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Abstract: Coastal areas are vulnerable to disasters such as tsunamis, floods, large waves, and hurricanes. Most studies on disasters in
coastal areas are based on surveys for specific areas, but studies investigating disasters on a country-wide level are few. Applying data
analytics to disaster management is critical to reducing the impact of disasters. This study aims to classify provinces based on disaster
events, disaster preparedness, and response capacity in coastal villages through cluster analysis, principal component analysis (PCA),
and a combination of PCA and cluster analysis. This secondary study applies data mining techniques to official statistics in Indonesia.
Data mining was performed with Python Scikit-learn and Tableau analytical software. The unit of analysis is all provinces of Indonesia
as an archipelago country. The cluster analysis optimally produced two clusters with 6 (18%) and 27 (82%) provinces. The small cluster,
named the high-intensity cluster, has a higher intensity of disaster events, preparedness, and response than the large cluster, named the
low-intensity cluster. The low-intensity cluster has a higher percentage of coastal villages (25%) than the high-intensity cluster (10%).
The results of the PCA are used to classify regions through geographic heat maps and scatter plots. Additionally, the combination of
multiple principal component analysis and cluster analysis produced three clusters with 6 (18%), 10 (30%), and 17 (52%) provinces.
However, the cluster model from cluster analysis alone provides a better separation between clusters than the combination of PCA and
cluster analysis. Ultimately, cluster analysis and PCA can be used independently, and both methods are complementary to exploring
regional classification. The results of this study recommend improvements in disaster preparedness and response for coastal villages,
especially provinces with a high percentage of coastal villages.
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1. Introduction
Disasters can occur in any region or country at any

time, causing many fatalities and damage. One of the most
destructive disasters, but one that is difficult to predict, is
a tsunami that strikes coastal areas. The most devastating
coastal disaster recorded in history is the 2004 Indian
Ocean tsunami, which, claimed more than 200 thousand
lives and affected 14 Indian Ocean countries [1]. The
2011 Great East Japan Earthquake and Tsunami also killed
over 20,000 people, forced more than 400,000 people to
evacuate, and destroyed a massive number of buildings
and infrastructure [2]. Tsunamis and other coastal disasters,
such as floods, storm surges, storms, and earthquakes, cause
extensive destruction to people’s lives, public infrastructure,
business facilities, and the environment. The geographic and
topographic profiles of coastal areas are different, and these
conditions are also related to the disaster risks they face. By
considering these risks and conditions, disaster management
in coastal areas is critical.

There are various studies on coastal disasters in many
countries. For example, a prior study investigated disas-

ter awareness among communities on a coastal island in
Taiwan using qualitative methods [3]. Another qualitative
study investigated disaster problems and lessons covering
some villages in Bangladesh [4]. Another study analyzed
the coastal vulnerability index in Thailand using mixed
secondary data sources [5]. Some recent studies employed
data analytic techniques. For example, a study about storm
surge disasters in coastal areas in China used secondary
data and machine learning techniques to cover a large area
[6]. Another study investigated coastal regions in Portugal
using Cluster Analysis and Principal Component Analysis
[7]. Those studies used secondary data and data analytics
to cover a large coastal area.

Many studies on disasters in coastal areas in Indonesia
are based on specific regions. For example, a study of
disaster risk assessment using a semi-quantitative approach
and a back-casting method in a coastal village in Jakarta
[8]. Another study focused on the northern coastal area of
Central Java province and used the official statistics and
Geographical Information Systems technique [9]. Using a
qualitative approach, another research investigated climate
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change disasters on the Northern Coast of Java Island,
Indonesia [10]. Those studies provided detailed information
and understanding about particular regions but did not have
generalizations for other regions or even the whole of
Indonesia. This shortcoming limits our understanding of
disaster management decisions in coastal areas.

Advances in digital technology, which have influenced
various aspects of life, are also expected to help reduce the
impact of disasters. The World Risk Report 2022 urged the
digitalization of disaster management on three trends: (1)
digitalization for data collection and analysis for disaster
forecasting and disaster response, (2) digitalization for
communication with affected persons, and (3) digitalization
to improve cooperation and coordination between parties
[11]. Research on disaster relates to the first trend, which
is digitalization for disaster management. In this area, data
mining is essential for disaster-related data analysis. Data
mining represents a process of discovering patterns and
other valuable information from a dataset.

The application of data mining in the disaster literature
could be classified into three based on its tasks: (1) predic-
tion of disaster events, (2) detection of disaster immediately
after it occurs, and (3) disaster management strategies to
improve communication and coordination between entities
in responding to disasters [12]. Data mining is also widely
applied in social behavior studies related to flood disasters
[13]. Various data mining techniques used in disaster studies
include principal component analysis, cluster analysis, text
mining, time series, and temporal analysis. The use of data
mining in disaster studies is limited due to some factors,
such as the lack of data availability to access and the lack
of knowledge to use the appropriate data mining techniques.

In sum, the first issue addressed in this study is limited
studies on the coastal areas in Indonesia that cover the
whole country. Second, the opportunity to use data analyti-
cal techniques to analyze secondary data about coastal area
disasters. To address both issues, this study aims to investi-
gate disaster management in Indonesian coastal villages. It
achieves this objective by using two statistical techniques:
cluster Analysis and Principal Component Analysis. The
study’s object is coastal villages, and the unit of analysis is
provinces in Indonesia.

As an archipelago country with the third longest coast-
line, Indonesia faces a high vulnerability to disasters in
coastal areas [14]. Coastal villages in small districts have
little disaster response capacity [15], such as search and
rescue, emergency medical assistance, and the establishment
of emergency shelters. When a disaster occurs, immediate
delivery of health services is a matter of life and death.
These services require adequate health facilities (e.g., emer-
gency units, hospitals, community health centers, clinics,
drug stores). While vulnerable coastal areas are expected to
have better health facilities, health facilities are often poor,
especially in rural areas [16].

The remainder of the article is structured as follows.
First, the literature on disaster management, principal com-
ponent analysis, and cluster analysis are reviewed. This is
followed by describing the research framework, the dataset,
and the analytical methods. The results of the data analysis
are then presented. The paper concludes by discussing
theoretical and managerial implications, limitations, and
directions for further research.

2. RelatedWorks
Following the research purpose described earlier, this

study focuses on processing data about disaster management
in coastal areas to reveal valuable information. Achieving
this goal requires (1) a conceptual framework describing the
constructs with their variables and (2) choosing appropriate
data analysis techniques. This section discusses these two,
namely disaster management as the basis for the conceptual
framework and data analysis techniques as the basis for
characterizing the research objects.

A. Disaster Management
The United Nations defines a disaster as “a serious

disruption of the functioning of a community or a society at
any scale due to hazardous events interacting with condi-
tions of exposure, vulnerability, and capacity, leading to one
or more of the following: human, material, economic, and
environmental losses and impacts” [17]. Disasters occur
more frequently, and climate change is assumed to be a
significant contributing factor. Climate change causes severe
weather events such as floods and droughts [18]. As climate
change is affected by nature and humans, the term disaster
gradually replaces natural disasters. As indicated above,
this replacement confirms that the UN defines disaster
rather than natural disaster. The increasing incidence of
disasters requires technological assistance, primarily digital
technology, in disaster management.

Disasters are commonly classified into three types based
on their source. First, meteorological disasters such as
floods, thunderstorms, hurricanes, typhoons, snowstorms,
drought, and hot waves, are the most regular disasters.
Second, geological disasters such as volcanic eruptions,
earthquakes, landslides, mudflows, and tsunamis could cre-
ate extensive casualties. For example, On Dec. 26, 2024,
the tsunami devastated the entire coastal community across
the Indian Ocean, killing about 230,000 people [19]. The
third type is a biological disaster, with an example of the
recent COVID-19 outbreak, which took millions of lives
worldwide. Coastal disasters come from both meteorologi-
cal and geological disaster types. As disasters cause loss of
life, property damage, social and economic disturbances, or
environmental damage, it is critical to implement disaster
risk management seriously.

Most governments have established disaster manage-
ment programs to alleviate the risks and losses to humans
and animals caused by disasters. The disaster management
cycle is a framework for determining activities according
to the stages of a disaster: pre-disaster, during-disaster,
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and post-disaster. Activities in pre-disaster include preven-
tion, preparedness, and mitigation; during-disaster cover
response, rescue, and relief; and post-disaster comprise
recovery and development [20]. In general, the disaster
management cycle follows four stages: (1) mitigation is to
prevent or lessen the potential impact of disasters before
they strike, (2) preparedness is the development of strate-
gies, plans, and procedures to cope with potential disasters
effectively, (3) response is the immediate effort to minimize
the hazards, and (4) recovery is to restore the affected
community to normal.

For a global reference, the United Nations Office for
Disaster Risk Reduction defines disaster risk management
as the application of disaster risk management policies
and strategies to avoid new disaster risks, lessen existing
disaster risks, manage residual risk, and contribute to the
resilience and reduction of disaster loss [17]. This frame-
work becomes a global guidance for disaster management
implemented by countries. Governments, communities, and
organizations must work together to manage disasters.
For example, the Indonesian government established the
National Disaster Management Agency (Badan Nasional
Penanggulangan Bencana) and Regional Disaster Manage-
ment Agencies (Badan Penanggulangan Bencana Daerah).
These agencies are vital in coordinating the implementation
of disaster management, especially for disaster response
actions.

Referring to the disaster management cycle, the data
analysis in this paper covers disaster preparedness and re-
sponse. Preparedness is the knowledge and ability that gov-
ernments, response-recovery agencies, communities, and in-
dividuals have developed to effectively anticipate, respond,
and recover from the impact of possible, imminent, or
current disasters [17]. Preparedness may include planning,
training, and education activities for disaster events that
cannot be mitigated. The local government prepares for
disasters by installing an early warning system, making
emergency plans, providing evacuation routes, and dissem-
inating public information.

Furthermore, the response phase refers to action taken
immediately before, during, or after disasters to save lives,
decrease health impacts, ensure public safety, and respond
to people’s basic needs [17]. This phase can include provid-
ing public and emergency assistance services by the public,
private, and community sectors, as well as participating
communities and volunteers. Health facilities, for example,
are critical to implementing emergency services.

Disasters are one of the leading causes of death in
developing countries. Inadequate health facilities to respond
to this incident will increase the number of casualties [21].
Health facilities are essential to provide immediate medical
assistance and treatment for injuries, trauma, and illnesses
resulting from the disaster. Health facilities should also
care for people who experience mental disorders due to the

impact of disasters. However, mental health management
after a disaster, such as post-traumatic stress, is often
neglected [22].

B. Analytical Techniques
The analytical techniques addressed are Principal Com-

ponent Analysis (PCA) and Cluster Analysis because of
their relevance to classify regions. PCA is a method to
reduce the dimension of large-scale data sets while pre-
serving as much information as possible. PCA is suitable
when data are multivariable and correlated, with multiple
observations per variable [23]. PCA works by converting
the original dimensions (variables) into new dimensions,
which are linear combinations of the original ones. These
new dimensions are named principal components. Each
principal component is orthogonal to each other. PCA is
an exploratory method that is also helpful for data pre-
processing. In this data pre-processing, fewer dimensions
(variables) are input for subsequent statistical analysis or
machine learning tools.

Dimensionality reduction makes PCA applicable in var-
ious studies and generates practical benefits. For example,
PCA was implemented to reduce the number of ecological
indicators so that monitoring becomes efficient [24] or
to simplify the vulnerability-related variables of heritage
buildings for better conservation decisions [25]. PCA is
also used in some disaster-related studies. For example,
PCA was compared to Expert’s method to analyze social
vulnerability in Ecuador [13]. PCA was also applied to
label the level of damage of sectors after natural disasters
in Indonesia [26] or to explore the characteristics and
perceptions of the risk of natural disasters in Japan [27].

Cluster analysis is a multivariate data mining technique
that groups entities (e.g., individuals, regions, products,
events) based on selected characteristics or attributes. Clus-
ter analysis is not a single but a set of statistical tools.
The primary classification of cluster analysis is based on a
method and algorithm [28]. First, cluster analysis is classi-
fied according to various methods: (1) Connectivity-based
Clustering, (2) Centroid-based (Partition) Clustering, (3)
Density-based (Model-based) Clustering, (4) Distribution-
Based Clustering, (5) Fuzzy Clustering and (6) Constraint-
based (Supervised) Clustering. Second, cluster analysis
is classified based on its algorithms, such as k-means
clustering, Hierarchical Clustering, and DBSCAN. These
algorithms are developed from clustering methods. For
example, the k-means algorithm belongs to the centroid-
based method, the hierarchical clustering to connectivity-
based clustering, and the DBSCAN algorithm belongs to
the density-based method.

The choice of cluster algorithms depends on the char-
acteristics of the data and the purpose of the analysis.
The k-means algorithm divides the data into k clusters by
minimizing the variance within each cluster. For example,
k-means cluster analysis was applied to categorize past
earthquakes based on magnitude and consequence [29].
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Hierarchical clustering creates a group whose objects are
similar to each other and different from the objects of the
other group. It visually represents the group in the hierarchi-
cal tree called a dendrogram. For example, environmental
research used hierarchical clustering to cluster regions [30].
DBSCAN detects clusters as high-density regions separated
from low-density regions to discover clusters of any shape
and size. For example, this algorithm is used to identify
spatial density patterns in urban areas [31].

The use of PCA and cluster analysis requires datasets.
One of the valuable data sources is the official data (official
statistics) published by the government. Governments col-
lect, process, and publish official data about citizens’ lives
and regions, such as demographics, social and economic
development, living conditions, education, health, business,
and the environment. Most official statistics are presented
in tables with regions in rows and measures (attributes)
in columns. Classifying regions into a few groups based
on their similarity is helpful for better understanding the
regions and planning public policy. Cluster analysis can
identify some groups of regions based on similar charac-
teristics in some measures. Recommendations or decisions
could be made for groups rather than individual regions.

Some studies used both PCA and cluster analysis to
characterize and classify regions. Those studies could be
grouped into two. The first category independently used
PCA and cluster analysis to characterize and classify re-
gions. For example, PCA was performed to obtain the
principal components used to map the Siberian territories
according to the safety of the natural and anthropogenic
territory; then, the cluster analysis was performed indepen-
dently to classify the regions [32].

The second category implemented PCA and used the
principal components obtained as input for cluster analysis.
This method is useful, especially if analysis involves many
variables. It is also useful if collinearity (high correlation
level between variables) exists because the uncorrelated
principal components of PCA remove collinearity. A data
mining study for Indonesian cities implemented PCA to
reduce eight variables into two principal components and
used them as inputs for cluster analysis [33]. Another study
implemented PCA to reduce the dimensions of five variables
into three principal components and applied cluster analysis
to them. [34]. In both studies, the result of a single PCA was
used for the cluster analysis. Rarely are studies that imple-
mented multiple PCAs and used all principal components
obtained for cluster analysis.

3. Methods
Reviewing disaster management concepts and data ana-

lytic techniques earlier becomes the basis for designing the
research framework along with its variables and planning
the analysis method. Accordingly, this section presents three
parts: research framework, data and variables, and analysis
method.

A. Research Framework
This study is included in the secondary quantitative re-

search type. Thus, secondary data is the source of analysis.
A research framework was developed based on the disaster
management stages, the availability of secondary data,
and the rational relationship between constructs composing
the framework. The framework was developed to explain
the logical relationship between variables rather than to
test the hypothesis. Fig. 1 shows three variables: disaster
event, disaster preparedness, and disaster response. Disaster
events represent various disasters (e.g., sea tidal waves,
hurricanes/tornados, earthquakes, and tsunamis) in coastal
villages. Disaster preparedness denotes the availability of
facilities or efforts to anticipate disasters, such as early
warning systems (EWS) and signage/evacuation routes.
Furthermore, disaster response in this study refers to the
availability of health facilities supporting the community
when a disaster happens.

Figure 1. Research framework

B. Data and Variables
This research used secondary data from a report pub-

lished by the Indonesian Statistics Agency, titled “Marine
and Coastal Resources Statistics 2022” [35]. Data about
coastal villages and disasters were extracted. The data show
that all 34 provinces of Indonesia have coastal areas. Each
province is divided into several regencies, districts, and
villages. Therefore, a village is the smallest administrative
region; consequently, coastal areas also belong to villages.

Table I displays the number of coastal villages (cv)
per province and the percentage of coastal villages from
the total villages in each province (% cv). The number
of coastal villages varies between 17 in Jakarta and 1,040
in Maluku. The percentage of coastal villages ranges from
1% in South Sumatra to 85% in Riau Islands. Jakarta, as a
metropolitan city and capital city of Indonesia, has different
characteristics from other provinces. Therefore, Jakarta is
removed for further analysis. Overall, the percentage of
coastal villages in Indonesia is 15%, with 12,510 villages.

The research framework described in Fig. 1 comprises
three variables. Based on the secondary data, measures
of each variable are presented here. First, disaster events
contain ten types: flood, earthquake, wave, wind, landslide,
drought, forest fire, flash flood, eruption, and tsunami. Fig. 2
exhibits the frequency of each disaster struck in 2022. Some
occurred only in a few provinces, such as tsunamis only
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TABLE I. Coastal villages’ profile

Province Code Coastal village % Coastal village

Aceh AC 662 10%
North Sumatra SU 437 7%
West Sumatra SB 133 10%
Riau RI 244 13%
Jambi JA 28 2%
South Sumatra SS 31 1%
Bengkulu BE 184 12%
Lampung LA 238 9%
Bangka Belitung Island BB 156 40%
Riau Islands KR 364 85%
Jakarta JK 17 6%
West Java JB 221 4%
Central Java JT 353 4%
Yogyakarta YO 33 8%
East Java JI 666 8%
Banten BT 146 9%
Bali BA 175 24%
West Nusa Tenggara NB 281 24%
East Nusa Tenggara NT 966 28%
West Kalimantan KB 162 8%
Central Kalimantan KT 40 3%
South Kalimantan KS 161 8%
East Kalimantan KI 158 15%
North Kalimantan KU 54 11%
North Sulawesi SA 760 41%
Central Sulawesi ST 950 47%
South Sulawesi SN 520 17%
South East Sulawesi SG 911 39%
Gorontalo GO 185 25%
West Sulawesi SR 154 24%
Maluku MA 1040 83%
North Maluku MU 898 75%
West Papua PB 592 30%
Papua PA 590 11%

in one province and eruptions in two provinces. Therefore,
further analysis selects the top four types of disaster ranging
from 9% to 19%: flood, earthquake, wave (e.g., sea tidal
wave), and wind (e.g., hurricane, storm, tornado). These
four contribute 80% (=7128/8913) of disaster events.

Second, disaster preparedness contains four measures:
signs and evacuation routes, safety equipment (e.g., inflat-
able boats, tents, mask supplies), general early warning
systems (EWS), and early warning systems for tsunamis.
EWSs for tsunamis are installed in many coastal villages, al-
though actual tsunami disasters are rare. Tsunami awareness
emerged after an extensive casualty of tsunami disasters
in 2001 in Aceh. Third, disaster response is measured
by health facilities covering community health centers,
drugstores, and clinics. Hospitals are excluded because only
a few villages have them.

The object of the study is coastal villages, and the unit

Figure 2. Number of disaster events

of analysis is an Indonesian province. The way the raw
data transformed into a ready-for-analysis measure for each
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province is illustrated as follows.

• Province name = Aceh

• The number of coastal villages in Aceh (a) = 662

• The number of coastal villages in Aceh experienced
earthquake in 2022 (b) = 100

• The percentage of coastal villages in Aceh experi-
enced earthquake in 2022 (a/b in %) = 15.1%

• Earthquake disaster measure for Aceh (a/b*100) =
15.1

So, the measure for earthquake disaster in Aceh is 15.1,
which is used for further analysis. By applying the same
process, all measures used for data analysis are in the
percentage of coastal villages in each province. These are
relative measures and comparable among provinces.

The three variables and their measures is presented in
Table II, that indicates measure’s mean, minimum, and
maximum percentages. The mean score in the second
column indicates that floods are the most frequent disaster,
with an average of 19%, while wind-related disasters are
the least, with 9%. For disaster preparedness, on average,
7% of coastal villages in provinces have early warning
systems (EWS) for tsunamis. The lower percentage of EWS
tsunamis than general EWS is reasonable, as EWS tsunamis
are more relevant in villages facing the Indian Ocean and
Pacific Ocean but less in villages facing the sea or straits
between islands. Furthermore, the highest average, 57%, for
the disaster response variable is the availability of health
community centers, including inpatient or outpatient care
facilities.

C. Analytical Method
The research adopts a data mining methodology with

the following generic stages: data pre-processing, model-
ing, evaluation, and visualization. The analysis adopts ex-
ploratory analytical methods to reveal the information from
the dataset. The primary analytical methods for modeling
are principal component analysis and cluster analysis.

Fig. 3 illustrates the framework of the analysis. Three
analyses will be performed: (1) cluster analysis for all mea-
sures of three variables, (2) principal component analysis
for each of the three variables, and (3) cluster analysis
for all principal components obtained. Data mining was
performed using the Python Scikit-learn operated in Google
Collaboratory. Tableau analytical software was used for
visualization, especially in creating quadrant diagrams and
geographical heatmaps.

4. Results
Three types of planned analyses were conducted, and

the results are presented here in three parts: cluster anal-
ysis, principal components analysis, and a combination of
principal components analysis and cluster analysis.

Figure 3. Framework of analysis

A. Classification from Cluster Analysis
This study applies the centroid-based clustering model

with the k-means algorithm to group objects into k clusters
based on some attributes. The principle of the k-means
algorithm is to minimize the sum of square distances
between the data and the related cluster centroid. A total
of ten variables from disaster events, preparedness, and
response become input for cluster analysis. Data were pre-
processed with outlier treatment and normalization [0 – 1].
Then, clustering with the k-means algorithm was performed.

The vital question for k-means clustering is the number
of clusters (k) to choose. One of the popular methods is the
silhouette score, which indicates how well an object lies
within its group (cohesiveness) compared to other groups
(separation) [36]. The overall mean of the silhouette score
for a certain k indicates the overall goodness-of-fit for a
particular clustering model. The score varies between -1
and +1, where less than 0.2 is interpreted as a poor model,
0.2 and 0.5 as a fair model, and more than 0.5 as a good
model [37].

Table III presents the average Silhouette scores for two
to five cluster models. The table shows that the highest
mean silhouette score is 0.39 for k=2. Therefore, cluster
size is determined as two. Cluster analysis produces two
clusters named Cluster A, which comprises six provinces,
and Cluster B, which comprises 27 provinces. Table IV
presents the normalized mean score of each measure for
Clusters A and B. The mean scores for all 11 measures
are higher for Cluster A than for Cluster B. Therefore,
Cluster A has been named a high-intensity cluster because
it has a higher intensity in disaster events, preparedness, and
response than Cluster B, which is a low-intensity cluster.

Fig. 4 exhibits a scatter plot of wave disaster (wave),
representing disaster events, versus EWS general (EWS),
representing disaster preparedness. The figure shows the
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TABLE II. Research variables and measures

Variable and measures Mean (%) Min (%) Max (%)

Disaster event
Flood disaster (flood) 19 4 39
Wave disaster (wave) 16 3 41
Earthquake disaster (earthq) 14 0 92
Wind disaster (wind) 9 1 48
Disaster preparedness
Signs and evacuation routes (sign) 23 0 85
Safety equipment (safety) 16 3 73
EWS general (EWS) 15 0 100
EWS tsunami (EWStsu) 7 0 58
Disaster response
Health Community Centers (HCC) 57 19 100
Drugstores (drugstore) 29 3 72
Private clinics (private) 18 0 67

TABLE III. Silhouette scores

number of clusters (k) Silhouette scores

k = 2 0.39
k = 3 0.21
k = 4 0.21
k = 5 0.21

TABLE IV. Cluster characteristics

Cluster flood earthq. wave wind

A (6 provinces) 0.72 0.43 0.75 0.58
B (27 provinces) 0.34 0.27 0.24 0.32
Cluster EWS EWStsu safety sign

A (6 provinces) 0.79 0.82 0.67 0.78
B (27 provinces) 0.25 0.16 0.27 0.25
Cluster HCC drugstore private

A (6 provinces) 0.55 0.82 0.6
B (27 provinces) 0.44 0.3 0.25

distinct positions between the two clusters. The two-digit
codes refer to province names in Table I. Six provinces
of cluster A (in red) have high-intensity wave disasters
(horizontal axis) and high availability of general early
warning systems (EWS). On the contrary, 27 provinces of
Cluster B (in green) have a low intensity of wave disasters
and the availability of EWS.

Moreover, Fig. 5 plots the wave disaster (wave), repre-
senting disaster events, versus the private doctor’s clinics
(private), representing disaster response. Six provinces in
cluster A (in red) tend to have a higher intensity of wave
disasters and private doctor’s clinics than provinces in
cluster B (in green).

Fig. 6 displays the dispersion of two clusters through

the EWS tsunami (EWStsu), representing disaster prepared-
ness, versus the drugstore (drugstore), representing disaster
response. Provinces in cluster A (red) tend to have a higher
intensity of EWS tsunamis and drugstores than provinces
in cluster B (green).

Fig. 7 depicts the geographic heatmap of both clus-
ters. Cluster A (in blue) consists of six provinces: West
Sumatera in Sumatera, West Java, Banten, Central Java,
and Yogyakarta in Java, and Bali. Coastal villages in
these provinces experienced more frequent overall disasters
and have a higher capacity for disaster preparedness and
response than those in Cluster B (in orange).

The investigation of the percentage of coastal villages
in a province reveals that Cluster B has a higher percentage
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Figure 4. Scatter plot for wave disaster vs. EWS

Figure 5. Scatter plot for EWS vs. private doctor’s clinic

of coastal villages (25%) than Cluster A (10%). These
numbers indicate that the provinces in Cluster B are more
coastal regions than Cluster A. This finding is justified
because the coastal provinces of Maluku, Sulawesi, and
Riau Islands belong to Cluster B.

B. Classification from Principal Component Analysis
PCA was performed for three variables: disaster events,

disaster preparedness, and disaster response. Data were

Figure 6. Scatter plot for EWStsunami vs. drugstore

Figure 7. Geographic heatmap of two clusters

pre-processed with outlier treatment and standardization.
Standardization is a process of scaling the data so that the
distribution has a mean score of 0 and a standard deviation
of 1. By standardization, all measures will have an equal
effect in creating principal components.

The main decision in conducting PCA is determining the
number of principal components. Some standard methods
suggest how many components to keep, such as proportion
of variance, eigenvalue, and scree plot. All of them are
based on the variance of the data set. This study adopts the
proportion of variance by determining the cut-off at 90% to
determine the number of principal components retained.

PCA needs to explain the contribution of the original
variable to the related principal component. One of the
methods is through eigenvectors describing the weight each
original variable contributes to the corresponding principal
component. Another method is through the correlations
between each original variable and the corresponding prin-
cipal component. The correlation coefficients ranging from
+1 to -1 indicate which variables correlate most strongly
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with each principal component. This paper presents both to
interpret the result of PCA.

1) PCA for Disaster Events
The PCA was executed to four measures of disaster

events. Three primary components are needed to obtain the
minimum 90% of variance. Table V presents the result of
PCA with three principal components named disaster1, dis-
aster2, and disaster3. The bottom row of the table indicates
that disaster1 covers the most significant variance of 57%,
followed by 20% for disaster2 and 15% for disaster3. These
three contributed 92% of the total variance.

Table V presents two parts: loadings (eigenvectors) and
correlation coefficients. First, PCA loadings are the coeffi-
cients of the linear combination of the original variables
(measures) from which the principal components (PCs)
are constructed. Second, the correlation scores specify the
correlation coefficient between the original variables (four
measures of disaster events) and the principal component
(disaster1 and disaster2). Examining the values of the
principal components confirms that each component has
zero mean scores and that the correlation between the
components is zero (orthogonal).

PCA loadings could be illustrated in diagrams. Fig. 8
displays the four loading vectors of disaster events in the
disaster1 vs. disaster2 diagram. PCA loadings indicate how
much (the weight) each measure contributes to the corre-
sponding principal components of disaster1 and disaster2.
The projection of each vector to the horizontal or vertical
axis denotes the weight contribution to each component.
The projection of the vector flood to the horizontal axis in-
dicates that the weight contribution of the flood is about 0.6
to the disaster1 component. The contribution of earthquake
is about 0.4 to disaster1. The projection to the vertical axis
indicates the contribution of each measure to disaster2. For
example, earthquake is a dominant factor for disaster2.

Returning to Table V, the correlation scores above 0.5
are written in bold. The first principal component, disaster1,
strongly correlated (0.56 – 0.88) with all four measures
of disaster events. This component increases with increas-
ing floods, wind, wave-related disasters, and earthquakes.
Among the four variables, the correlation of earthquakes
is the most minor (0.56). The second principal component,
disaster2, has a strong correlation with earthquake disasters
and weak correlations with the other measures. Therefore,
disaster2 is likely to represent an earthquake disaster. Sim-
ilarly, the third principal component, disaster3, represents a
wind-related disaster. Three components are uncorrelated;
therefore, we can interpret that disaster events could be
differentiated into three: (1) mixed disasters, (2) earthquake
disasters, and (3) wave-related disasters.

Classifying regions using principal components could
be made with one or more dimensions. For one dimension,
a geographic heatmap exposes the intensity of a particular
principal component among regions. For example, Fig. 9

Figure 8. PCA loadings of disaster1 and disaster2

displays the map of provinces for the intensity of disaster1.
Darker areas indicate higher disaster intensity. West Suma-
tra and West Java appear to have high disaster intensity,
primarily floods, wind, and waves. Areas with low disaster
intensity have lighter colors, such as Papua, West Papua,
and South Sumatra.

Figure 9. Geographic heatmap for disaster1

Furthermore, regional classification in two dimensions
can be done using a scatter plot diagram. Fig. 10 displays
a scatter plot with disaster1 vs disaster2. Four quadrants
were created based on the average score of each principal
component. The lower left quadrant includes ten provinces
with low percentages of both types of disasters. This group
can be interpreted as having ‘good’ conditions because the
disaster intensity is low. Several provinces in this group
include Riau Island (KR), Bangka Belitung Island (BB),
North Kalimantan (KU), and Central Kalimantan (KT). The
lower right quadrant contains provinces with high-intensity
floods, winds, and waves type-disaster but low-intensity
earthquakes. In this group, some provinces are West Java
(JB), Banten (BT), Yogyakarta (YO), and East Nusa Teng-
gara (NT). The upper left quadrant comprises provinces
with high-intensity earthquakes and low disasters related
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TABLE V. PCA for disaster events

Disaster variable disaster1 disaster2 disaster3

loadings
flood 0.56 -0.26 -0.39
wind 0.48 -0.2 0.86
wave 0.57 -0.17 -0.34
earthq. 0.37 0.93 0.01
correlation
flood 0.85 -0.24 -0.31
wind 0.73 -0.18 0.68
wave 0.88 -0.16 -0.27
earthq 0.56 0.85 0
variance 0.57 0.2 0.15

to floods, waves, and winds. Some provinces included in
this group are West Papua (PB), East Java (JI), and Aceh
(AC). The upper right quadrant contains six provinces with
high intensity of both types of disasters, such as North
Maluku (MU), North Sumatera (SU), North Sulawesi (SA),
and West Sumatra (SB).

Figure 10. Quadrant diagram of disaster1 vs. disaster2

The following scatter plot visualizes provinces in disas-
ter2 vs. disaster3, shown in Fig. 11. Disaster2 indicates the
intensity of earthquakes, while disaster3 is a wind-related
disaster. The upper right quadrant comprises provinces with
high intensity of earthquake and wind disasters, such as
North Sumatera (SU), North Sulawesi (SA), and West
Sumatera (SB). The lower left quadrant shows that West
Java (JB) and West Kalimantan (KB) belong to provinces
with low earthquake and wind disasters. In summary, this
classification through the quadrant diagram provides a sim-
ple visualization of the regional grouping.

Figure 11. Quadrant diagram of disaster2 vs. disaster3

2) PCA for Disaster Preparedness
PCA was performed for four measures of disaster pre-

paredness. Two principal components are needed to obtain
the minimum 90% of variance. Table VI presents the result
of PCA with two principal components named prepare1
and prepare2, with 78% and 17% variances. Based on
the loading scores of prepare1, the weight contribution
of the general EWS, the EWS for tsunami, and the sig-
nage/evacuation route are medium (around 0.5), while the
safety equipment is low. However, prepare2 is dominated by
safety equipment. In addition to the loading values, Table VI
shows the strength of the correlation of each measure
to both principal components. The correlation values of
three measures (EWS for tsunami, general EWS, and sig-
nage/evacuation) to prepare1 are substantially high (¿0.9).
On the contrary, safety equipment strongly correlates (0.76)
with the disaster2 component. Therefore, prepare1 could be
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interpreted as high intensity of EWS, EWS tsunami, and
signage/evacuation route, and prepare2 as high intensity of
safety equipment.

Fig. 12 exhibits the geographic heatmap of provinces
for the intensity of prepare1. Darker areas indicate regions
with better preparedness, including Bali and Yogyakarta, as
the top tourist destinations. A plausible explanation is that
those tourist destinations are more prepared to anticipate
disasters. Lighter color areas indicate less capacity for
disaster preparedness. Some low-intensity provinces are
Sumatra (Jambi, South Sumatera), Sulawesi (West, South,
and South-East Sulawesi), and Papua/ West Papua.

Figure 12. Geographic heatmap for the prepare1 component

Furthermore, regional classification in two dimensions,
prepare1 vs. prepare2, is visualized in a scatter plot shown
in Fig. 13. Four quadrants, based on the average value, clas-
sify provinces into four groups (clusters). The concentration
of provinces appears on the left side of the vertical line as
the average of prepare1. This concentration means that most
provinces have a lower capacity for disaster preparedness
(prepare1). Among regions with a high capacity of prepare1
but a low capacity of prepare2, the figure indicates West
Sumatera (SB). As described above, Yogyakarta (YO) and
Bali (BA) have a higher capacity for both preparedness
dimensions.

3) PCA for Disaster Response
PCA was performed for disaster response for three

measures of health facilities. Two principal components are
to keep to obtain more than 90% of the variance explained.
Table VII presents a summary of the PCA results. The
first component (response1) covers 71%, and the second
(response2) covers 25%, so the total variance explained is
96%. PCA loadings indicate that the response1 component
is contributed primarily by the drug store and the doctor’s
clinic. Community health centers primarily contribute to
the disaster2. Table VII indicates that the strength of the
correlation between drug stores (drugstore) and private
physicians’ clinics (private) with response1 is significantly
high (¿0.9), while community health center (HC) is the
leading factor (0.79) for response2.

Fig. 14 exhibits the geographic heatmap for one-
dimension classification using the response1 primary com-
ponent. Darker areas indicate a higher capacity of health
facilities in coastal villages. Some provinces are Bali, North

Figure 13. Quadrant diagram of prepare1 vs. prepare2

Kalimantan, and East Kalimantan. Conversely, the lighter
color area indicates provinces with less capacity for health
facilities in coastal villages. Several provinces are Aceh,
South Sumatra, Papua, West Papua, Maluku, and Gorontalo.

Figure 14. Geographic heatmap for the response1 component

Furthermore, regional classification through two-
dimensional diagrams is presented in Fig. 15. Provinces
in the upper right quadrant have high preparedness (high
response1 and response2), especially Yogyakarta (YO) and
East Kalimantan (KI). Conversely, the bottom left quadrant
comprises provinces with low preparedness, especially
South Sumatra (SS), Aceh (AC), and South Kalimantan
(KS).

4) Summary of PCAs
The total seven principal components have been pro-

duced from multiple PCAs for disaster events, preparedness,
and response. Each principal component could identify
regions at the top or bottom of that measure. Table VIII
presents seven principal components and the top three
provinces in each of them. For example, West Sumatra,
as the top province in disaster 1, is an area with a high
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TABLE VI. PCA for disaster preparedness

Preparedness variable prepare1 prepare2

loadings
EWS 0.54 -0.09
EWStsu 0.55 -0.22
safety 0.37 0.91
sign 0.52 -0.33
correlation
EWS 0.97 -0.07
EWStsu 0.98 -0.18
safety 0.67 0.76
sign 0.93 -0.28
variance 0.78 0.17

TABLE VII. PCA for disaster response

Response variable response1 response2

loadings
HCC 0.43 0.9
drugstore 0.63 -0.38
private 0.65 -0.22
correlation
HCC 0.63 0.79
drugstore 0.93 -0.34
private 0.97 -0.19
variance 0.71 0.25

Figure 15. Quadrant diagram of response1 vs. response2

risk of combined disasters. the top province for disaster
response. Ultimately, the classification of provinces using
PCA is flexible depending on what measures to choose.

C. Classification from the Combination of PCA+CA
This part investigates cluster analysis (CA) using the

principal components of three variables, performed in sec-
tion B, as input. The optimum number of clusters was
investigated through the average Silhouette scores. Table IX
presents the silhouette scores and cluster size from the k-
means method for k=2 to k=5. The highest Silhouette score
is 0.24 for k=3. As described above, the silhouette score
between 0.2 and 0.5 is a fair model [31]. The highest score
of 0.24 is lower than the score of 0.39 obtained from cluster
analysis in Section A. The low score indicates that the
clusters obtained are weakly separated.

Table IX shows that k-means with k=3 produces three
clusters comprising 6, 10, and 17 provinces. Investigation of
the provinces within each cluster revealed that six provinces
in the first cluster are the same as those in cluster A
from the cluster analysis in Section A. Therefore, three
clusters are named A, B1, and B2, which refer to Cluster
A and B from the previous clustering (Section A). Cluster
B1 scores highest for the remaining principal components,
except disaster2.

Table X presents the normalized mean scores of seven
principal components for each cluster. Cluster A has the
highest mean scores in disaster1, preapre1, and response1.
Cluster B1 has higher mean scores for the second principal
component of preparedness and response than Cluster B2.
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TABLE VIII. The top three provinces

Principal component Province 1 Province 2 Province 3

disaster1 West Sumatra West Java Banten
disaster2 North Maluku North Sumatra West Sulawesi
disaster3 Bangka Belitung East Nusa Tenggara South Sulawesi
prepare1 Yogyakarta Bali West Sumatra
prepare2 West Kalimantan East Kalimantan North Kalimantan
response1 Bali North Kalimantan East Kalimantan
response2 Central Kalimantan Jambi Yogyakarta

TABLE IX. Silhouette scores

number of clusters (k) Silhouette scores Cluster size

k = 2 0.23 15,18
k = 3 0.24 6,10,17
k = 4 0.20 6,6,7,14
k = 5 0.20 2,5,6,10,10

TABLE X. Cluster characteristics

cluster disaster1 disaster2 disaster3 prepare1 prepare2 response1 response2

A (6 provinces) 0.64 0.26 0.39 0.76 0.50 0.69 0.29
B1 (10 provinces) 0.25 0.19 0.50 0.17 0.69 0.50 0.59
B2 (17 provinces) 0.25 0.51 0.47 0.22 0.25 0.22 0.36

Furthermore, three clusters of provinces are plotted in
a two-dimensional diagram with prepare1 vs. response1, as
shown in Fig. 16. Six provinces of cluster A (in red) sit in
the upper right quadrant. Cluster B1 (in yellow) resides in
the upper left quadrant, and Cluster B2 (in green) in the
lower left quadrant. Provinces in clusters B1 and B2 seem
differentiated only by response1, not by prepare1.

Fig. 17 displays a geographic map for three clusters.
Cluster A (in blue), with the highest intensity of disaster
events, preparedness, and response, consists of provinces
mainly in Java and Bali. Cluster B1 (in yellow), with the
second highest intensity of disaster events, preparedness,
and response, covers mainly the provinces of Kalimantan.
Cluster B2 (in red), with the lowest intensity, covers most
of the provinces in Papua, Sulawesi, and Sumatra.

5. Discussion and Conclusion
This study investigated disaster events, preparedness,

and response in coastal villages in Indonesian provinces.
This research contributes to both disaster management and
data analytics literature. For the first area, this research is
one of the few studies that investigates coastal villages on a
national scale. Most prior studies focused on certain regions
or villages (e.g., [8] [9] [10]). For the second area, this
study is one of the few studies that applies data analytics
for published official data. This study provides a case for
exposing rich information from the official data.

The results indicate that, first, the classification of

Figure 16. Scatter plot for prepare1 vs. response1

provinces using cluster analysis provides a rigid and simple
classification based on disaster management characteristics.
Second, principal component analysis becomes an alterna-
tive method to classify provinces based on selected principal
components (new variables). The application of PCA may
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Figure 17. Cluster map

guide to fuller and more informative classification. Third,
the combination of principal component analysis and cluster
analysis provides an alternative method to cluster analysis
alone. This third method is comparable to prior studies
[33] [38]. However, the result shows that the cluster model
from the cluster analysis alone indicates a better separation
between clusters than the combination of PCA and cluster
analysis. Therefore, cluster analysis and principal compo-
nent analysis might be used independently.

Disaster studies are unique and depend on the scope
of the disaster model, the type of disaster, object location,
data, and analysis methods. Comparison of results between
one study and another cannot be firm because of these
differences. The method used in this study could be com-
pared partially to other disaster studies. First, this study
could be placed among studies that use disaster management
phases, such as [39] focused on disaster preparedness and
[40] focused on disaster risk reduction. However, the results
could not be compared because of different locations, data
sources, measures, and analysis methods. Second, this study
could be placed among studies that used secondary data
and data analytics methods, such as [41] using the typhoon
data and [42] using Twitter feeds data from the web and
social networks with big data analytics. However, the result
could not be compared because of different data sources,
measures, and analysis methods. In conclusion, this and
other disaster studies are unique and context-based.

The provincial government might use the province clas-
sification produced in this study to determine a course of
actions in disaster management. The results of this study
suggest improvements in coastal village disaster preparation
and response, particularly in the province with a high per-
centage of coastal villages. Although tsunamis are danger-
ous to coastal villages, data shows that earthquakes are the
most frequent disasters. The meteorological and geophysics
agencies should provide timely early warning information to
society as part of disaster preparedness. Search, rescue, and
medical facilities should be improved to reduce the impact
of a disaster as a part of disaster response. Finally, this study
recommends that governments and other stakeholders use
data analytics to support decisions in disaster management
and create resilient and sustainable coastal villages.

The primary limitation in this study is that the analysis

is based solely on official statistics for a particular year.
Data for a different year might produce different results.
Furthermore, since the available data objects are provinces,
information about which particular coastal villages and
regencies could not be obtained.

Further study in the Indonesian context may apply this
study method to the dataset for subsequent years so that
the change in disaster events, preparedness, and response
among regions could be observed. In addition, further
studies may be conducted to extend and adapt this method
to any country with similar official disaster statistics.
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