
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

MICROSERVICES FOR ASSET TRACKING BASED ON

INDOOR POSITIONING SYSTEM

Dondi Sasmita1 and Gede Putra Kusuma2

1,2Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina Nusantara University, Jakarta,
Indonesia. 11480

E-mail address: dondi.sasmita@binus.ac.id, inegara@binus.edu

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Indoor positioning system (IPS) is widely used for different use cases, but most of them are asset tracking and indoor
navigation. Asset tracking for instance, might help industry have more efficient such as warehouse, stock recording, guest tracker and
many more. Implementation of asset tracking need to have the IPS such as trilateration and fingerprinting. To have accurate location,
it is not just the precise, but the data which will be consumed need robust services to process all those data in almost real time. Bluetooth
low energy (BLE) is used to send the received signal strength indicator (RSSI) to the microservices based server. To support this,
microservices architecture (MSA) is designed with Service-Oriented Modeling and Architecture (SOMA) framework to translates
business goal into necessary services. We are implementing and comparing both MSA implementation strategies, which are
orchestration and choreography strategies on the cloud computing with Kubernetes platform. These strategies compared to find the
most resource efficient with biggest number of served requests. The bigger the served request number means more assets to be tracked
in real time. Less resource usage could also mean the computationally is inexpensive. The study is finding that choreography strategy
in MSA is better for IPS since the number of served requests are five times bigger with similar resources usage.

Keywords: Indoor Positioning System, Bluetooth Low Energy, Asset Tracking, Microservices Architecture, SOMA Framewor

1. INTRODUCTION
Global Positioning System (GPS) is being used

everywhere for daily tasks, e.g., finding address, tracking
package and others. GPS is powerful since it is using
satellite technology, but GPS cannot be used for specific
scopes such as indoor navigation or tracking assets inside a
building or underground. These scenarios can be used in
many industries such as hospitality, chain supply, museum
and many more. In chain supply for instance, organization
can track the location of their assets inside warehouse in
real time. Another example in high security building,
organization could track their guest’s location. For the
indoor navigation, it can be used inside a museum, mall,
and university to get the location of the arts, shop or
classroom. Also, in museum, IPS can be used to trigger the
mobile application to show the explanation or descriptions
of the arts.

The technology to get user specific location inside a
building or room is called indoor positioning system (IPS)
and it could be implemented using different technologies
such as wireless fidelity (WiFi) [1], [2], [3], bluetooth low

energy (BLE) [4], [5], [6], [7], [8], [9] radio frequency
identification (RFID), etc.

BLE is a wireless technology that running in 2.4GHz
frequency just like wireless fidelity (WiFi), but BLE’s size
is smaller, the price is cheaper, and it consume lower
energy makes BLE should perform better in a long run and
scale up efficiently in terms of cost. Mostly BLE powered
by batteries, but some device like BLE Gateway will need
more power than BLE Beacon so BLE Gateway mostly use
electricity instead.

There are several techniques that quite common being
used on indoor positioning system (IPS) like trilateration,
fingerprinting, and hybrid. Trilateration is a technique to
estimate distance by using 3 devices, in this experiment the
device is BLE gateway. While fingerprinting is estimating
distance by create a radio map database to collect data from
several points and create a model using those data.

There are several methods to estimate asset’s location
like weighted k-nearest neighbor (WK-NN). Machine
learning and deep learning are also quite common to be
used to improve the IPS accuracy. With the data from
Fingerprinting as a radio map database, those data will be

IJCDS 1570996508

1

used to create a model based on neural network like
artificial neural network (ANN) and others.

To get data in real time, the IPS need to be supported
by great services behind it. There are few architectures to
build a software such as monolith and microservices.
Monolith’s modules are dependent to each other while
modules in microservices are independent. Since the
modules are independent, services in microservices
architecture (MSA) could be written in different
programming languages and use messaging protocols to
communicate like Protocol buffers (Protobuf) [10], and
JavaScript Object Notation (JSON). Also, for the IoT itself
can use message queuing telemetry transport (MQTT) [11],
[12] to send telemetry information to the server.

For the IPS is accessible anytime and anywhere, its
firewall needs to be opened to public. One of the easiest
and most common is to host the software in public cloud
instead of on premise. There is several global cloud hosting
with reputable names such as Google Cloud Platform
(GCP), Amazon Web Services (AWS), Alibaba Cloud,
Microsoft Azure, Digital Ocean and many more.

In this experiment, BLE will be used as beacon and
gateways, since it has several advantages like its size, price,
and efficiency. The data from BLE will be sent to
microservices based server. Researchers will design a
microservices architecture with Service-Oriented
Modeling and Architecture (SOMA) framework [13] that
suit the asset tracking on IPS. The design will be using both
MSA’s implementation strategies, which are orchestration
and choreography strategies. This MSA then will be
deployed to cloud computing environment which have
Kubernetes service. Finally, the comparison of served
requests and resources usage between those strategies will
be done to find the better approach for IPS.

2. RELATED WORKS
On this chapter, there are two previous works that will

be discussed separately, which are indoor positioning
methods and microservices architecture.

A. Indoor Positioning Methods
Implementation of IPS is dominated by Bluetooth and

WiFi technologies, especially when Bluetooth Low Energy
(BLE) is introduced because of its power consumption.
BLE has a feature called advertisement packets, which
being used for reporting the Received Signal Strength
Indicator (RSSI).

In 2020, Assayag et al [4] did research and proposed a
solution based on Bluetooth called PoDME (Positioning
using Dynamic Model Estimation) where the model
parameters will be calculated dynamically based on the
RSSI value from best anchor nodes which received signal
from users’ smartphone.

The next year, Suseenthiran et al [5] also did research
regarding BLE. They were using the RSSI and calculated
the information with Trilateration and send it via LoRa
(Long Range) technology. Their research can be continued
in the future for IoT (Internet of Things) purpose, since
LoRa can send signal in the long range.

Other than Trilateration, Fingerprinting is also
becoming more popular. This method can be used for BLE
and WiFi technologies as well [2], [3], [7] Riady &
Kusuma used Fingerprinting and pedestrian dead
reckoning (PDR) combined with ANN.

Neural network is also becoming one of the many
methods that being used during research. Sulaiman et al
were using generalized regression neural networks
(GRNN). Combined with fingerprinting technique, their
research divides the phase into two, offline and online. The
offline phase is to collecting data from radio map
fingerprinting and create neural network model.

Cha & Lim also proposed a new framework based on
neural network called hierarchical auxiliary deep neural
network (HADNN). The idea is to simplify the calculation
of building, floor, and users’ locations at once. Compared
with the same dataset from TUT2017 and TUT2018,
HADNN gave a better result and improved the floor’s
accuracy to 94.58%.

When trilateration or fingerprinting only is not
enough, there are research that combined those two to get
a better result. Lie & Kusuma is one of them. In 2021,
proposed an algorithm called coarse-to-fine [14]. The
MPE is 0,874 meter and the computation to process it is
between 0.4 – 0,7 millisecond.

Mehrabian & Ravanmehr, in 2023, also used hybrid
approach which combined PDR and fingerprinting [15].
They used a novel filter called weight-based optimization
(WBO) to optimize the RSSI value. Then they optimized
the path loss parameter with particle swarm optimization
(PSO) to convert RSSI to a distance value. The MAE value
is 0.68 meter from a room with size 4.25 x 10.7 meter2.

From the IPS works that have been done in the last
couple of years, there are trends to use BLE over other
technologies because its performance getting better each
year. Also, BLE is one of the cheapest options to mass
produce. Hybrid is also becoming a way to find a better
result by combining the advantage of each methodology.

B. Microservices Architecture
“A monolith is a software application whose modules

cannot be executed independently” [16]. One of the reason
organizations moved from monolith because of the
flexibility. When the system is scaling up, so does the cost.
Because not every service needs to be added, but with
monolith architecture, the whole system should be scaled
up.

2

“A microservices is a cohesive, independent process
interacting via messages” [16]. While “A microservices
architecture (MSA) is a distributed application where all its
modules are microservices”.

In 2004, Ali Arsanjani introduced techniques to
identify, specify, and realize services a service-oriented
architecture (SOA), their flows and composition, as well as
the enterprise-scale components needed to realize and
ensure the quality of services required by SOA [17]. Then
in 2004, Arsanjani et al proposed a method for developing
service-oriented solutions called service-oriented modeling
and architecture (SOMA) [13]. SOMA is used for different
size of scopes in multiple industries worldwide. The idea
of SOMA is to standardize on how to analyze, design,
implement and deploy SOA effectively.

In 2021, Wang et al surveyed and interviewed
professionals with different backgrounds like software
engineers to Devops from different position as well [18].
This survey was conducted in 2 ways, face-to-face and
online, focusing on 3 main concept, architecture,
infrastructure, and code management. 81% correspondent
says that business process is the main reason when defining
MSA granularity from services to be developed. While
43% refer to data access and 24% from team’s structure.

Still in the same year, de Toledo et al also interviewed
25 practitioners related to 16 architectural technical debt
(ATD). There’s a potential issue when MSA developed
with shared databases if not well designed. This issue could
be solved with database per service and sagas pattern [19]
to maintain data consistency for each service.

Other than data consistency, there are distribution,
portability, availability, and robustness which are few key
characteristics in MSA [20]. These can be implemented
using several ways, like orchestration with Docker. This
will isolate problems in each service without affecting
other services.

Docker is one of many tools to contain the
microservices. The purpose is to make developer life’s
easier by automate the scale-up and scale-down processes.
Dragoni et al did research to show how powerful
containerization and orchestration microservices with
Kubernetes [20]. With the tool, developer can focus on the
services performances.

In MSA, performance can be affected by its design.
Shadija et al, in 2017, did research that shows services’
granularity could affect the performance if its design is too
deep [21]. The granularity could be affected by the size of
application, business processes, number of software
engineers, database design and the re-use of the services.
Infrastructure also affects the performance, like the latency
and service’s location in container.

When design the MSA, other than performance, we
need to look at the business model. If the product will be a
software as a service (SaaS), then the approach might differ

from internal used. In 2020, Song et al research a SaaS that
can modified [22]. Normally, customer can only customize
small part of the SaaS, but in this research, they proposed
method called deep-customization. The idea is to group the
granularity into 4, which are class/function, components,
services, and languages.

Portability and maintaining the services are also the
MSAs advantages. But with the services that growing and
getting bigger, sometimes it would be tricky to find the root
cause of issues, therefor Brandón et al did research a topic
related to RCA in MSA. They were using graph to help
visualize the RCA [23]. From their finding, graph solution
is better than machine learning approach with difference
around 19.41%. They used Kafka and Spark to detect
systems anomaly and saved it. The solution is trained by
using the data’s patterns and shows the RCA in graph.
Their solution allow user to set priority on service,
component, or database level.

SOMA is still a framework that most being used by
many industries when they develop MSA. People tried to
improve the details by add more tools, methods and
techniques to make the MSA robust, maintainable and
scalable.

3. THEORY AND METHOD

A. Bluetooth Low Energy
Bluetooth Low Energy (BLE) is a wireless technology

that run on unlicensed frequency 2.4 GHz. Price of BLE is
cheaper compared to other technologies and supported by
most smartphones makes BLE quite common to be used
[24]. BLE power consumption also quite efficient and its
size relatively small makes this technology is easier to be
deployed [5]. BLE also has higher sample rates, small
network latency and its accuracy is better than WiFi [6].

For several scenarios, BLE can be grouped into two, as
a beacon and a receiver. BLE beacon is a Bluetooth based
device that can Bluetooth signal and powered by batteries
[8]. While receiver is a Bluetooth based device which can
received signal from transmitter or beacon that will be
processed or sent to server.

BLE has a feature that report the RSSI where this data
will be used to calculate the signal’s strength between
beacon and receiver. The power of the signal is dependent
on distance and broadcast power value. From RSSI data,
the distance between beacon and receiver can be calculated
using several methods like Lateration and Fingerprinting.

B. Fingerprinting
Fingerprint is divided into two phases, offline and

online. During offline phase, RSS data will be collected
from several reference points as shown in Figure 1. With
this information, radio map database will be created. For
each row of the database contains two dimensions of x and
y. The offline phase’s goal is to form a model [24] Later,

3

on online phase, this data will be used to estimate the asset
location using WK-NN.

To get the weight for this method, firstly we should
calculate with (1).

𝑊! =	$
1
𝑑"

!

"#$

 (1)

where W is weight’s value and d is the result of calculation
between asset location’s RSS and RSS from radio map,
which will be calculated using Euclidian distance as shown
in (2).

𝑑" =	 '$ (𝑝"% − �̂�"%,
&!

%#$

!
 (2)

where p is the RSSI value that saved in radio map and p ̂ is
the measured RSSI. Once we have all the distances and
weights, we should normalize the weights using (3).

𝑁𝑊" 	= 	
𝑊"

∑ 𝑊%!
%#$

 (3)

By calculate each normalized weight, asset’s location’s
estimation can be calculated using (4).

(𝑥, 𝑦) = 	'$ 4𝑁𝑊% 	. (𝑥% , 𝑦%,6
!

%#$
 (4)

Where (x,y) is estimated position while (xj,yj) is reference
point.

Figure 1. Fingerprinting Method

C. Message Queuing Telemetry Transport
This protocol is designed specifically for operation on

low-cost and low-power sensor / actuator devices. MQTT
runs over TCP with small data packet so the power
consumptions is minimized [12].

MQTT uses publish/subscribe pattern. The publisher
will send the message, while the subscriber will receive it.
In order to filter messages, MQTT uses topic to group the
messages, so the subscribers only get messages from topic
which they subscribed as shown on Figure 2.

MQTT also provide a quality of service (QoS) where
guarantees the reliability of messages delivery. There are
three levels, level 0 messages are sent only once. Level 1
messages are sent at least once, so if the subscribers are not
ready, the publishers could re-send the messages again.
Lastly, Level 2 messages are needs to be received.
Important or chained data might use level 2 QoS.

Figure 2. Publish subscribe pattern

D. Microservices
A microservice is a cohesive, independent process

interacting via messages. And a microservice architecture
is a distributed application where all its modules are
microservices [16].

A few MSA characteristics that makes MSA more
favorable than monolith architecture are flexibility,
modularity, size, and independency. By flexibility means
the system should be aligned with business dynamics and
supported the modification that needed by the organization.
The system’s components need to be isolated where each
component contributed to the whole function. In MSA, the
service’s size should be small, if it is too big, the service
needs to be break down into 2 or more services so each
service can focus on one thing only. Lastly, services in
MSA should be operated independently from other services
and can only communicate through published interfaces.

MSA can be implemented using 2 strategies which are
orchestration and choreography as shown in Figure 3.
Orchestration needs a conductor, centralized service which
will send request to other services until response is
received. While choreography assume that there is no

4

centralized service, so the strategy will use publisher
subscriber mechanism to collaborate between services.

In Figure 4 shows deployment era from traditional to
container. In traditional deployment, the application is
running on top of the operating system which will be
difficult if there are applications that needed run on
different stacks. This issue was solved in virtualization era
where the application will be running inside virtual
machine. But this deployment also have an issue where
there are multiple applications that runs on different
versions of libraries. For instance, application A needs to
be run on Java 8, while the other is using Java 11. These
Java might need different libraries, and if the system was
updated, the application might break. That’s where the
containerization deployment tries to address this issue,
where each application will have its own environment.
With this scope, developers will be less worry about
breaking applications when there are updates applied.

Figure 3. Orchestration and Choreography

Figure 4. Comparison between deployments

E. Google Protocol Buffers and Remote Procedure Call
Protocol buffers (Protobuf) is developed by Google that

introduced a mechanism to encode structured data in an
efficient and extensible format [10]. Protobuf is human and
machine friendly because it allows developers to create a
Proto file which later will be compiled into native
language. Protobuf is language and platform independent
which in line with microservices behavior. It supports Go,
Python, Kotlin and other programming languages.

Google Remote Procedure Call (gRPC) is an open-
source remote procedure call framework that utilize

Protobuf as interface description language and uses
HTTP/2 protocol [25]. gRPC can use a single HTTP/2
connection for bi-directional communication between
client and server. This key feature allows to stream
messages in both directions.

 Figure 5 shows the implementation of gRPC with
Protobuf. gRPC server can be written in Go and will be
called by gRPC Stub written in Python or Kotlin. These
gRPC use Protobuf to send requests and receive responses.

Figure 5. Google Remote Procedure Call

F. Cloud Computing
Cloud computing is a model that allows networks on

demand for configurable resources like network, database,
server, application, and services that can be provided and
deleted instantly using user interface [7].

There are five elements in cloud computing that is on-
demand self-service, broad network access, resource
pooling, rapid elasticity, and measured service.

On-demand self-service gives flexibility to customers
to instantiate new resources (CPU, Storage, etc)
automatically without any interactions with other human
that provided the services. With broad network access, the
resources can be accessed from public devices such as
laptop, personal computer (PC) and smartphone. The goal
of resource pooling is to give economic scale to customers
by implementing multi-tenancy and model virtualization.
Next element is rapid elasticity that make sure customers
can add and remove resources without commitment and
long-term contract. And to give customers a way to
evaluate their resources, cloud computing hosting give
information based on measured resources that customer
subscribed to.

In terms of services, there are four group that
communities aware of which are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), Software as a Service
(SaaS) and Data Storage as a Service (DaaS) [26].

4. PROPOSED MICROSERVICES DESIGN FRAMEWORK
We are using Service-Oriented Modeling and

Architecture (SOMA) framework to interpret indoor
positioning’s business use case into services. There are six
phases in SOMA which are business and modeling

5

transformation, identification, specification, realization,
implementation, and deployment & monitoring.

The research is focusing on estimating a location in a
room within a building. During identification, we used
goal-service modeling (GSM) to transform business goals
into services based on its key performance index (KPI) and
the metrics that needs to be measured. The goal-service
modeling can be seen from Table I.

Once we identified basic services through GSM, we
then detailing founded services with a technique called
domain decomposition. This technique is a top-down
analysis of business model and business process modeling
to identify services, components, and flows. The result is
on Table II.

During domain decomposition we focused on account
management and asset location only. In here we are
detailing the process of account registration, where the
flow added by email verification and notification. We did
the same thing with the office & BLE registration and asset
location. We added more flows into those services.

Once the services are fixed, we then group those
functions into services and explore technical feasibility
through early prototype designed and developed. These
steps are part of specification and realization. The
designed architecture can be seen on Figure 8.

TABLE II. DOMAIN DECOMPOSITION

1. Account Management

1.1. Account Registration

1.2. Office Registration

1.3. BLE Registration

2. Assets Location

2.1. Location Estimation

2.2. Location Histories

1. Account Management

1.1. Account Registration

1.1.1. Email Verification

1.1.2. Notification

1.2. Office Registration

1.2.1. Building Registration

1.2.2. Floor Registration

1.3. BLE Registration

1.3.1. BLE Beacon

1.3.2. BLE Gateway

2. Assets Location

2.1. Location Estimation

2.1.1. RSSI Data Checking

2.1.2. Estimation Methods
Checking

2.1.3. Estimation Process

2.2. Location Histories

5. PROPOSED METHOD

A. Indoor Posititoning
We are going to use an Espressif board named ESP32-

S3 shown on Figure 6. It has BLE 5.0, and Wi-Fi modules

TABLE I. GOAL-SERVICE MODELING

Goal KPIs Metrics Services
1. Attract and retain

customers
Increase new and retain
existing users

1.1 Enable assets tracking
service

Increase new and retain
existing users with indoor
positioning system

1.1.1 Enable assets
tracking service in office
complex

Increase new and retain
existing users with indoor
positioning system for
office complex

Number of indoor
positioning system users
in office complex

- Account registration
- Account management

 Number of indoor
positioning system
tracked assets in office
complex

- Office management
- BLE management
- Asset management
- Asset’s location’s

estimation
- Asset’s location

histories
- Algorithm management

 Improve indoor
positioning system’s
quality

Number of issues and
solved issues of indoor
positioning system

- Store log information
- Monitoring response

time

6

embedded. We will need to write a custom firmware so it
will scan the BLE Beacon with UUID that predefined.
This device will be our gateway to receive beacon RSSI,
then assemble a payload with several other information
then send to the server. We will put 6 devices for a room
with size of 19 x 12 meter2.

Fingerprinting method with WK-NN will be used to
estimate the location of BLE beacon. With fingerprinting
there will be two phases, online and offline. For oflline
phase, we will collect RSSI data based on 46 reference
points and 45 testing points. The floor plan ca be seen on
Figure 7. Blue color is the BLE gateway, green color is the
reference point and the red one is the testing point. We will
pick 45 random testing points from the plan. The number
of K that will be used is 6.

Figure 6. Espressif ESP32-S3

Figure 7. Fingerprinting floor plan

Once we got the radio map, we will estimate the
location with WK-NN (4) and calculate the MPE with (5)

𝑀𝑃𝐸	 = 		1/𝑛	$𝐸𝑟𝑟𝑜𝑟"

!

"#$

 (5)

where error is a Euclidean distance calculated from real
location of the beacon (x,y) with estimated location (xp, yp)
shown in (6)

𝑒𝑟𝑟𝑜𝑟	 = 		?(𝑥 − 𝑥',
& +		(𝑦 − 𝑦',

&
 (6)

Together with the error, we will benchmark the
estimation’s process time, and Central Processing Unit
(CPU) & Random Access Memory (RAM) usage as well.

B. Microservices
With SOMA, we have specified and decided the IPS

functionalities. We translated those features and services
into a chart shown on Figure 8. There will be seven
services, which are account, authentication, log, location,
subscriber, estimator, and API gateway services. To
support those services, third party software will be
installed as well. They are PostgreSQL as relational
database management system, MongoDB as document
data model, and EMQX as an MQTT broker.

Figure 8. Proposed microservices architecture

Subscriber service is the first service that receiving
RSSI information from BLE gateways. The information
will be sent by BLE gateways use MQTT protocol through
MQTT broker. The main program of subscriber service is
to connected to MQTT broker, and subscribe to a certain
topic. Every time a payload sent to a topic, subscriber
service will receive it, and process the payload. Once the
payload processed, subscriber will call location service
using Google remote procedure call (gRPC) with protocol
buffer.

Location service is designed to stored information
related to location of the asset. Based on our business flow,
we are storing several information, e.g. buildings, beacons,
gateways, estimation algorithms, RSSI and the assets’
locations itself.

Even though the estimated location stored in location
service, the process of estimation itself happened in
different service, which is estimator service. This service

7

job is only to estimate assets’ locations based on methods
or model that have been assigned to a building or a floor.
There are possibilities that different buildings or floors
might need different algorithm. This service will call
location service’s function periodically to check whether
there are assets that needs to be estimated. If there is,
estimator service will check the assigned algorithm, use it
to estimate location, and return the coordinates of X and Y
to location service.

For a security issue, all services are inaccessible from
outside of private network, except API gateway service.
API gateway service built as orchestrator, hence the name
of the strategy. As an orchestrator, the flow inside
microservices is transparent to the client. For instance,
when client call an endpoint to retrieve list of buildings,
API gateway communicate with several services, which
are account, auth, log, and location.

The other services, which are account, auth and log
services are supported services on this research. Those
services are developed to do basic things such as users’
registration, checking password, store log information into
databases and other things that not directly affected on
location service’s performance.

To host these services, we are using cloud provider
named Digital Ocean in Singapore region for this
research’s infrastructure. They have a managed
Kubernetes service so we could focus on developing the
services instead of maintaining the Kubernetes platform.
We will use their load balancers as well to balance the
traffic for both orchestration and choreography strategies.

Digital Ocean has dashboard that shows metrics related
to their servers and Kubernetes platform. This will help us
to measure our services’ performance. During the test, the
metrics that will be measured are CPU and RAM. Other
than those, we will measure the number of served requests
too.

C. Evaluation
The microservices performance’s test scenarios are to

compare between 2 strategies, orchestration and
choreography. For orchestration, there will be two sub-
scenarios where we will test the API gateway with Post
method only and Get & Post methods together. So, there
will be three scenarios in total. Each scenario will be tested
with the same settings. The settings are to test with
different number of nodes and pods replication. We will
test with 1 node & 3 pods, 1 node & 5 pods, 2 nodes & 5
pods, and 2 nodes & 8 pods. In terms of number of
connections, the test will use 100, 500, and 1,000
concurrent connections.

The specification of Kubernetes cluster’s machine is 8
vCPU and 16 GB RAM per node. For load balancer, we

will use 2 nodes so it can accommodate up to 20,000
connections, 20,000 request per second, and 500 SSL
connections concurrently.

6. RESULT AND DISCUSSION

A. Data Acquisution
Once BLE gateways installed and the microservices

are deployed on the cloud, we started with data collection.
Using fingerprinting, we collected RSSI based on
reference points (RP). There are 46 RP with 100 sample
data for each RP. Total RSSI data is 4600 records. From
these records, we calculate the average of RSSI for each
RP, so by the end the radio map based on reference points
is only 46 records. This radio map then uploaded on
estimator service for fingerprinting online phase. To
calculate the accuracy, we collected another radio map
based on testing points (TP) where the coordinates are
different from RP.

The radio map format for both RP and TP is the same.
There are eight columns on it which represents beacon
coordinates with x and y. The other 6 are RSSI from
different BLE gateway. The format is shown in Table III.

TABLE III. FINGERPRINTING RADIO MAP

X Y G1 G2 G3 G4 G5 G6
200 100 -61 -63 -65 -73 -70 -76
200 300 -59 -69 -68 -73 -71 -76
200 500 -57 -55 -61 -67 -75 -73

… … … … … … … …
… … … … … … … …

1800 500 -68 -62 -54 -54 -40 -47
1800 700 -66 -66 -59 -54 -54 -31

With these radio map, we calculated accuracy of WK-

NN method and its resource usage. Using (4) and (6), the
MPE of the method is 6.32 meter. The estimation process
took about 1.98 millisecond with CPU usage around 1.2%
and 0.5% RAM.

B. Microservices Architecture
After data collected with fingerprinting method

completed, we are testing the microservices’ performances.
There are three scenarios which are orchestration strategy
for Get & Post methods, orchestration strategy for Post
method, and choreography strategy.

 We used a modern benchmark tool called Bombardier
to load test the orchestration strategy. It works by calling
an endpoint for interval time with certain number
concurrent connections. We called the endpoints for 120
seconds with 100, 500, and 1,000 connections to find the
number of served requests and its CPU & RAM usage.

8

TABLE IV. ORCHESTRATION STRATEGY PERFORMANCE (GET & POST)

No. of
Connections

No. of
Node

No.
of

Pod

Average
CPU (%)

Peak
CPU
(%)

Average
RAM (%)

Peak
RAM
(%)

Total
Served
Request

Served
Request per

Second

100

1 3 22.2 36.4 20.0 20.2 26,627 221
1 5 33.4 55.2 21.1 21.2 35,702 297
2 5 15.1 29.1 14.1 15.1 36,239 301
2 8 23.9 46.9 13.9 17.3 55,905 465

500

1 3 36.1 49.0 20.2 20.4 37,310 310
1 5 32.7 47.6 22.0 22.0 51,721 431
2 5 17.1 35.1 14.4 15.5 44,829 373
2 8 25.1 46.0 14.1 17.5 79,120 659

1000

1 3 27.1 33.9 21.4 21.8 31,926 266
1 5 36.5 41.2 22.4 22.9 51,876 432
2 5 16.5 26.0 14.5 15.4 47,287 394
2 8 33.3 63.6 15.2 17.2 84,367 703

TABLE V. ORCHESTRATION STRATEGY RESULT (POST)

No. of
Connections

No. of
Node

No.
of

Pod

Average
CPU (%)

Peak
CPU
(%)

Average
RAM (%)

Peak
RAM
(%)

Total
Served
Request

Served
Request per

Second

100

1 3 31.2 38.1 20.5 21.0 23,638 196
1 5 42.7 57.2 22.1 22.8 34,538 287
2 5 23.0 35.3 14.7 14.9 31,216 260
2 8 31.6 46.8 15.5 16.8 38,292 319

500

1 3 32.1 40.1 20.5 21.1 29,346 244
1 5 42.4 59.9 22.2 23.1 27,143 226
2 5 23.7 39.2 14.6 15.1 33,844 282
2 8 32.1 57.3 15.5 16.9 40,784 339

1000

1 3 33.4 46.1 21.4 21.8 18,310 152
1 5 44.5 63.0 22.3 23.0 23,652 197
2 5 25.5 41.4 14.4 15.4 34,984 291
2 8 34.3 65.6 15.3 17.1 43,580 363

TABLE VI. CHOREOGRAPHY STRATEGY RESULT

No. of
Connections

No. of
Node

No.
of

Pod

Average
CPU (%)

Peak
CPU
(%)

Average
RAM (%)

Peak
RAM
(%)

Total
Served
Request

Served
Request per

Second

100

1 3 21.3 25.9 20.9 21.0 54,835 456
1 5 19.1 23.1 25.2 25.4 59,805 498
2 5 14.7 28.3 16.8 22.8 63,570 529
2 8 20.0 32.1 20.4 25.7 68,990 574

500

1 3 21.2 28.8 21.9 21.9 151,419 1,261
1 5 21.6 49.6 25.5 25.7 202,211 1,685
2 5 18.8 32.5 17.4 23.2 237,448 1,978
2 8 23.8 37.3 20.4 25.9 233,798 1,948

1000

1 3 23.4 33.7 22.0 22.0 166,682 1,389
1 5 44.8 62.8 26.1 26.3 313,122 2,609
2 5 19.1 33.5 17.8 23.5 338,781 2,823
2 8 26.5 38.6 21.2 25.9 457,970 3,816

9

While for choreography strategy, we wrote a custom
Python script to imitate real life scenario where BLE
gateway push the RSSI payload through MQTT broker for
each interval time. In this scenario, we sent six payloads
per second for each connection for 120 seconds. We used
the same number of connections as the orchestration,
which are 100, 500, and 1,000 concurrent connections.

We are using four settings to test the microservices’
performance. 1 node with 3 replications, 1 node with 5
replications, 2 nodes with 5 pod replications, and 2 nodes
with 8 pod replications. The result are shown on Table IV,
Table V, and Table VI. The numbers are available from
cloud dashboard shows on Figure 9.

Figure 9. CPU usage on Kubernetes platform

Table IV shows the result for orchestration strategy for
Get & Post methods. This scenario shows the biggest
served request per second (RPS) happened when there
were 1,000 concurrent connections called the API. The
RPS is 703 with the average CPU usage is 33.3% and
RAM with 15.2%.

Second scenario on Table V shows that calling Post
method shows smaller RPS. The RPS is 363 with average
CPU 34.3% and RAM 15.3%. Compared to first scenario,
this scenario used bigger CPU power but not the RAM. It
seems the Post method mainly used CPU, since the RAM
of 100, 500, and 1,000 connections are quite the same.

Last scenario, choreography strategy on Table VI gave
us the best result with 3,816 RPS. With 1,000 connections,
this scenario served 457,970 requests for 120 seconds with
average CPU 26.5% and RAM 21.2%.

7. CONCLUSION AND FUTURE WORK
In this paper, we have implemented indoor positioning

system using BLE and microservices on the cloud
environment. The microservices were designed with
SOMA framework and implemented in choreography and
orchestration strategies. This MSA then deployed on a
Kubernetes platform. After services ready, both strategies
were called with multiple scenarios and choreography
strategy shows a better result with 457,970 served requests

or five times bigger than the other scenarios. The CPU
usage is smaller compared to orchestration strategy’s
scenarios, but RAM usage is 50% more.

The location estimation method used in this research is
a simple WK-NN. With the neural network thrived, the
IPS could be improved by implementing other location
estimation methods such as Graph Neural Network (GNN)
to have more accurate estimated location in the future.

REFERENCES
[1] O. I. Mustafa, H. L. Joey, N. A. AlSalam, and I. Z. Chaloob,

“Accurate indoor positioning system based on modify nearest
point technique,” International Journal of Electrical and
Computer Engineering (IJECE), vol. 12, no. 2, p. 1593, Apr.
2022, doi: 10.11591/ijece.v12i2.pp1593-1601.

[2] B. Sulaiman, E. Natsheh, and S. Tarapiah, “Towards a better
indoor positioning system: A location estimation process using
artificial neural networks based on a semi-interpolated
database,” Pervasive Mob Comput, vol. 81, p. 101548, Apr.
2022, doi: 10.1016/j.pmcj.2022.101548.

[3] J. Cha and E. Lim, “A hierarchical auxiliary deep neural
network architecture for large-scale indoor localization based
on Wi-Fi fingerprinting,” Appl Soft Comput, vol. 120, p.
108624, May 2022, doi: 10.1016/j.asoc.2022.108624.

[4] Y. Assayag, H. Oliveira, E. Souto, R. Barreto, and R. Pazzi,
“Indoor Positioning System Using Dynamic Model
Estimation,” Sensors, vol. 20, no. 24, p. 7003, Dec. 2020, doi:
10.3390/s20247003.

[5] K. Suseenthiran et al., “Indoor positioning utilizing bluetooth
low energy (BLE) RSSI on LoRa system,” Indonesian Journal
of Electrical Engineering and Computer Science, vol. 23, no.
2, p. 927, Aug. 2021, doi: 10.11591/ijeecs.v23.i2.pp927-937.

[6] G. P. Kusuma and M. M. K. Lie, “A review of indoor
positioning system techniques using bluetooth low energy,”
ICIC Express Letters, vol. 13, no. 12, pp. 1139–1147, 2019,
doi: 10.24507/icicel.13.12.1139.

[7] A. Riady and G. P. Kusuma, “Indoor positioning system using
hybrid method of fingerprinting and pedestrian dead
reckoning,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 9, pp. 7101–7110, 2022, doi:
https://doi.org/10.1016/j.jksuci.2021.09.005.

[8] G. Pau, F. Arena, M. Collotta, and X. Kong, “A practical
approach based on Bluetooth Low Energy and Neural
Networks for indoor localization and targeted devices’
identification by smartphones,” Entertain Comput, vol. 43, p.
100512, Aug. 2022, doi: 10.1016/j.entcom.2022.100512.

[9] F. J. Aranda, F. Parralejo, F. J. Álvarez, and J. A. Paredes,
“Performance analysis of fingerprinting indoor positioning
methods with BLE,” Expert Syst Appl, vol. 202, p. 117095,
Sep. 2022, doi: 10.1016/j.eswa.2022.117095.

[10] S. Popic, D. Pezer, B. Mrazovac, and N. Teslic, “Performance
evaluation of using Protocol Buffers in the Internet of Things
communication,” in 2016 International Conference on Smart
Systems and Technologies (SST), IEEE, Oct. 2016, pp. 261–
265. doi: 10.1109/SST.2016.7765670.

[11] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S
— A publish/subscribe protocol for Wireless Sensor
Networks,” in 2008 3rd International Conference on
Communication Systems Software and Middleware and
Workshops (COMSWARE ’08), IEEE, Jan. 2008, pp. 791–798.
doi: 10.1109/COMSWA.2008.4554519.

10

[12] R. A. Atmoko, R. Riantini, and M. K. Hasin, “IoT real time
data acquisition using MQTT protocol,” J Phys Conf Ser, vol.
853, p. 012003, May 2017, doi: 10.1088/1742-
6596/853/1/012003.

[13] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy,
and K. Holley, “SOMA: A method for developing service-
oriented solutions,” IBM Systems Journal, vol. 47, no. 3, pp.
377–396, 2008, doi: 10.1147/sj.473.0377.

[14] M. M. K. Lie and G. P. Kusuma, “A fingerprint-based coarse-
to-fine algorithm for indoor positioning system using
Bluetooth Low Energy,” Neural Comput Appl, vol. 33, no. 7,
pp. 2735–2751, Apr. 2021, doi: 10.1007/s00521-020-05159-0.

[15] H. Mehrabian and R. Ravanmehr, “Sensor fusion for indoor
positioning system through improved RSSI and PDR
methods,” Future Generation Computer Systems, vol. 138, pp.
254–269, Jan. 2023, doi: 10.1016/j.future.2022.09.003.

[16] N. Dragoni et al., “Microservices: yesterday, today, and
tomorrow,” Jun. 2016, [Online]. Available:
http://arxiv.org/abs/1606.04036

[17] A. Arsanjani, “Service-Oriented Modeling and Architecture,”
IBM developer works, Mar. 2004.

[18] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges
of microservices: an exploratory study,” Empir Softw Eng, vol.
26, no. 4, p. 63, Jul. 2021, doi: 10.1007/s10664-020-09910-y.

[19] H. Garcia-Molina and K. Salem, “Sagas,” ACM SIGMOD
Record, vol. 16, no. 3, pp. 249–259, Dec. 1987, doi:
10.1145/38714.38742.

[20] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin,
and L. Safina, “Microservices: How To Make Your
Application Scale,” Feb. 2017, [Online]. Available:
http://arxiv.org/abs/1702.07149

[21] D. Shadija, M. Rezai, and R. Hill, “Microservices: Granularity
vs. Performance,” Sep. 2017, [Online]. Available:
http://arxiv.org/abs/1709.09242

[22] H. Song, F. Chauvel, and P. H. Nguyen, “Using Microservices
to Customize Multi-tenant Software-as-a-Service,” in
Microservices, Cham: Springer International Publishing, 2020,
pp. 299–331. doi: 10.1007/978-3-030-31646-4_12.

[23] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and
V. Muntés-Mulero, “Graph-based root cause analysis for
service-oriented and microservice architectures,” Journal of
Systems and Software, vol. 159, p. 110432, Jan. 2020, doi:
10.1016/j.jss.2019.110432.

[24] R. P. Ghozali and G. Putra, “Indoor Positioning System using
Regression-based Fingerprint Method,” International Journal
of Advanced Computer Science and Applications, vol. 10, no.
8, 2019, doi: 10.14569/IJACSA.2019.0100829.

[25] C. Nimpattanavong, I. Khan, T. Van Nguyen, R. Thawonmas,
W. Choensawat, and K. Sookhanaphibarn, “Improving Data
Transfer Efficiency for AIs in the DareFightingICE using
gRPC,” Mar. 2023.

[26] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and
Challenges,” in 2010 24th IEEE International Conference on
Advanced Information Networking and Applications, IEEE,
2010, pp. 27–33. doi: 10.1109/AINA.2010.187.

Dondi Sasmita received B.Sc.
degree in Computer Science major
from Bina Nusantara University in
2009 and received M.Sc. degree in
Master of Computer Science in
2024. System architecture, cloud
computing and machine learning are
his research interests.

Gede Putra Kusuma received PhD
degree in Electrical and Electronic
Engineering from Nanyang
Technological University (NTU),
Singapore, in 2013. He is currently
working as a Lecturer and Head of
Department of Master of Computer
Science, Bina Nusantara University,
Indonesia. Before joining Bina
Nusantara University, he was
working as a Research Scientist in
I2R – A*STAR, Singapore. His
research interests include computer

vision, deep learning, face recognition, appearance-based object
recognition, gamification of learning, and indoor positioning
system.

11

