcaneal radiographs of class 1. 

Deep learning methods were used to predict 

osteoporosis. References [15]-[17] have used deep 

learning approach for classification of X-ray images as 

osteoporotic or healthy. Reference [15] obtained 93.9% 

sensitivity, 94.5% specificity and AUC of 97.5%. 

Reference [16] attained testing accuracy of 82% and 

validation accuracy of 84% on untrained test radiographic 

images. Reference [17] obtained an AUC of 76.80% and 

accuracy of 72.67%.  

The proposed work aims to enhance the accuracy and 

precision of osteoporosis diagnostic tools by leveraging 

texture features extracted from calcaneal radiographs. By 

identifying significant texture features, we intend to train 

machine learning models and develop a classifier that can 

effectively differentiate between healthy and osteoporotic 

images. This approach holds promise in improving the 

diagnostic capabilities and overall effectiveness of 

osteoporosis detection. 

2. MATERIALS AND METHODS 

A. Dataset 

The images used in this paper are obtained from a 
challenge dataset, released by International Society for 
Biomedical Imaging (ISBI) in 2014. This challenge 
involves applying texture analysis to classify osteoporotic 
patients from normal individuals based on X-ray images. 
The dataset consists of radiographs of calcaneal bone of 
two different population. Patients with osteoporosis and 
healthy individuals constitute the reference population. 
The images are of 400x400 pixels in 16-bit format. There 
are 58 photos in class 0 and 58 images in class 1 in the 
dataset. Fig. 1 shows some sample images. 

B. Methodology 

The proposed approach operates using different 
stages, as shown in Fig. 2. Prior to using a median filter to 
reduce noise content, the images are first preprocessed by 
increasing contrast using Contrast Limited Adaptive 
Histogram Equalization (CLAHE). Then, using various 
feature extraction approaches, texture features are 
obtained to characterize the trabecular bone 
microarchitecture. Feature selection strategies are used to 
choose the relevant features. Finally, osteoporotic and 
healthy radiographs are classified by training machine 
learning classifiers using the retrieved features. 

 

Figure 2. Methodology of the proposed work: The raw image is preprocessed and features are extracted using different texture analysis 

techniques, followed by feature selection. Classifiers are trained with the best texture features to classify healthy and osteoporotic images. 
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C. Preprocessing 

Bone X-ray scans reveal striking similarities between 
osteoporotic patients and healthy individuals. Each picture 
is initially preprocessed in order to enhance image quality 
and improve the proposed technique's capacity to 
distinguish between two separate classes. A nonlinear 
median filter of size 3x3 is used on each grayscale picture 
to eliminate the impulse noise without changing the 
frequencies which are important for classifying 
osteoporosis. The impulsive noise created during 
acquisition is primarily eliminated by the median filter. 
The image intensity levels are then normalized in order to 
improve the contrast. 

D. Feature extraction 

Gravity (tension) as well as walking force 
(compression), which are applied to the heel, cause 
anisotropic qualities in the bone structure. The bone 
structure has anisotropic characteristics as a result of these 
forces. Additionally, normal (dense) and osteoporotic 
bones exhibit different levels of granularity, emphasizing 
the importance of multiresolution analysis that considers 
orientation and scale variations, as well as microstructural 
analysis [9]. To characterize the trabecular bone structure, 
several analysis methods based on fractal, structural, and 
texture transforms are employed.  

In this proposed method, we utilize various features to 
analyze the trabecular features extracted from the 
preprocessed calcaneal X-ray images. Specifically, we 
employ structural features such as local binary pattern 
(LBP), fractal features such as fractal dimension (FD), 
and transform-based features including Gabor transform 
(GT) and discrete wavelet transform (DWT). These 
features enable a comprehensive analysis of the trabecular 
bone structure, considering its unique properties and 
variations.  

The Local Binary Pattern (LBP) approach utilize the 
statistical distribution of local patterns to characterize 
textures. It assigns labels to pixels by comparing their 
intensity values with the surrounding pixels and it 
computed a rotation-invariant metric known as the 
uniformity measure U. Patterns are given the LBP code if 
their U value is less than two, indicating that the center 
pixel is labeled as uniform [18]. Three different neighbor 
configurations are considered, namely 8, 16, and 24, with 
respective pixel spacing of 1, 2, and 3. Energy and 
entropy are then extracted from the resulting LBP images, 
generating a feature vector with 6 features for each 
preprocessed image.  

Gabor transform is employed to represent and 
differentiate textures by examining the presence of 
specific frequency content in the localized area 
surrounding the point or region of interest [9]. Gabor 
filters are applied, resulting in Gabor images of different 
scales and orientations. Mean and standard deviation 

features are extracted from the set of Gabor filters with 
various orientations and frequencies, resulting in a feature 
vector with 16 features for each preprocessed image.  

Fractal Dimension (FD) analysis, suitable for 
evaluating bone microstructure on radiographs, utilize the 
box-counting algorithm to characterize trabecular bone 
patterns [19]. Hurst coefficients are extracted from each 
image, generating a feature vector containing 4 
coefficients.  

Wavelet transform (WT) decomposes the images into 
four sub-images by convolving them with specific filters. 
These sub-images capture frequency information across 
various frequency ranges [20]. In this work, two-level 
decomposition is applied to each preprocessed image, 
resulting in a set of 7 images as shown in Fig. 3.  

LBP, Gabor transform, and FD analysis are then 
applied to all 7 images, generating a feature vector with 
96 features. This feature extraction process is repeated for 
all preprocessed images, resulting in a comprehensive set 
of features that capture different aspects of the trabecular 
bone structure and texture.  

E. Feature selection 

The extracted feature vectors may contain features that 
are not significant. It is important to remove any 
extraneous features since they might lower classification 
accuracy and make the classifier more complicated. It is 
possible to choose the most important and dominating 
features using a variety of feature selection techniques. 
Here, an independent sample t-test and forward feature 
selection method are used for feature selection.  

In this work, the p-value of each feature obtained is 
calculated using an independent sample t-test. According 
to the test, features with a p-value of 0.05 or less are 
deemed to be significant [11]. Hence the feature with 
significance value i.e. p-value of 0.05 or less are 
considered to form feature vectors, which are used for 
training classifiers.  

Figure 3.  Two-level Wavelet Decomposition: (a) High High (HH), (b) 
High Low (HL), (c) Low High (LH), and (d) Low Low (LL) sub-band 

images of the first level of Haar decomposition. (e)-(h) are the HH, HL, 
LH and LL sub-band images of the second level, respectively. 
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Forward feature selection method is an iterative 
process where features are progressively added to a subset 
based on their impact on the performance of a machine 
learning model. It starts with an empty set and 
successively adds features that improve model 
performance until a stopping criterion is met. The process 
evaluates different feature subsets and selects the one that 
yields the best model performance [21]. We use this 
method to obtain a feature vector containing significant 
features which showed best accuracy amongst all others. 

F. Classification 

The different classifiers used are support vector 
machine (SVM), K-nearest neighbor (KNN) classifier and 
random forest (RF) classifier. For KNN, 6 nearest 
neighbours are considered. For the RF classifier, the 
number of estimators varies depending on the number of 
features. If the features are less than 15, 10 estimators are 
used, while if the features are more than 25, 100 
estimators are used. This choice helps optimize the 
performance of the classifier based on the complexity of 
the feature set.   

Due to the limited amount of training data, a 5-fold 
stratified cross-validation (CV) is performed. Utilizing 
performance measures obtained from the confusion 
matrix, the trained classifiers' effectiveness is assessed. 
The output findings are divided into four categories using 
a confusion matrix: true positive (TP), false positive (FP), 
true negative (TN), and false negative (FN). Sensitivity 
(Sn), specificity (Sp), and accuracy (Acc) are the 
performance measures employed, as given in Equations 1-
3. By analyzing these performance measures, the 
classifiers' effectiveness in distinguishing between 
osteoporotic and healthy individuals based on the 
extracted features is evaluated. 

Sensitivity =  𝑇𝑃/𝑇𝑃 + 𝐹𝑁 

Specificity =  𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃)

Accuracy = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

3. RESULTS 

Significant features are derived from different texture 
feature analysis methods through various feature selection 
techniques. Then the obtained feature vectors are used to 
train the classifier. 

A. Feature selection 

An independent sample t-test is conducted to 
determine the p-value for each feature, and all significant 
features, with p-value less than 0.05, is grouped as Feature 
Set-1 (FS1). As observed in Table 1, all features obtained 
from the LBP analysis are significant. One feature is 
significant in the GT analysis. In the FD analysis, two 
features are found to be significant.  

TABLE  I.  INDEPENDENT SAMPLE T-TEST RESULTS OF FEATURES 

OBTAINED FROM VARIOUS TEXTURE METHODS 

Feature method Feature vector p-value 

Local binary 

pattern (LBP) 

LBP1,8_energy 0.0081* 

LBP1,8_entropy 0.0146* 

LBP2,16_energy 0.0006* 

LBP2,16_entropy 0.0006* 

LBP3,24_energy 0.0027* 

LBP3,24_entropy 0.0024* 

Gabor transform 

GT0,0.05_mean 0.6568 

GT0,0.05_std 0.1446 

GT0,0.4_mean 0.9213 

GT0,0.4_std 0.4907 

GT1,0.05_mean 0.9695 

GT1,0.05_std 0.0078* 

GT1,0.4_mean 0.7947 

GT1,0.4_std 0.8602 

GT2,0.05_mean 0.9343 

GT2,0.05_std 0.7976 

GT2,0.4_mean 0.8091 

GT2,0.4_std 0.7128 

GT3,0.05_mean 0.9359 

GT3,0.05_std 0.2197 

GT3,0.4_mean 0.7947 

GT3,0.4_std 0.642 

Fractal dimension   

FDTA_HurstCoeff_1 0.0003* 

FDTA_HurstCoeff_2 0.0041* 

FDTA_HurstCoeff_3 0.2419 

FDTA_HurstCoeff_4 0.2526 

*p-value < 0.05, 
LBPn,m_feature- denotes the feature measured from LBP image obtained with radius of n and 
neighbourhood of m pixels, 
GTn,m_mean- denotes the mean calculated from the Gabor image with threshold n and 
frequency m,  
GTn,m_std- denotes the standard deviation calculated from the Gabor image with 
threshold n and frequency m,  
FDTA_HurstCoeff- denotes Hurst coefficient of fractal dimension.  
 

A 2-level wavelet decomposition is done on the 
original images and the LBP, Gabor transform and fractal 
dimension features are extracted from each sub-band 
image. The sub-images are Low-Low, Low-High, High-
Low and High-High sub-bands of level-2 DWT 
decomposition, denoted as LL2, LH2, HL2 and HH2 
images, respectively. The respective sub-images of level-2 
are LL1, LH1, HL1 and HH1, respectively. The DWT 
analysis produced a total of 96 features, out of which 27 
features are significant, as listed in Table 2 and 3.  
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TABLE II.  INDEPENDENT SAMPLE T-TEST RESULTS OF FEATURES 

EXTRACTED FROM LEVEL-1 WAVELET TRANSFORM 

Feature vector Feature vector 

LH1_GT0,0.5_mean HL1_LBP1,8_energy* 

LH1_GT0,0.5_std HL1_LBP1,8_entropy* 

LH1_GT1,0.5_mean HL1_LBP2,16_energy* 

LH1_GT1,0.5_std HL1_LBP2,16_entropy* 

LH1_GT2,0.5_mean HL1_FDTA_HurstCoeff_1* 

LH1_GT2,0.5_std HL1_FDTA_HurstCoeff_2* 

LH1_GT3,0.5_mean HH1_GT0,0.5_mean 

LH1_GT3,0.5_std HH1_GT0,0.5_std 

LH1_LBP1,8_energy* HH1_GT1,0.5_mean 

LH1_LBP1,8_entropy* HH1_GT1,0.5_std 

LH1_LBP2,16_energy* HH1_GT2,0.5_mean 

LH1_LBP2,16_entropy* HH1_GT2,0.5_std 

LH1_FDTA_HurstCoeff_1* HH1_GT3,0.5_mean 

LH1_FDTA_HurstCoeff_2* HH1_GT3,0.5_std 

HL1_GT0,0.5_mean HH1_LBP1,8_energy* 

HL1_GT0,0.5_std HH1_LBP1,8_entropy* 

HL1_GT1,0.5_mean HH1_LBP2,16_energy 

HL1_GT1,0.5_std HH1_LBP2,16_entropy 

HL1_GT2,0.5_mean HH1_FDTA_HurstCoeff_1* 

HL1_GT2,0.5_std HH1_FDTA_HurstCoeff_2 

HL1_GT3,0.5_mean  

HL1_GT3,0.5_std  

*p-value < 0.05,  

XXi_GTn,m_feature- denotes the feature measured from Gabor 

transform (with threshold n and frequency m) of ith level XX wavelet 

sub-image,   

XXi_LBP n,m_feature- denotes the feature measured from LBP image 
(with radius n and neighbourhood m pixels) of ith level XX wavelet sub-

image,  

XXi_FDTA_HurstCoeff_n- denotes the Hurst coefficient of fractal 

dimension of ith level XX wavelet sub-image.  
 

Next, a second feature extraction method is implemented 
using forward feature selection method. Through the 
forward feature selection method, we obtain a feature 
vector for each classifier that consists of significant 
features associated with the highest accuracy (FS2). The 
objective of this approach is to determine the most 
relevant features for our analysis. Initially, we start with a 
set of features and employ a stepwise procedure that 
iteratively adds the best-performing feature, based on the 
highest increase in accuracy. The process continues until 
no further improvement in performance is observed. 

TABLE III.  INDEPENDENT SAMPLE T-TEST RESULTS OF FEATURES 

EXTRACTED FROM LEVEL-2 WAVELET TRANSFORM 

Feature vector Feature vector 

LL2_GT0,0.5_mean HL2_GT0,0.5_mean 

LL2_GT0,0.5_std HL2_GT0,0.5_std 

LL2_GT1,0.5_mean HL2_GT1,0.5_mean 

LL2_GT1,0.5_std HL2_GT1,0.5_std 

LL2_GT2,0.5_mean HL2_GT2,0.5_mean 

LL2_GT2,0.5_std HL2_GT2,0.5_std 

LL2_GT3,0.5_mean HL2_GT3,0.5_mean 

LL2_GT3,0.5_std HL2_GT3,0.5_std 

LL2_LBP1,8_energy HL2_LBP1,8_energy* 

LL2_LBP1,8_entropy HL2_LBP1,8_entropy* 

LL2_LBP2,16_energy HL2_LBP2,16_energy 

LL2_LBP2,16_entropy HL2_LBP2,16_entropy 

LL2_FDTA_HurstCoeff_1 HL2_FDTA_HurstCoeff_1* 

LL2_FDTA_HurstCoeff_2 HL2_FDTA_HurstCoeff_2 

LH2_GT0,0.5_mean HH2_GT0,0.5_mean 

LH2_GT0,0.5_std HH2_GT0,0.5_std 

LH2_GT1,0.5_mean HH2_GT1,0.5_mean 

LH2_GT1,0.5_std HH2_GT1,0.5_std 

LH2_GT2,0.5_mean HH2_GT2,0.5_mean 

LH2_GT2,0.5_std HH2_GT2,0.5_std 

LH2_GT3,0.5_mean HH2_GT3,0.5_mean* 

LH2_GT3,0.5_std HH2_GT3,0.5_std 

LH2_LBP1,8_energy* HH2_LBP1,8_energy 

LH2_LBP1,8_entropy* HH2_LBP1,8_entropy 

LH2_LBP2,16_energy* HH2_LBP2,16_energy* 

LH2_LBP2,16_entropy* HH2_LBP2,16_entropy* 

LH2_FDTA_HurstCoeff_1* HH2_FDTA_HurstCoeff_1* 

LH2_FDTA_HurstCoeff_2 HH2_FDTA_HurstCoeff_2 

*p-value < 0.05,  

XXi_GTn,m_feature- denotes the feature measured from Gabor 

transform (with threshold n and frequency m) of ith level XX wavelet 
sub-image,   

XXi_LBP n,m_feature- denotes the feature measured from LBP image 
(with radius n and neighbourhood m pixels) of ith level XX wavelet sub-

image,  
XXi_FDTA_HurstCoeff_n- denotes the Hurst coefficient of fractal 
dimension of ith level XX wavelet sub-image.  
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For the three classifiers, three distinct feature vectors are 
obtained. In the SVM classifier, our feature vector 
comprised 5 features, out of which 4 features exhibited a 
p-value below 0.05, indicating their statistical 
significance. For the KNN classifier, the feature vector 
consisted of 15 features, with 5 features displaying a p-
value below 0.05. In the RF classifier, the feature vector 
encompassed 12 features, among which 7 features 
possessed a p-value less than 0.05, as shown in Table 4. 
Table 4 provide insights into the selection of significant 
features for each classifier and demonstrate the 
importance of feature selection in improving the accuracy 
and interpretability of the classification models. 

 

TABLE IV.  FIVE-FOLD CROSS VALIDATION (CV) RESULTS OF FEATURES 

FROM FORWARD FEATURE SELECTION (FS2) 

Classif

ier 
Features 

CV 

fol

d 

CV 

scor

e 

Averag

e CV 

score 

KNN 

LH1_GT0,0.5_std          
HH2_GT0,0.5_std 

LH1_LBP1,8_energy* 

HH2_GT2,0.5_std 
LH1_LBP2,16_entropy* 

HH2_LBP2,16_energy*  
HL1_GT2,0.5_std  

HL1_LBP2,16_energy*  

HL1_FDTA_HurstCoeff_2* 
HH1_GT0,0.5_std 

HH1_GT1,0.5_std 

HH1_GT2,0.5_std 
HH1_LBP1,8_energy* 

HH1_LBP2,16_energy 

HH1_LBP2,16_entropy 

1 0.68 

0.78 

2 0.89 

3 0.66 

4 0.88 

5 0.77 

SVM 

HH1_FDTA_HurstCoeff_1 

LH1_FDTA_HurstCoeff_1*  
HL1_LBP2,16_entropy* 

LH2_LBP2,16_entropy* 

HH1_LBP2,16_entropy 

1 0.68 

0.72 

2 0.73 

3 0.77 

4 0.77 

5 0.61 

RF 

LH1_GT0,0.5_mean 

HH1_FDTA_HurstCoeff_1* 
LH1_FDTA_HurstCoeff_2*  

HH2_LBP1,8_entropy 

HL1_GT2,0.5_mean 
HL1_LBP1,8_energy* 

HL1_LBP1,8_entropy* 

LH2_LBP2,16_entropy* 
HH1_GT1,0.5_std 

HL2_GT1,0.5_std 

HH1_LBP1,8_energy* 
HH1_LBP1,8_entropy* 

1 0.78 

0.78 

2 0.78 

3 0.88 

4 0.77 

5 0.66 

*p-value < 0.05, 

XXi_GTn,m_feature- denotes the feature measured from Gabor transform (with threshold n and 

frequency m) of ith level XX wavelet sub-image.  

XXi_LBPn,m_feature- denotes the feature measured from LBP image (with radius n and 

neighbourhood m pixels) of ith level XX wavelet sub-image. 

 

 

B. Classification 

In this work, we employ feature extraction methods 
and feature selection methods to construct feature vectors. 
These feature vectors are then used to train three different 
classifiers. The feature extraction methods allowed us to 
extract significant features from the input data, capturing 
important patterns and characteristics. Subsequently, the 
feature selection methods further refine the feature vectors 
by selecting the most relevant features, enhancing the 
efficiency and interpretability of the classifiers. We train 
three classifiers, namely SVM, KNN and RF, using the 
constructed feature vectors. These classifiers are evaluated 
based on their accuracy, which measures the overall 
correctness of the predictions. Additionally, sensitivity 
and specificity, derived from the confusion matrix, 
provided insights into the classifiers' ability to correctly 
identify positive and negative instances. Fig. 4 shows the 
cross validation accuracy obtained by SVM, KNN and 
random forest classifiers on all feature sets. Similarly, Fig. 
5 and 6 show the sensitivity and specificity of the 
classifiers on feature sets.  

Figure 4. Five-fold cross validation accuracy of SVM, KNN and 

Random Forest classifiers trained using extracted texture feature sets.  

Figure 5. Sensitivity values of SVM, KNN and Random Forest 
classifiers trained using extracted texture feature sets. 
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Figure 6. Specificity values of SVM, KNN and Random Forest 
classifiers trained using extracted texture feature sets. 

 

Table 5 tabulates the accuracy, sensitivity and 
specificity values of KNN, SVM and random forest 
classifiers trained using different sets of trabecular texture 
features are tabulated. It is observed that in general, the 
best results are obtained when the classifiers are trained 
with texture features selected by the feature selection 
methods, such as independent sample t-test and forward 
feature selection method. The feature set FS2 outperforms 
other feature sets, indicating that forward feature selection 
is a better feature selection technique for identifying 
significant features.  

Among the three classifiers, weighted KNN trained 
using FS2 features demonstrates the best performance. It 
achieves a 5-fold stratified cross-validation accuracy of 
78.24%, with a sensitivity of 80.14% and specificity of 
76.14%. This indicates that the classifier was able to 
accurately classify osteoporotic patients and healthy 
individuals, with a relatively high overall accuracy and 
balanced sensitivity and specificity. 

Fig. 7 provides the Receiver Operating Characteristic 
(ROC) plots and the area under the ROC curve (AUC) of 
the 5-fold cross validation of KNN, RF and SVM 
classifiers trained on FS2 feature set. The ROC of every 
fold along with the mean curve is plotted. This further 
illustrates the superior performance of the weighted KNN 
classifier. Overall, this work showcases the effectiveness 
of feature extraction, feature selection, and classifier 
training in analyzing and classifying osteoporosis based 
on the constructed feature vectors. 

 

TABLE V. RESULTS OBTAINED FROM THE CLASSIFIERS 

TRAINED WITH DIFFERENT SETS OF FEATURES 

Features 

Classi

fiers 

Sensitivi

ty (%) 

Specifici

ty (%) 

5-fold CV 

accuracy (%) 

 
SVM 41.67 83.34 52.42 

Local Binary 

Pattern 
KNN 91.67 50.00 63.01 

 
RF 50.00 75.00 60.28 

 
SVM 66.67 50.00 49.09 

Gabor 

Transform 
KNN 66.67 16.64 57.82 

 
RF 83.34 25.00 53.40 

 
SVM 41.67 75.00 50.76 

Fractal 

Dimension 
KNN 58.36 50.00 56.88 

 
RF 58.36 33.34 62.86 

 
SVM 91.67 25.00 49.09 

Wavelet 

Transform (all) 
KNN 66.67 50.00 49.09 

 
RF 58.36 75.00 65.54 

 
SVM 83.34 50.00 51.60 

Wavelet 

Transform 
(FS1) 

KNN 66.67 83.34 68.91 

 
RF 50.00 58.36 67.24 

 
SVM 75.24 67.70 71.75 

Wavelet 

Transform 

(FS2) 

KNN 80.14 76.14 78.24 

 
RF 79.27 74.50 76.84 
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4. DISCUSSION 

The outcomes of our proposed method were 
contrasted with those of existing studies that used the 
same dataset. Table 6 compares the results of the 
proposed method with related work using the same 
dataset. Reference [13] computed Holder exponents, then 
Hausdorff dimensions are determined. Finally, lacunarity 
is computed and obtained accuracy of 59% with 59% 
sensitivity and 59% specificity. Reference [9] used Gabor 
filter bank, created using filters with four scales and four 
orientations. Afterwards, 1D-LBP histograms are acquired 
from which an accuracy of 72.71% is obtained. Reference 
[10] utilized trabecular bone texture features which are 
extracted using the regularization and box-counting 
dimensions, and obtained accuracy of 55% with 59% 
sensitivity and 52% specificity.  

Other studies, such as those conducted by [22] and 
[23] utilized the same dataset, consisting of 116 images. 
Their respective results showed an accuracy of 63.8% and 

74.1%. Furthermore, References [8], [24] and [25] also 
utilized the same dataset in their studies. However, they 
had included an additional blind data of 58 images, 
bringing the total dataset size to 174 images. By including 
these blind data, they were able to expand the dataset and 
potentially obtain more comprehensive insights and 
improved results compared to our proposed work. The 
availability of a larger dataset have provided a broader 
perspective and potentially enhanced the accuracy of their 
findings.  

In addition to the present work, several other research 
works, including those conducted by [26]-[29] have 
explored similar topics but utilized different datasets. 
Table 7 compares the proposed method with related work 
using different dataset. Notably, the studies that 
incorporated larger datasets have shown promising 
results. The availability of a larger data pool has likely 
provided these studies with a more comprehensive 
representation of the underlying patterns and improved the 
reliability and generalizability of their findings. 

 
Figure 7. ROC plots and AUC values obtained for 5-fold cross validation of (a) KNN, (b) Random Forest, and (c) SVM classifiers 

 

 

 

9



 

 

10       Sai Kiran K S, A.S. Areeckal:  Detection of Osteoporosis from Calcaneal Radiograph Images using 

Wavelet Texture Analysis and Machine Learning  

 

 
http://journals.uob.edu.bh 

 

 

TABLE VI. COMPARISON WITH RELATED WORK USING CALCANEAL IMAGE DATA 

 
Reference Features used  Classifier Dataset  Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

[22] Wavelet Marginals-Haar  SVM 58 cases 

&58 control 

62.1 65.5 63.8 

 [23] FD, wavelet transform, 

DFT, DCT, Gabor, LBP, 

Laws masks, edge 

 Random 

forest 

58 cases 

&58 control 

74.10 74.10 74.1 

[13] Multifractal-based 
lacunarity analysis 

 SVM 58 cases 
&58 control 

59.00 59.00 59 

 [10] Regularization 

dimension and box-
counting dimension 

 SVM 58 cases 

&58 control 

59.00 52.00 55 

[9] Gabor filters and 1D 

local binary pattern (1D-

LBP) 

 KNN 58 cases 

&58 control 

- - 72.71 

[24] Histogram, GLCM, PCA   SVM 87 cases 

&87 

controls 

97.70 95.40 96.60 

[25] 

Anisotropic discrete 
dual-tree wavelet 

transform 

 SVM 87 cases 
&87 

controls             

- 93.10 91.90 

[8] Oriental fractal analysis   - 87 cases 
&87 

controls 

72.00 71.00 71.80 

 [14] Multi-fractal spectrum  LR 87cases 

&87 
controls 

97.26 98.78 98.01 

[17] Sparse analysis method  Deep learning 87cases 

&87 
controls 

- - 72.67 

Proposed method Features from Wavelet 

images using LBP, GT 

and FD 

 KNN 58 cases 

&58 

control 

80.14 78.24 78.24 

  

TABLE VII. COMPARISON WITH RELATED WORK USING DIFFERENT DATASET 

 

Reference Features used Classifier Dataset  Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

 [29] 1D-LBP KNN 39 cases & 41 

controls 

_ 43.99 71.30 

  [26] Fractional Brownian model 

and Rao geodesic distance 

KNN 348 cases & 

348 controls 

97.80 95.40 96.60 

  [28] Cortial and hLLBP Logistic 
Regression 

Distal radius 
60 cases & 60 

controls 

81.70 76.70 79 

[16] Deep neural network 

architecture 

Deep learning 186 images               

in both  case   
and control      

_ _ 84.06 

Proposed 

method 

Features extracted from 

Wavelet transform images 

using LBP, GT and FD 

KNN 58 cases &58 

control 

80.14 78.24 78.24 
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In recent years, several research studies, including 
works by [15]-[17] have successfully employed deep 
learning techniques. These studies have leveraged the 
power of deep learning models to improve the accuracy 
and effectiveness of classification tasks. However, in our 
research, we did not utilize deep learning techniques due 
to the consideration that a substantial amount of data is 
typically required to train and effectively optimize deep 
learning models. Given the constraints of our dataset size, 
we opted for a machine learning technique that could 
yield meaningful results within the available data 
limitations. By acknowledging the previous works that 
utilized deep learning techniques, we highlight the 
potential of such methods in the classification of healthy 
and osteoporotic images. However, our work explored 
alternative approaches that can still provide valuable 
insights despite the challenges posed by limited data 
availability.  

5. CONCLUSION 

The proposed method uses the texture feature analysis 
method to extract features from calcaneal radiographs. 
Our method was used to categorize 116 X-rays of bone 
tissue, half of which were of patients with osteoporosis 
and the other half were of healthy individuals. There were 
four steps to the proposed method. The radiograph 
preprocessing in the first step was done to emphasize the 
trabecular bone network. The second step included feature 
extraction and texturing feature analysis. In the third 
stage, feature selection techniques were used to obtain 
significant features. In the last stage, three different 
classifiers were trained with the obtained significant 
features and the trained model was used classify 
osteoporotic patients and healthy subjects. Based on the 
results obtained, we can draw the following conclusions. 
The features extracted from wavelet transform images 
using LBP, GT, and FD proved to be valuable in the 
analysis of bone trabecular network. This suggests that 
both the orientation and fractal features play a significant 
role in this analysis. Furthermore, the feature vector 
obtained through forward feature extraction demonstrated 
better performance compared to the feature vector 
obtained through independent sample t-test. This 
highlights the effectiveness of the forward feature 
extraction method in capturing relevant and discriminative 
features for the classification. Thus, the developed model 
can be used as an effective screening tool for Osteoporosis 
in clinical settings. 
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