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Abstract: Code smells are an indication of deviation from design principles or implementation in the source code. Early 

detection of these code smells increases software quality by using refactoring techniques that will help the developers in 

software engineering maintain the process of software. Security is included as one of the requirements of software artifact 

quality in the ISO/IEC 25010 standard so we thought the security in the design phase is more efficient than after delivery 

of the software to the customer. A study aims to create a new dataset containing security metrics besides the quality 

metrics that will help software engineering researchers by detecting both the presence of a security illusion and god class 

bad smell at the same time in a program, we take Fonata's dataset of god class that have 61features of quality metrics, 

then calculate the security metrics on these 74 software written in java by programming a parser to analyze each software, 

finally used five machine learning algorithms on the proposed datasets (SQDS), after that, we used accuracy performance 

metric was employed for comparing the results. The experimental findings suggest that the proposed dataset demonstrates 

superior performance in identifying code smell security vulnerability and augmenting the training data can improve the 

accuracy of predictions. Finally, we applied three deep machine learning (RNN, LSTM, and GRU) on both the original 

Fonata’s Dataset of God Class bad smell and our proposed SQDS dataset and made a comparison between them. 
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1. INTRODUCTION  

Security is included as one of the requirements for software 

product quality in the ISO/IEC 25010 standard. According to 

this standard, security refers to which the degree a product or 

system can protect its data to ensure that different goods or 

people may access appropriate data according to their 

categories and authorizations [1],[2].The eight quality 

attributes make up the ISO/IEC 25010-defined product 

quality model are : functional suitability , performance 

efficiency , compatibility ,usability , reliability , security , 

maintainability and portability . 

 Nowadays, the majority of software systems must meet 

security requirements [2],[3]. Nevertheless, not all security 

problems can be resolved by traditional software metrics [4], 

resulted in the creation of several software systems that are 

hazardous [5]. Early on in the software development process, 

security concerns should be given more importance. The 

majority of developers and organizations often believe that 

security should be included after a system is developed [6]. 

For maximum efficiency and effectiveness, security should 

be taken into consideration early in the development process 

[6, 7, 8]. To safeguard their systems, the majority of 

businesses invest a significant amount of money in 

purchasing firewall and antivirus software [2], [9].  

Security mean the extent to which a system or product secures 

information and data so that users or other systems or 

products can access it to the right extent depending on the 

kinds and degrees of permission. The following sub-

characteristics make up this characteristic: 

• Confidentiality: The extent to which a system or product 

guarantees that data are only accessible by those who are 

permitted access. 

Integrity refers to how well a system, product, or component 

guards against illegal access to or alteration of data or 

computer programs. 

• Non-repudiation: The extent to which deeds or events can 

be demonstrated to have occurred and so cannot be 

subsequently denied. 

• Accountability: The extent to which an entity's activities 

may be directly linked to it.  

• Authenticity: The extent to which it is possible to verify that 

a resource or topic is who they say they are. 

Code smells can arise from any modifications made to the 

source code that go against the principles of software design. 

Code smells are defects in design or changes made by 

developers that may have an impact on future system quality 

and cause challenges with maintenance. Code smells may 

lead to technical debt and the degradation of software projects 

if they are not addressed. Code smells can therefore be used 

as a sign to determine whether the source code needs 

refactoring [10]. The first step in the code refactoring process 

is to find bad smells in the code. Code scent detection 

methods often depend on object oriented metrics as inputs to 

identify code smells in software projects. Many different 

tools for static analysis and code reorganization techniques 

have been established that carefully examine the source code 

in order to find and fix problems [11].  

Machine learning approaches involve the training of 

supervised models using data extracted from the same or a 

different software project. To model the source code 

components, metrics are used, similar to heuristic-based 

approaches. However, ML approaches differ in that they do 

not necessitate the specification of threshold values. Instead, 

they depend on data-driven learning to determine whether a 

particular code component is categorized as "smelly" or "non-

smelly". 

Supervised learning algorithms, 0such as recurrent neural 

networks0 (RNNs) , have been responsible for the remarkable 

progress in deep learning in recent years. RNNs are currently 

active in various practical applications like text generation, 

auto-translation, speech recognition, and code smell 

detection.[ 12] 

The primary objective of this research is to introduce new 

dataset contain the security metrics of 74 software system in 

Qualitas Corpus[13] that Fonata is used it and calculate four 

types of bad smell to made a dataset contain quality metrics . 

Five machine learning algorithms used on our proposed 

SQDB dataset that take the God Class bad smell, evaluate its 

performance based on accuracy metric. After that we made a 

comparison between the original Fonta ‘s dataset and our 

proposed SQDS dataset depending on using performance 

metrics ( accuracy , precession , recall and f1-score) by 

applying three deep machine learning ( RNN , LSTM and 

GRU ). Our paper is follows this structured: Section two 

discusses the related works, section three provides a 

background on detection strategies for software security 

metrics, code smells detections and deep machine learning. 

Methodology of the research is obtainable in section four. 

Sections five and six presents the experimental results and 

subsequent discussions and finally conclusions section.  

 

2. RELATED WORK 

 

          After 1999, when Fowler et al. [14] published a book 

that outlined various bad code smells and the corresponding 

refactoring techniques, research into detecting these code 

smells began in the field. Numerous literature reviews and 

surveys have been carried out in the domain of code smell 

identification and refactoring [15-18]. These investigations 

have demonstrated several methods and tactics for 

identifying poor code smell in current software systems 

through the utilization of machine learning methods [19].  

By rearranging internal design elements to remove system 

vulnerabilities, software refactoring may be utilized to 

increase software system security.  

Refactoring is a technique for reorganizing software's internal 

architecture without affecting its functionality [14]. 

Numerous investigations were carried out to gauge the 

design's early weaknesses. 

In [20] the researchers looked at whether complexity is 

detrimental to software security using statistical analysis. The 

results showed that the software's Complexity had a major 

influence on security. 

In [21] the researchers advanced a fixed of safety metrics for 

the object-oriented layout that could enable designers to 
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stumble on and cope with safety flaws at some point of the 

design phase. These metrics can useful resource in evaluating 

the safety of diverse layout versions. In specific, seven 

protection metrics were proposed that may degree the 

concord and encapsulation. 

Logistic regression changed into used to expect 

vulnerabilities using software metrics, zimmermann et al.  

Carried out experiments on Windows Vista and found that 

these metrics could be used to expect a number of the 

software program's vulnerabilities. They also analyzed the 

relationship between software program metrics, together with 

complexity and vulnerabilities. [22] 

An empirical study by Abid et al. [23] to validate the 

relationships between several security dimensions (CIDA, 

CCDA, COA, CMAI, 2019). 

CAAI, CAIW, CMW, VA, and Avg Security), and to explore 

correlations between security metrics and refactoring 

strategies. 

Almogahed et al. discussed how software refactoring has 

been used to improve software security. They found that 

software systems with low coupling, low complexity and 

high compatibility are more secure and vice versa .[24] 

 

Romeo L. [25] A prototype utilizing neural networks, 

machine learning, and deep learning for code smell detection 

was developed and implemented using the Python 

programming language. Subedi [26] suggested a method to 

collect, process and analyze code smells of different open-

source projects and detect code smells in an intelligent way 

using the LSTM machine learning model. Sharma et al.[27] 

used CNN and RNN as their major hidden layers along with 

auto encoder model . They perform training and assessment 

on C# examples and  Java code. Mhawish et al.[28] proposed 

was an approach for predicting code smells using 0machine 

learning techniques and software metrics, which incorporated 

the Local Interpretable Model-Agnostic Explanations 

0(LIME) algorithm to improve comprehension of the 

machine learning model's0 decision-making process, and to 

identify the specific features that have an impact on the 

prediction model's decisions. 

 

3. BACKGROUND 

        Software development has seen an increase in study in 

recent years with the goal of improving code quality, 

detecting code smells, and strengthening security protocols. 

Numerous research works have proposed a wide range of 

methods and strategies for identifying bad code smells and 

evaluating the security and quality metrics of software 

systems. With an emphasis on the use of deep machine 

learning, this section offers a concise synopsis of the pertinent 

data on the tactics used in the identification of security 

metrics and code smells. Early in the software development 

life cycle, researchers and practitioners have realized how 

important it is to take proactive steps to find and fix code-

related problems. To keep software systems robust and 

reliable, it is essential to investigate various methods for 

detecting code smells and to evaluate security metrics. 

Furthermore, the integration of deep machine learning into 

these detection algorithms has surfaced as a viable approach, 

providing the possibility of more precise and effective code 

anomaly identification. The dynamic field of software 

engineering emphasizes the necessity of ongoing 

enhancements to security and code quality procedures. 

Through an exploration of the nexus of deep machine 

learning, security metrics, and code smell detection, this 

review seeks to illuminate the state-of-the-art strategies that 

support the progress of software development processes. 

Further investigation reveals that the secret to resolving the 

complex issues related to code quality and security in the 

ever-changing field of software engineering is the use of 

state-of-the-art technologies, such deep machine learning. 

 

 

Software Security metrics 

In the context of software system development, addressing 

attack capabilities has become increasingly crucial due to the 

growing threat of software assaults. There is growing 

agreement that software metrics are useful instruments for 

estimating and rating program quality. Metrics can provide 

insights that enable the creation of useful prediction models, 

directing the development of software products, by 

quantitatively measuring important aspects of software 

systems. The best course of action is to prioritize security 

measures early on in the software development process, 

especially during the design phase [3]. 

It is impossible to overestimate the importance of protecting 

software against potential assaults in the modern digital era, 

where cyber dangers are pervasive. Metrics play a crucial role 

in assessing and forecasting the overall security posture and 

quality of software systems as they get more complex. 

Developers may proactively uncover vulnerabilities and 

create robust, resilient software solutions by methodically 

recording and analyzing metrics. 

When properly utilized, software metrics serve as a 

preventative measure that enables developers to see any 

vulnerabilities early on and address them. This method 

improves the software's security while also enhancing the 

overall effectiveness and dependability of the finished result. 

Metrics-driven security practices are being integrated in line 

with the industry's general move toward a proactive security 

posture, which recognizes that predicting and preventing 

vulnerabilities is just as important as responding to them. 

Furthermore, software metrics' predictive quality goes 

beyond security issues to provide a thorough grasp of the 

program's functionality, maintainability, and scalability. 

Development teams may make well-informed decisions, use 

resources wisely, and expedite the development process with 

the help of this comprehensive perspective. In keeping with 

the idea of "secure by design," security measures are applied 

at the design stage, guaranteeing that security considerations 

are included in the software's basic architecture. 

The relationship between metrics and security becomes 

increasingly important as the software development 

landscape changes in order to provide software that is safe, 

reliable, and of high quality. This paradigm change 

emphasizes how crucial it is to take a proactive, metrics-

driven strategy in order to reduce possible risks and 
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strengthen software systems against the always changing 

threats. To sum up, in order to effectively navigate the 

problems presented by software assaults and guarantee the 

creation of reliable and secure software solutions, it is 

essential to incorporate software metrics as predictive tools 

and to adopt security measures early on. 

As stated by the National Institute for Using technology and 

standards to eliminate vulnerabilities during Up to thirty 

times as much can be saved during the design process as 

subsequently fixes , software security metrics are therefore 

required to measure the system's security straight from its 

layout. Determining the metrics for software security is 

essential to lowering risks and vulnerabilities related to 

system security [21]. A single object-oriented class's security 

level may be measured using the security design metrics, 

Lower values indicate a more secure program architecture. 

The measurements have all been scaled to fall within the 

range of 0 to 1. (Therefore, the measurements may be used to 

gauge a design's level of vulnerability.) According to a 

certain software security design concept (for example Least 

Privilege and Reduce Attack Surface), their findings indicate 

whether alternative designs may strengthen or weaken the 

security of a given class [29]. 

 

 
TABLE 1.  Show the security metrics that will be calculated in our 

dataset [21] 

 
 

Security 

Metric 

Definition 

CIDA The ratio of the quantity of public characteristics for a 

classed instance to the quantity of characteristics in a class 
that are categorized. 

CCDA The relation of the quantity of public characteristics 

belonging to a categorized class to the quantity of 
characteristics in a class that are categorized. 

COA It is calculated by dividing all privately shared methods 

in a class by all publicly shared methods 

CMAI The relation between the total number of mutators that 
could potentially interact with classified attributes and the 

number of mutators that actually could 

CAAI The measurement of the number of accessors that can 

interact with the classified attributes is the maximum 
number of accessors that can have access to the classified 

attributes 

CAIW The ratio of all possible interactions with part attributes 
and all possible pathways to all attributes. 

CMW Equal to the ratio of classified methods divided by  the 

number of methods in a  class 

 

 

Code Smell Detection 

      A crucial component of software development is code 

smell detection, which finds and fixes troublesome patterns 

or structures in source code. These "smells" are signs of 

possible inefficiencies or design defects that might lower the 

overall quality of the program and make it harder to maintain. 

Developers may systematically find certain code smells, such 

duplicate code, lengthy procedures, or inconsistent naming 

conventions, by utilizing a variety of static code analysis 

approaches. Enhancing code readability, maintainability, and 

scalability is the fundamental objective of code smell 

detection, which helps to build more reliable and effective 

software systems. As software projects get more complicated, 

it is critical to find and remove code smells early on to ensure 

long-term sustainability and facilitate development team 

communication.    
Code smell detection is typically created on a grouping 

metrics of object oriented and predefined threshold value , 

aimed at identifying the main indications that define the code 

smells [30] . A variety of detection approaches rely on 

heuristics and detection rules that compare metric values 

obtained from source code with empirically established 

thresholds, in order to differentiate between code artifacts 

affected by a particular type of smell and those that are not. 

The choice of appropriate threshold values is crucial to the 

performance of detectors since it strongly influences their 

effectiveness. Hence, identifying suitable typical thresholds 

is a crucial factor in developing effective detection strategies. 

The code smells that will be used in our research is God class 

we can defined it as an anti-pattern in software design where 

a single class has too much responsibility and becomes overly 

complex. It tends to make the code difficult to maintain and 

modify. Such a class often contains excessive code, multiple 

methods, and tightly coupled dependencies, leading to high 

coupling and low cohesion. 
 

Deep Machine Learning 

A department of artificial intelligence referred to as "deep 

gadget learning" uses sophisticated neural networks and 

algorithms to evaluate and study from massive amounts of 

records. The time period "deep" describes the use of 

numerous layers of neural networks to investigate input, main 

to the introduction of increasingly complicated and correct 

models. With using this era, gadget learning will undergo a 

revolution as computer systems could be able to discover 

patterns, categorize information, and generate predictions 

which are extra correct than earlier than. Deep system getting 

to know has numerous uses, which includes photograph 

identification, predictive analytics, and herbal language 

processing [31]. 

Deep learning's transformational power is demonstrated by 

its capacity to automatically extract complex characteristics 

from data, enabling more accurate and nuanced decision-

making. We expect a paradigm change in a number of areas 

as this technology develops, including autonomous systems, 

financial forecasts, and medical diagnostics. Because of its 

versatility and ability to manage intricate data structures, the 

deep learning framework is a key component in solving 

problems in the real world. 

Furthermore, by incorporating deep learning into disciplines 

like computer vision, advances in object and image detection 

have been made, greatly augmenting the power of automated 

systems. Another aspect of deep learning is predictive 

analytics, which helps businesses make data-driven choices 

by predicting trends and seeing possible opportunities and 

hazards. 

Deep learning applications rely heavily on natural language 

processing, which has advanced to the point that robots can 

now understand, interpret, and produce language that is 

similar to that of humans. This will completely change the 
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way we engage with technology and have a significant impact 

on sentiment analysis, language translation, and chatbots. 

To sum up, the numerous uses of deep learning and its ability 

to completely transform a variety of sectors highlight how 

important it is to the development of machine learning. Deep 

learning is expected to have a significant influence on 

artificial intelligence and redefine the potential for data-

driven decision-making as we move further into this period 

of technological progress. 

RNNs are a selected form of deep neural network that are 

used to deal with sequential records by using retaining 

contextual knowledge from in advance inputs. However, 

RNNs have a trouble referred to as vanishing gradients, while 

the gradients used to replace the network's parameters grow 

to be too tiny and cause the network to cease gaining 

knowledge of. Traditional feed ahead neural networks system 

inputs one by one. In order to address this issue, some of RNN 

modifications had been proposed, which include Long Short-

Term Memory (LSTM) and Gated Recurrent Units (GRUs), 

which use greater strategies to higher manipulate the input 

waft via the community. Long Short-Term Memory, or 

LSTM, is an RNN architectural kind that is employed in deep 

studying. The aim of LSTM networks is to deal with the 

standard RNN's vanishing gradient trouble. 

With the addition of specialized additives known as 

reminiscence cells. Three gates make up each reminiscence 

mobile: the enter, output, and forget gates. These gates will 

control the records flow into and out of the reminiscence cell 

and decide what information should be remembered and what 

should be deleted. The input gate manages the waft of clean 

information into the reminiscence cellular, while the output 

gate regulates the memory mobile's output to the network's 

next layer. In order to determine whether or not statistics have 

to be eliminated from the reminiscence cellular, the forget 

about gate is critical [32][33]. 

 

4. METHOD 

 

The proposed dataset, SQDS, is being developed through a 

methodical procedure that includes many crucial 

components. First, 74 open-source Java systems will be 

downloaded from the Qualitas Corpus software repository in 

order to obtain data. In order to enable thorough analysis, we 

will utilize a specially designed parser that is designed to 

methodically examine the classes included in every software. 

This parser, which focuses on measurable elements like the 

quantity of public and private properties and methods within 

each class, will be crucial in helping to tidy up the code by 

eliminating comments and blank lines. 

The next step is to take the parsed code , extract and compute 

seven different security metrics. This methodical technique 

guarantees a comprehensive evaluation of the security 

features integrated into the software systems. We want to 

combine these security measures with the Fonata god class 

dataset, an extensive collection of 62 quality indicators, in 

order to further enhance the dataset. Combining these 

datasets which are shown in Table2 will yield a 

comprehensive picture that includes quality and security 

measures. 

Our methodology aims to generate a more comprehensive 

and nuanced view of the software systems under examination 

by fusing security indicators with an established quality 

dataset. This combination allows for a more thorough 

analysis that takes into account factors of overall code quality 

as well as security. It is expected that the resultant SQDS 

dataset will be a useful tool for both practitioners and 

scholars, providing insights into the complex interactions that 

exist between security and quality measures in open-source 

Java systems. This project is in line with the overarching 

objective of improving dataset richness and enabling more 

reliable analyses in the fields of security research and 

software engineering. 

 
TABLE 2. Show quality metrics in Fonata’s Dataset 

 

 

 

With 420 rows and 68 columns that indicate various 

attributes, the SQDS dataset has an extensive structure. The 

data then goes through an important preprocessing step that 

is designed to convert unprocessed data into a format that can 

be analyzed. To do this, the data must be carefully cleaned to 

remove any missing values and any modifications such as 

scaling or normalization. This kind of preprocessing is 

essential because it improves the general efficacy and quality 

of the data analysis that follows, producing results that are 

more precise and trustworthy. 

To identify code smells and assess the software's security, we 

employ five different machine learning techniques: Decision 

Tree, Random Forest, SVM, KNN, and Logistic Regression. 

A careful division of the dataset into training and testing sets 

is made. Models are trained on the assigned training set 

during the training phase, and their performance is evaluated 

using the testing set. Strict assessment is essential to 

guaranteeing the model's effectiveness. This paper presents a 

technique that compares the effectiveness of two methods for 

identifying security flaws and code smells. 

Three deep machine learning algorithms( RNN, LSTM, and 

GRU) are applied to the original Fonata's dataset as well as 

our suggested SQDS dataset in order to further deepen the 

scope of our research, as shown in Fig 1. The use of deep 

learning techniques holds the potential to reveal complex 

patterns and subtleties present in the datasets, hence 
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advancing a comprehensive comprehension of code quality 

and security in software systems. The thorough assessment of 

these models and approaches is essential to pushing software 

engineering and security research forward and offers 

insightful information to both scholars and practitioners. 

 

 

 

 

 

Figure 1. Proposed process for SQDS 

 

 

5. THE RESULT 

 

      This study uses typical accuracy performance criteria 

generated from the confusion matrix to assess the efficacy 

of the SQDS. A fundamental technique for evaluating a 

model's performance in classification is the confusion 

matrix. It forms the foundation for a number of performance 

indicators by methodically classifying predictions into true 

positives, true negatives, false positives, and false negatives. 

A key indicator called accuracy evaluates how accurate the 

model's predictions are overall. The ratio of successfully 

predicted instances to all occurrences in the test dataset is 

used to compute it. Recall evaluates the model's capacity to 

catch every positive event, whereas precision examines the 

accuracy of positive predictions. An impartial assessment is 

given by the F1 score, which is the harmonic mean of recall 

and accuracy. The investigation also explores specificity 

and sensitivity, which center on accurately identifying 

negative and positive examples, respectively. 

A thorough understanding of the accuracy performance of 

each of the five machine learning techniques (Logistic 

Regression, Decision Tree, Random Forest, SVM, and 

KNN) is provided by the performance analysis, which is 

displayed in Table 3. Through close examination of these 

metrics, researchers may obtain valuable insights into the 

advantages and disadvantages of each model, assisting in the 

identification of the best method for code smell detection 

and security assessment.  

The study also looks at the consequences of false positives 

and false negatives because these occurrences are important 

in practical applications. While false negatives can provide 

serious security issues, false positives may result in needless 

actions or alarms. Practitioners obtain a deeper knowledge 

of the models' practical utility by comprehending the 

subtleties of these measures. 

A key component of the whole assessment procedure is the 

accuracy performance analysis, which guarantees a 

thorough appraisal of the SQDS's ability to detect code 

smells and assess software security. The studies conducted 

yield valuable insights that aid in the improvement of 

machine learning models and promote ongoing progress in 

the fields of security research and software engineering. 

These performance measures provide useful benchmarks as 

the study progresses, pointing practitioners and academics 

in the direction of more dependable and efficient model 

deployment in practical situations.  

 

 
TABLE 3. The accuracy performance metrics for five machine 

learning 

 

 

 

 

 

 

In this study, we aimed to use five machine learning 

algorithms: decision tree , random forest , logistic regression, 

KNN and SVM. The classification accuracy results of 

different algorithms are as follows: logistic regression 

(93.65%), decision tree (96.83%), random forest (96.83%), 

SVM (96.83%) and KNN (96.03%) these values represent the 

overall predictive ability of the models. High accuracy scores 

in all models indicate that the selected features, together with 

safety and quality considerations, provide sufficient 

information for effective classification Especially the 

decision tree, random forest, and SVM models consistently 

showed outstanding performance, and achieved an accuracy 

rate of 96.83% consistently This showed a strong ability to 

distinguish between classes in the data set. 
Comparing the results, we find a small difference in 

accuracy between Decision Tree, Random Forest, and SVM, 
with KNN lagging slightly behind. The logistic regression, 
although slightly lower in accuracy, achieved a commendable 
93.65%. This variation highlights the various strengths and 
weaknesses of each algorithm when applied to this particular 
data set. 

     After that we applied three deep machine learning ( RNN 

, LSTM and GRU ) on both the original Fonata’s dataset of 

God Class bad smell then calculate the performance metrics    

( accuracy , precision , recall and f1-score ). Table (4) show 

the performance analysis for three models when using God 

Class bad smell with quality metrics. 

 
 

Machine Learning Accuracy 

Logistic recognition 0.9365 

Decision tree 0.9683 

Random forest 0.9783 

SVM 0.9683 

KNN 0.9603 
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TABLE 4. The performance metrics for (RNN, LSTM and GRU) on 

Fonata’s God Class  dataset  

 

 

 

 
Then, we analyzed our suggested SQDS dataset which was 

intended to identify the God Class code smell using three 

deep machine learning models: Gated Recurrent Unit (GRU), 

Long Short-Term Memory (LSTM), and Recurrent Neural 

Network (RNN). To assess the efficacy of these models, 

performance indicators such as accuracy, precision, recall, 

and F1-score were calculated. Table 5 presents the findings 

of this performance investigation, which included God Class 

code scent detection along with quality metrics. The table 

gives a brief summary of each deep learning model's 

performance in identifying complex patterns linked to the 

God Class code smell while taking into account more general 

software quality considerations. 
 

 

TABLE 5. The performance metrics for (RNN, LSTM and GRU) on 

proposed SQDS dataset  

 

 

6. DISSCUSSION THE RESULT  

 

The thorough performance metrics study for three different 

recurrent neural network model types (LSTM, RNN, and 

GRU) focusing on their effectiveness in identifying God 

Class code odors, is shown in Tables (4,5). The assessed 

metrics offer a comprehensive view of the models' 

performance and include precision, recall, accuracy, and F1-

score.  

Results for the RNN approach show a considerable 

improvement in accuracy, from 0.90 to one, as seen in Table 

(4). This significant increase demonstrates RNN's ability to 

correctly detect high-quality code while reducing false 

positives. Additionally, the RNN approach constantly 

performs well, demonstrating strong recall and F1 score, 

demonstrating its dependability in identifying God Class 

code smells. 

Examining the LSTM approach, the study reveals some 

noteworthy advantages. The LSTM model predicts God 

Class code smells with great precision, suggesting a higher 

chance of correctness. Furthermore, the LSTM approach 

maintains high levels of accuracy, recall, and F1 score while 

exhibiting reliable and consistent performance across a 

variety of criteria.  

Similar to the LSTM model, the GRU method's effectiveness 

in God Class code scent recognition is demonstrated by the 

analysis of accuracy and recall measures. With its 

competitive accuracy and F1 score, the GRU technique 

shows itself to be a dependable solution for this dataset, 

underscoring its general effectiveness and applicability for 

God Class code scent detection. 

The results of these performance measures provide light on 

the unique advantages of every recurrent neural network 

model and offer insightful information to practitioners and 

researchers looking for efficient methods for God Class code 

smell identification. Based on particular project needs and 

objectives, the subtleties shown in the accuracy, recall, and 

overall performance metrics offer a nuanced knowledge of 

the models' capabilities and can direct the selection of the 

most appropriate method. 

When we compare the previous results with our findings 

using the proposed SQDS dataset and three deep machine 

learning models, we find some interesting trends that provide 

useful information about how well each technique works to 

detect God Class code smells.  

The SQDS dataset demonstrates perfect accuracy in the RNN 

approach, indicating the ability of RNN to accurately 

anticipate God Class odors. Moreover, the balanced 

metrics—memory and F1 scores, for example—highlight the 

SQDS dataset's ability to support a comprehensive workflow 

and demonstrate the dependability of the RNN model in this 

situation. 

When we switch to the LSTM approach, our SQDS dataset 

shows superior memory and F1 scores, confirming that the 

model can accurately and precisely identify a sizable portion 

of real God Class occurrences. The LSTM approach performs 

admirably on all suggested datasets, extracting data with 

almost perfect accuracy. 

Finally, the SQDS dataset highlights robust performance 

characteristics in the GRU technique, establishing GRU as a 

trustworthy model for God Class scent classification because 

of its exceptional accuracy and memory. The GRU model's 

applicability for the SQDS dataset is highlighted by the 

balanced metric method, which further guarantees a suitable 

equilibrium between model accuracy and F1 score. 

In software engineering, identifying code smells is a crucial 

first step in achieving the best possible code quality and 

maintainability. The "God Class" is particularly notable 

among these code smells because of its tendency to take on 

too many responsibilities, which might have an effect on the 

entire program. The complex insights gained from these 

studies help to drive the ongoing search for better code smell 

detection techniques, which in turn improves the overall 

quality and maintainability of software systems as the field of 

software engineering develops. 

 

In this study, the complex problem of identifying God Class 

code smells was tackled using three well-known deep 

learning models: Recurrent Neural Network (RNN), Long 

Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU). Two different datasets were used in the investigation: 

The 

performance 

Metrics. 

 

Precision 

 

Recall 

 

Accuracy 

 

F1_score 

RNN 0.90 0.87 0.85 0.88 

LSTM 1 0.85 0.90 0.92 

GRU 1 0.89 0.93 0.94 

The 

performance 

Metrics. 

 

Precision 

 

Recall 

 

Accuracy 

 

F1_score 

RNN 1 0.85 0.90 0.95 

LSTM 1 0.96 0.97 0.98 

GRU 1 0.93 0.95 0.96 
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the original dataset, which was taken from Fonata's extensive 

collection and contained the essence of God Class scents, and 

the proposed dataset, SQDS, which combined security and 

quality metrics for a more thorough analysis. 

The analysis of these models in comparison revealed 

important information about their consistency, the impact of 

the dataset, and factors to be taken into account when 

choosing a model. Notably, LSTM performed admirably in 

terms of precision, recall, accuracy, and F1 score, displaying 

notable consistency across the two datasets. 

Because of its constancy, LSTM is positioned as a strong 

competitor for God Class fragrance identification, 

demonstrating its adaptability and dependability across a 

variety of dataset circumstances.  

The SQDS dataset made it clear how dataset features affected 

model performance. The performance of every model was 

improved by adding security and quality metrics to SQDS. 

This emphasizes how important dataset properties are in 

determining how deep learning models are trained and 

evaluated. The capacity of the SQDS dataset to enhance the 

models' overall performance highlights the significance of a 

nuanced dataset design that takes into account the many 

facets of software security and quality. 

When choosing a perfect model, the study results emphasize 

that the decision should be made in accordance with the 

project's particular requirements and goals. Regarding 

accuracy-focused applications, RNN and LSTM are also 

excellent choices. Nonetheless, LSTM turns out to be the best 

option if a high degree of overall performance and a harmony 

between recall and precision are required. This sophisticated 

knowledge offers researchers and practitioners insightful 

direction, empowering them to customize their model choices 

to the particular needs of their initiatives. 

As a result, this work highlights the importance of dataset 

design and selection in impacting model outputs in addition 

to exploring the performance of deep learning models in the 

context of God Class code smell detection. The results pave 

the way for improvements in software engineering techniques 

and the creation of more reliable and effective tools for code 

quality and maintainability. They also add to the continuing 

discussion on efficient methods for code smell detection. 

 

 

7. CONCLUSION 

The machine learning models utilized in this extensive 

investigation have exhibited strong precision in efficiently 

categorizing datasets according to conservation efficiency 

factors. Among these models, decision tree, random forest, 

and SVM models performed exceptionally well, 

demonstrating the effectiveness of machine learning in 

assessing and classifying systems that prioritize both safety 

and quality criteria. These results demonstrate the feasibility 

of machine learning technologies for thorough system 

evaluations and provide a detailed understanding of the 

interaction between quality and safety concerns. 

Using both datasets, the deep machine learning models RNN, 

LSTM, and GRU performed well in detecting God Class code 

smells. But it was clear that LSTM performed better overall 

in God Class fragrance detection, routinely outperforming 

RNN and GRU. This comparison approach, when applied to 

the particular job of identifying complex code smells, 

provides insightful information about the strengths and 

capacities of various deep learning models. 

The SQDS dataset was essential in improving the machine 

learning models' overall performance and highlighting the 

need of including safety and quality criteria in the training 

process. The integration of security and quality measures in 

the SQDS dataset served as a stimulant to improve the 

models' detection of God Class code smells. This emphasizes 

how important it is to take a comprehensive approach to 

software evaluation that takes into account all relevant factors 

in order to guarantee more precise and consistent model 

performance. 

 

8. FUTURE WORKS  

 

Adding more code scent categories to the analysis opens up 

an interesting new research direction. The integration of 

diverse foul smells with security metrics has the capacity to 

yield a more all-encompassing comprehension of the 

complexities associated with software assessment. 

Examining the similarities and differences across various 

kinds of code smells and how they affect system security and 

quality metrics might help improve and broaden the present 

model framework. 

Furthermore, research efforts in the future could concentrate 

on creating hybrid models that fuse machine learning with 

other cutting-edge methods like anomaly detection 

algorithms or natural language processing. In the end, these 

integrative methods may improve software engineering 

techniques by producing more complex and precise outcomes 

in detecting and addressing code smells. 

This work lays the groundwork for other research projects 

that will deepen our comprehension of software assessment 

and code smell detection. In order to ensure code quality, 

security, and maintainability, machine learning is expected to 

become more reliable and applicable as a result of the 

investigation of various foul odors and creative model 

combinations. 

 

REFERENCES 

[1]     ISO/IEC. (2011). Systems and software engineering — 

Systems and software Quality Requirements and 

Evaluation (SQuaRE) — System and software quality 

models. ISO/IEC 2011. 

[2] Mohammed,N. M., Alshayeb, M., Mahmood, S., 

Mohammed,N. M., & Niazi, M. (2017). Exploring 

Software Security Approaches in Software Development 

Lifecycle : A Systematic Mapping Study. Computer 

Standards & Interfaces.50,107-115. 

https://doi.org/10.1016/j.csi.2016.10.001 

[3] Shahriza, N., Karim, A., Albuolayan, A., Saba, T., & 

Rehman, A. (2016). The practice of secure software 

development in SDLC : an investigation through existing 

model and a case study. Security and Communication 

8

https://doi.org/10.1016/j.csi.2016.10.001


 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        9 

 

 
http://journals.uob.edu.bh 

 

Networks,9(18),5333–5345. 

https://doi.org/10.1002/sec.1700 

[4] Kumar, S. R. T., Sumithra, A., & Alagarsamy, K. (2010). 

The Applicability of Existing Metrics for Software 

Security. International Journal of Computer 

Applications, 8(2), 29–33.  

  [5] Daley, J. (2017). Insecure Software is Eating the World: 

Promoting Cybersecurity in an Age of Ubiquitous 

Software-Embedded Systems. Stanford Technology 

Law Review, 19(3), 533–546. 

[6] Siddiqui, Shams Tabres. (2017). Significance of Security 

Metrics in Secure Software Development. International 

Journal of Applied Information Systems (IJAIS), 12(6). 

https://doi.org/10.5120/ijais2017451710 

[7] Firesmith, D. (2004). Specifying Reusable Security 

Requirements. Journal of Object Technology, 3(1), 61–

75. 

 [8] Siddiqui, Shams Tabrez, Hamatta, H. S. A., & Bokhari, 

M. . (2013). Multilevel Security Spiral ( MSS ) Model 

: NOVEL Approach. International Journal of 

Computer Applications (0975, 65(20), 15–20. 

[9] Howard, M., & Lipner, S. (2006). The Security 

Development Lifecycle. Redmond: Microsoft Press. 

https://doi.org/10.1007/s11623- 010-0021-7. 

[10] M. Fowler et al., “Refactoring Improving   the Design 

of Existing Code Second    Edition,” 2019. 

[11] A. Kaur and G. Dhiman, A review on search-based 

tools and techniques to identify bad code smells in 

object-oriented systems, vol. 741, no. September. 

Springer Singapore, 2019. doi: 10.1007/978-981-13-

0761-4_86. 

[12] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, 

Advances in Deep Learning, vol. 57, no. January. 

2019. doi: 10.1007/978-981-13-6794-6. 

 

[13]      E. Tempero et al., “The Qualitas Corpus: A curated 

collection of Java code for empirical studies,” Proc. 

- Asia-Pacific Softw. Eng. Conf. APSEC, pp. 336–

345, 2010, doi: 10.1109/APSEC.2010.46. 

[14] M. Fowler et al., “Refactoring Improving the 

Design of Existing Code Second Edition,” 2019. 

[15] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, 

“Machine learning techniques for code smell 

detection: A systematic literature review and meta-

analysis,” Inf. Softw. Technol., vol. 108, pp. 115–

138, 2019, doi: 10.1016/j.infsof.2018.12.009. 

[16] T. Sharma et al., “A Survey on Machine Learning 

Techniques for Source Code Analysis,” vol. 0, no. 

0, 2021, [Online]. Available: 

http://arxiv.org/abs/2110.09610 

[17] H. M. Yahya and D. B. Taha, “Software Code 

Refactoring : A Comprehensive Review,” vol. 2023, 

pp. 71–80, 2023, doi: 

10.33899/edusj.2023.137163.1298. 

[18] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. 

Guéhéneuc, “Code smells and refactoring: A tertiary 

systematic review of challenges and observations,” 

J. Syst. Softw., vol. 167, no. April, 2020, doi: 

10.1016/j.jss.2020.110610. 

[19] F. Arcelli Fontana and M. Zanoni, “Code smell 

severity classification using machine learning 

techniques,” Knowledge-Based Syst., vol. 128, pp. 

43–58, 2017, doi: 10.1016/j.knosys.2017.04.014. 

[20]      Shin, Y., & Williams, L. (2008). Is Complexity 

Really the Enemy of Software Security ? In 

Proceedings of the 4th ACM workshop on Quality 

quality of protection (pp. 47–50) 

[21]     Alshammari, B., Fidge, C., & Corney, D. (2010a) 

Assessing The Impact of Refactoring on Software 

Security-Critical Object-Oriented Designs. In 

            2010 Asia Pacific Software Engineering Conference 

Assessing. https://doi.org/10.1109/APSEC.2010.30 

[22]      Zimmermann, T., Nagappan, N., & Williams, L. 

(2010). Searching for a Needle in a Haystack : 

Predicting Security Vulnerabilities for Windows 

Vista. In 2010 Third International Conference on 

Software Testing, Verification and Validation. 

https://doi.org/10.1109/ICST.2010.32 

[23]     Abid, C., Kessentini, M., Alizadeh, V., Dhaouadi, 

M., & Kazman, R. (2020). How Does Refactoring 

Impact Security When Improving Quality ? A 

Security-Aware Refactoring Approach. IEEE 

Transactions on Software Engineering, 5589(c), 1–

15. https://doi.org/10.1109/TSE.2020.3005995 

[24]    Almogahed, Abdullah & Omar, Mazni & Zakaria, 

Nur Haryani & Alawadhi, Abdulwadood. (2022). 

Software Security Measurements: A Survey. 1-6. 

10.1109/ITSS-IoE56359.2022.9990968. 

[25]     RomeoLQuoiJr, “Deep Learning-Based Code Smell 

Detection Using CNN and RNN,” Computer 

Science & Technology, 2020. 

[26]     S. Subedi, “INTELLIGENT CODE. SMELL. 

DETECTION SYSTEM USING DEEP 

LEARNING,” 2021. 

[27]     T. Sharma, V. Efstathiou, P. Louridas, and D. 

Spinellis, “Code smell detection by deep direct-

learning and transfer-learning,” J. Syst. Softw., vol. 

176, 2021, doi: 10.1016/j.jss.2021.110936. 

[28]     M. Y. Mhawish and M. Gupta, “Predicting Code 

Smells and Analysis of Predictions: Using Machine 

Learning Techniques and Software Metrics,” J. 

Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–

1445, 2020, doi: 10.1007/s11390-020-0323-7. 

 

[29]     P. Manadhata and J. Wing, “An attack surface 

metric,” IEEE Transactions on Software 

Engineering, vol. PP , no. 99, p. 1, 2010. 

[30]     U. Mansoor, M. Kessentini, B. R. Maxim, and K. 

Deb, “Multi-objective code-smells detection using 

good and bad design examples,” Softw. Qual. J., 

vol. 25, no. 2, pp. 529–552, 2017, doi: 

10.1007/s11219-016-9309-7. 

[31] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, 

Advances in Deep Learning, vol. 57, no. January. 

2019. doi: 10.1007/978-981-13-6794-6. 

 

[32]  and A. J. S. Aston Zhang, Zachary C. Lipton, Mu 

Li, “Dive into DeepLearning,” p. 987, 2020. 

9

https://doi.org/10.1002/sec.1700
https://doi.org/10.5120/ijais2017451710
https://doi.org/10.1109/APSEC.2010.30


 

 

10       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

 

[33] A. Aksoy, Y. E. Ertürk, S. Erdoğan, E. Eyduran, and 

M. M. Tariq, “Estimation of honey production in 

beekeeping enterprises from eastern part of Turkey 

through some data mining algorithms,” Pak. J. 

Zool., vol. 50, no. 6, pp. 2199–2207, 2018, doi: 

10.17582/journal.pjz/2018.50.6.2199.2207. 

 

  

  
 
  
 

10



 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. #, No.# (Mon-20..) 

 

 

E-mail:author’s email 

  http://journals.uob.edu.bh 
 

 

11


