
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

The Development of the Secure Quality Dataset (SQDS): Combining

Security and Quality Measures Using Deep Machine Learning for Code

Smell Detection

 Hiba M. Yahya 1 , Dujan B. Taha2

1 Software Department, University of Mosul

Mosul, Iraq
 2 Computer Department, University of Mosul

Mosul, Iraq

E-mail address: hibamoneer@uomosul.edu.iq , dujan_taha@uomosul.edu.iq

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Code smells are an indication of deviation from design principles or implementation in the source code. Early

detection of these code smells increases software quality by using refactoring techniques that will help the developers in

software engineering maintain the process of software. Security is included as one of the requirements of software artifact

quality in the ISO/IEC 25010 standard so we thought the security in the design phase is more efficient than after delivery

of the software to the customer. A study aims to create a new dataset containing security metrics besides the quality

metrics that will help software engineering researchers by detecting both the presence of a security illusion and god class

bad smell at the same time in a program, we take Fonata's dataset of god class that have 61features of quality metrics,

then calculate the security metrics on these 74 software written in java by programming a parser to analyze each software,

finally used five machine learning algorithms on the proposed datasets (SQDS), after that, we used accuracy performance

metric was employed for comparing the results. The experimental findings suggest that the proposed dataset demonstrates

superior performance in identifying code smell security vulnerability and augmenting the training data can improve the

accuracy of predictions. Finally, we applied three deep machine learning (RNN, LSTM, and GRU) on both the original

Fonata’s Dataset of God Class bad smell and our proposed SQDS dataset and made a comparison between them.

Keywords: Security Metrics, God Class bad smell , Quality metric , Machine Learning , Deep learning

IJCDS 1570998948

1

mailto:hibamoneer@uomosul.edu.iq
mailto:dujan_taha@uomosul.edu.iq

2 Author Name: Paper Title …

http://journals.uob.edu.bh

1. INTRODUCTION

Security is included as one of the requirements for software

product quality in the ISO/IEC 25010 standard. According to

this standard, security refers to which the degree a product or

system can protect its data to ensure that different goods or

people may access appropriate data according to their

categories and authorizations [1],[2].The eight quality

attributes make up the ISO/IEC 25010-defined product

quality model are : functional suitability , performance

efficiency , compatibility ,usability , reliability , security ,

maintainability and portability .

 Nowadays, the majority of software systems must meet

security requirements [2],[3]. Nevertheless, not all security

problems can be resolved by traditional software metrics [4],

resulted in the creation of several software systems that are

hazardous [5]. Early on in the software development process,

security concerns should be given more importance. The

majority of developers and organizations often believe that

security should be included after a system is developed [6].

For maximum efficiency and effectiveness, security should

be taken into consideration early in the development process

[6, 7, 8]. To safeguard their systems, the majority of

businesses invest a significant amount of money in

purchasing firewall and antivirus software [2], [9].

Security mean the extent to which a system or product secures

information and data so that users or other systems or

products can access it to the right extent depending on the

kinds and degrees of permission. The following sub-

characteristics make up this characteristic:

• Confidentiality: The extent to which a system or product

guarantees that data are only accessible by those who are

permitted access.

Integrity refers to how well a system, product, or component

guards against illegal access to or alteration of data or

computer programs.

• Non-repudiation: The extent to which deeds or events can

be demonstrated to have occurred and so cannot be

subsequently denied.

• Accountability: The extent to which an entity's activities

may be directly linked to it.

• Authenticity: The extent to which it is possible to verify that

a resource or topic is who they say they are.

Code smells can arise from any modifications made to the

source code that go against the principles of software design.

Code smells are defects in design or changes made by

developers that may have an impact on future system quality

and cause challenges with maintenance. Code smells may

lead to technical debt and the degradation of software projects

if they are not addressed. Code smells can therefore be used

as a sign to determine whether the source code needs

refactoring [10]. The first step in the code refactoring process

is to find bad smells in the code. Code scent detection

methods often depend on object oriented metrics as inputs to

identify code smells in software projects. Many different

tools for static analysis and code reorganization techniques

have been established that carefully examine the source code

in order to find and fix problems [11].

Machine learning approaches involve the training of

supervised models using data extracted from the same or a

different software project. To model the source code

components, metrics are used, similar to heuristic-based

approaches. However, ML approaches differ in that they do

not necessitate the specification of threshold values. Instead,

they depend on data-driven learning to determine whether a

particular code component is categorized as "smelly" or "non-

smelly".

Supervised learning algorithms, 0such as recurrent neural

networks0 (RNNs) , have been responsible for the remarkable

progress in deep learning in recent years. RNNs are currently

active in various practical applications like text generation,

auto-translation, speech recognition, and code smell

detection.[12]

The primary objective of this research is to introduce new

dataset contain the security metrics of 74 software system in

Qualitas Corpus[13] that Fonata is used it and calculate four

types of bad smell to made a dataset contain quality metrics .

Five machine learning algorithms used on our proposed

SQDB dataset that take the God Class bad smell, evaluate its

performance based on accuracy metric. After that we made a

comparison between the original Fonta ‘s dataset and our

proposed SQDS dataset depending on using performance

metrics (accuracy , precession , recall and f1-score) by

applying three deep machine learning (RNN , LSTM and

GRU). Our paper is follows this structured: Section two

discusses the related works, section three provides a

background on detection strategies for software security

metrics, code smells detections and deep machine learning.

Methodology of the research is obtainable in section four.

Sections five and six presents the experimental results and

subsequent discussions and finally conclusions section.

2. RELATED WORK

 After 1999, when Fowler et al. [14] published a book

that outlined various bad code smells and the corresponding

refactoring techniques, research into detecting these code

smells began in the field. Numerous literature reviews and

surveys have been carried out in the domain of code smell

identification and refactoring [15-18]. These investigations

have demonstrated several methods and tactics for

identifying poor code smell in current software systems

through the utilization of machine learning methods [19].

By rearranging internal design elements to remove system

vulnerabilities, software refactoring may be utilized to

increase software system security.

Refactoring is a technique for reorganizing software's internal

architecture without affecting its functionality [14].

Numerous investigations were carried out to gauge the

design's early weaknesses.

In [20] the researchers looked at whether complexity is

detrimental to software security using statistical analysis. The

results showed that the software's Complexity had a major

influence on security.

In [21] the researchers advanced a fixed of safety metrics for

the object-oriented layout that could enable designers to

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

stumble on and cope with safety flaws at some point of the

design phase. These metrics can useful resource in evaluating

the safety of diverse layout versions. In specific, seven

protection metrics were proposed that may degree the

concord and encapsulation.

Logistic regression changed into used to expect

vulnerabilities using software metrics, zimmermann et al.

Carried out experiments on Windows Vista and found that

these metrics could be used to expect a number of the

software program's vulnerabilities. They also analyzed the

relationship between software program metrics, together with

complexity and vulnerabilities. [22]

An empirical study by Abid et al. [23] to validate the

relationships between several security dimensions (CIDA,

CCDA, COA, CMAI, 2019).

CAAI, CAIW, CMW, VA, and Avg Security), and to explore

correlations between security metrics and refactoring

strategies.

Almogahed et al. discussed how software refactoring has

been used to improve software security. They found that

software systems with low coupling, low complexity and

high compatibility are more secure and vice versa .[24]

Romeo L. [25] A prototype utilizing neural networks,

machine learning, and deep learning for code smell detection

was developed and implemented using the Python

programming language. Subedi [26] suggested a method to

collect, process and analyze code smells of different open-

source projects and detect code smells in an intelligent way

using the LSTM machine learning model. Sharma et al.[27]

used CNN and RNN as their major hidden layers along with

auto encoder model . They perform training and assessment

on C# examples and Java code. Mhawish et al.[28] proposed

was an approach for predicting code smells using 0machine

learning techniques and software metrics, which incorporated

the Local Interpretable Model-Agnostic Explanations

0(LIME) algorithm to improve comprehension of the

machine learning model's0 decision-making process, and to

identify the specific features that have an impact on the

prediction model's decisions.

3. BACKGROUND

 Software development has seen an increase in study in

recent years with the goal of improving code quality,

detecting code smells, and strengthening security protocols.

Numerous research works have proposed a wide range of

methods and strategies for identifying bad code smells and

evaluating the security and quality metrics of software

systems. With an emphasis on the use of deep machine

learning, this section offers a concise synopsis of the pertinent

data on the tactics used in the identification of security

metrics and code smells. Early in the software development

life cycle, researchers and practitioners have realized how

important it is to take proactive steps to find and fix code-

related problems. To keep software systems robust and

reliable, it is essential to investigate various methods for

detecting code smells and to evaluate security metrics.

Furthermore, the integration of deep machine learning into

these detection algorithms has surfaced as a viable approach,

providing the possibility of more precise and effective code

anomaly identification. The dynamic field of software

engineering emphasizes the necessity of ongoing

enhancements to security and code quality procedures.

Through an exploration of the nexus of deep machine

learning, security metrics, and code smell detection, this

review seeks to illuminate the state-of-the-art strategies that

support the progress of software development processes.

Further investigation reveals that the secret to resolving the

complex issues related to code quality and security in the

ever-changing field of software engineering is the use of

state-of-the-art technologies, such deep machine learning.

Software Security metrics

In the context of software system development, addressing

attack capabilities has become increasingly crucial due to the

growing threat of software assaults. There is growing

agreement that software metrics are useful instruments for

estimating and rating program quality. Metrics can provide

insights that enable the creation of useful prediction models,

directing the development of software products, by

quantitatively measuring important aspects of software

systems. The best course of action is to prioritize security

measures early on in the software development process,

especially during the design phase [3].

It is impossible to overestimate the importance of protecting

software against potential assaults in the modern digital era,

where cyber dangers are pervasive. Metrics play a crucial role

in assessing and forecasting the overall security posture and

quality of software systems as they get more complex.

Developers may proactively uncover vulnerabilities and

create robust, resilient software solutions by methodically

recording and analyzing metrics.

When properly utilized, software metrics serve as a

preventative measure that enables developers to see any

vulnerabilities early on and address them. This method

improves the software's security while also enhancing the

overall effectiveness and dependability of the finished result.

Metrics-driven security practices are being integrated in line

with the industry's general move toward a proactive security

posture, which recognizes that predicting and preventing

vulnerabilities is just as important as responding to them.

Furthermore, software metrics' predictive quality goes

beyond security issues to provide a thorough grasp of the

program's functionality, maintainability, and scalability.

Development teams may make well-informed decisions, use

resources wisely, and expedite the development process with

the help of this comprehensive perspective. In keeping with

the idea of "secure by design," security measures are applied

at the design stage, guaranteeing that security considerations

are included in the software's basic architecture.

The relationship between metrics and security becomes

increasingly important as the software development

landscape changes in order to provide software that is safe,

reliable, and of high quality. This paradigm change

emphasizes how crucial it is to take a proactive, metrics-

driven strategy in order to reduce possible risks and

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

strengthen software systems against the always changing

threats. To sum up, in order to effectively navigate the

problems presented by software assaults and guarantee the

creation of reliable and secure software solutions, it is

essential to incorporate software metrics as predictive tools

and to adopt security measures early on.

As stated by the National Institute for Using technology and

standards to eliminate vulnerabilities during Up to thirty

times as much can be saved during the design process as

subsequently fixes , software security metrics are therefore

required to measure the system's security straight from its

layout. Determining the metrics for software security is

essential to lowering risks and vulnerabilities related to

system security [21]. A single object-oriented class's security

level may be measured using the security design metrics,

Lower values indicate a more secure program architecture.

The measurements have all been scaled to fall within the

range of 0 to 1. (Therefore, the measurements may be used to

gauge a design's level of vulnerability.) According to a

certain software security design concept (for example Least

Privilege and Reduce Attack Surface), their findings indicate

whether alternative designs may strengthen or weaken the

security of a given class [29].

TABLE 1. Show the security metrics that will be calculated in our

dataset [21]

Security

Metric

Definition

CIDA The ratio of the quantity of public characteristics for a

classed instance to the quantity of characteristics in a class
that are categorized.

CCDA The relation of the quantity of public characteristics

belonging to a categorized class to the quantity of
characteristics in a class that are categorized.

COA It is calculated by dividing all privately shared methods

in a class by all publicly shared methods

CMAI The relation between the total number of mutators that
could potentially interact with classified attributes and the

number of mutators that actually could

CAAI The measurement of the number of accessors that can

interact with the classified attributes is the maximum
number of accessors that can have access to the classified

attributes

CAIW The ratio of all possible interactions with part attributes
and all possible pathways to all attributes.

CMW Equal to the ratio of classified methods divided by the

number of methods in a class

Code Smell Detection

 A crucial component of software development is code

smell detection, which finds and fixes troublesome patterns

or structures in source code. These "smells" are signs of

possible inefficiencies or design defects that might lower the

overall quality of the program and make it harder to maintain.

Developers may systematically find certain code smells, such

duplicate code, lengthy procedures, or inconsistent naming

conventions, by utilizing a variety of static code analysis

approaches. Enhancing code readability, maintainability, and

scalability is the fundamental objective of code smell

detection, which helps to build more reliable and effective

software systems. As software projects get more complicated,

it is critical to find and remove code smells early on to ensure

long-term sustainability and facilitate development team

communication.
Code smell detection is typically created on a grouping

metrics of object oriented and predefined threshold value ,

aimed at identifying the main indications that define the code

smells [30] . A variety of detection approaches rely on

heuristics and detection rules that compare metric values

obtained from source code with empirically established

thresholds, in order to differentiate between code artifacts

affected by a particular type of smell and those that are not.

The choice of appropriate threshold values is crucial to the

performance of detectors since it strongly influences their

effectiveness. Hence, identifying suitable typical thresholds

is a crucial factor in developing effective detection strategies.

The code smells that will be used in our research is God class

we can defined it as an anti-pattern in software design where

a single class has too much responsibility and becomes overly

complex. It tends to make the code difficult to maintain and

modify. Such a class often contains excessive code, multiple

methods, and tightly coupled dependencies, leading to high

coupling and low cohesion.

Deep Machine Learning

A department of artificial intelligence referred to as "deep

gadget learning" uses sophisticated neural networks and

algorithms to evaluate and study from massive amounts of

records. The time period "deep" describes the use of

numerous layers of neural networks to investigate input, main

to the introduction of increasingly complicated and correct

models. With using this era, gadget learning will undergo a

revolution as computer systems could be able to discover

patterns, categorize information, and generate predictions

which are extra correct than earlier than. Deep system getting

to know has numerous uses, which includes photograph

identification, predictive analytics, and herbal language

processing [31].

Deep learning's transformational power is demonstrated by

its capacity to automatically extract complex characteristics

from data, enabling more accurate and nuanced decision-

making. We expect a paradigm change in a number of areas

as this technology develops, including autonomous systems,

financial forecasts, and medical diagnostics. Because of its

versatility and ability to manage intricate data structures, the

deep learning framework is a key component in solving

problems in the real world.

Furthermore, by incorporating deep learning into disciplines

like computer vision, advances in object and image detection

have been made, greatly augmenting the power of automated

systems. Another aspect of deep learning is predictive

analytics, which helps businesses make data-driven choices

by predicting trends and seeing possible opportunities and

hazards.

Deep learning applications rely heavily on natural language

processing, which has advanced to the point that robots can

now understand, interpret, and produce language that is

similar to that of humans. This will completely change the

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

way we engage with technology and have a significant impact

on sentiment analysis, language translation, and chatbots.

To sum up, the numerous uses of deep learning and its ability

to completely transform a variety of sectors highlight how

important it is to the development of machine learning. Deep

learning is expected to have a significant influence on

artificial intelligence and redefine the potential for data-

driven decision-making as we move further into this period

of technological progress.

RNNs are a selected form of deep neural network that are

used to deal with sequential records by using retaining

contextual knowledge from in advance inputs. However,

RNNs have a trouble referred to as vanishing gradients, while

the gradients used to replace the network's parameters grow

to be too tiny and cause the network to cease gaining

knowledge of. Traditional feed ahead neural networks system

inputs one by one. In order to address this issue, some of RNN

modifications had been proposed, which include Long Short-

Term Memory (LSTM) and Gated Recurrent Units (GRUs),

which use greater strategies to higher manipulate the input

waft via the community. Long Short-Term Memory, or

LSTM, is an RNN architectural kind that is employed in deep

studying. The aim of LSTM networks is to deal with the

standard RNN's vanishing gradient trouble.

With the addition of specialized additives known as

reminiscence cells. Three gates make up each reminiscence

mobile: the enter, output, and forget gates. These gates will

control the records flow into and out of the reminiscence cell

and decide what information should be remembered and what

should be deleted. The input gate manages the waft of clean

information into the reminiscence cellular, while the output

gate regulates the memory mobile's output to the network's

next layer. In order to determine whether or not statistics have

to be eliminated from the reminiscence cellular, the forget

about gate is critical [32][33].

4. METHOD

The proposed dataset, SQDS, is being developed through a

methodical procedure that includes many crucial

components. First, 74 open-source Java systems will be

downloaded from the Qualitas Corpus software repository in

order to obtain data. In order to enable thorough analysis, we

will utilize a specially designed parser that is designed to

methodically examine the classes included in every software.

This parser, which focuses on measurable elements like the

quantity of public and private properties and methods within

each class, will be crucial in helping to tidy up the code by

eliminating comments and blank lines.

The next step is to take the parsed code , extract and compute

seven different security metrics. This methodical technique

guarantees a comprehensive evaluation of the security

features integrated into the software systems. We want to

combine these security measures with the Fonata god class

dataset, an extensive collection of 62 quality indicators, in

order to further enhance the dataset. Combining these

datasets which are shown in Table2 will yield a

comprehensive picture that includes quality and security

measures.

Our methodology aims to generate a more comprehensive

and nuanced view of the software systems under examination

by fusing security indicators with an established quality

dataset. This combination allows for a more thorough

analysis that takes into account factors of overall code quality

as well as security. It is expected that the resultant SQDS

dataset will be a useful tool for both practitioners and

scholars, providing insights into the complex interactions that

exist between security and quality measures in open-source

Java systems. This project is in line with the overarching

objective of improving dataset richness and enabling more

reliable analyses in the fields of security research and

software engineering.

TABLE 2. Show quality metrics in Fonata’s Dataset

With 420 rows and 68 columns that indicate various

attributes, the SQDS dataset has an extensive structure. The

data then goes through an important preprocessing step that

is designed to convert unprocessed data into a format that can

be analyzed. To do this, the data must be carefully cleaned to

remove any missing values and any modifications such as

scaling or normalization. This kind of preprocessing is

essential because it improves the general efficacy and quality

of the data analysis that follows, producing results that are

more precise and trustworthy.

To identify code smells and assess the software's security, we

employ five different machine learning techniques: Decision

Tree, Random Forest, SVM, KNN, and Logistic Regression.

A careful division of the dataset into training and testing sets

is made. Models are trained on the assigned training set

during the training phase, and their performance is evaluated

using the testing set. Strict assessment is essential to

guaranteeing the model's effectiveness. This paper presents a

technique that compares the effectiveness of two methods for

identifying security flaws and code smells.

Three deep machine learning algorithms(RNN, LSTM, and

GRU) are applied to the original Fonata's dataset as well as

our suggested SQDS dataset in order to further deepen the

scope of our research, as shown in Fig 1. The use of deep

learning techniques holds the potential to reveal complex

patterns and subtleties present in the datasets, hence

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

advancing a comprehensive comprehension of code quality

and security in software systems. The thorough assessment of

these models and approaches is essential to pushing software

engineering and security research forward and offers

insightful information to both scholars and practitioners.

Figure 1. Proposed process for SQDS

5. THE RESULT

 This study uses typical accuracy performance criteria

generated from the confusion matrix to assess the efficacy

of the SQDS. A fundamental technique for evaluating a

model's performance in classification is the confusion

matrix. It forms the foundation for a number of performance

indicators by methodically classifying predictions into true

positives, true negatives, false positives, and false negatives.

A key indicator called accuracy evaluates how accurate the

model's predictions are overall. The ratio of successfully

predicted instances to all occurrences in the test dataset is

used to compute it. Recall evaluates the model's capacity to

catch every positive event, whereas precision examines the

accuracy of positive predictions. An impartial assessment is

given by the F1 score, which is the harmonic mean of recall

and accuracy. The investigation also explores specificity

and sensitivity, which center on accurately identifying

negative and positive examples, respectively.

A thorough understanding of the accuracy performance of

each of the five machine learning techniques (Logistic

Regression, Decision Tree, Random Forest, SVM, and

KNN) is provided by the performance analysis, which is

displayed in Table 3. Through close examination of these

metrics, researchers may obtain valuable insights into the

advantages and disadvantages of each model, assisting in the

identification of the best method for code smell detection

and security assessment.

The study also looks at the consequences of false positives

and false negatives because these occurrences are important

in practical applications. While false negatives can provide

serious security issues, false positives may result in needless

actions or alarms. Practitioners obtain a deeper knowledge

of the models' practical utility by comprehending the

subtleties of these measures.

A key component of the whole assessment procedure is the

accuracy performance analysis, which guarantees a

thorough appraisal of the SQDS's ability to detect code

smells and assess software security. The studies conducted

yield valuable insights that aid in the improvement of

machine learning models and promote ongoing progress in

the fields of security research and software engineering.

These performance measures provide useful benchmarks as

the study progresses, pointing practitioners and academics

in the direction of more dependable and efficient model

deployment in practical situations.

TABLE 3. The accuracy performance metrics for five machine

learning

In this study, we aimed to use five machine learning

algorithms: decision tree , random forest , logistic regression,

KNN and SVM. The classification accuracy results of

different algorithms are as follows: logistic regression

(93.65%), decision tree (96.83%), random forest (96.83%),

SVM (96.83%) and KNN (96.03%) these values represent the

overall predictive ability of the models. High accuracy scores

in all models indicate that the selected features, together with

safety and quality considerations, provide sufficient

information for effective classification Especially the

decision tree, random forest, and SVM models consistently

showed outstanding performance, and achieved an accuracy

rate of 96.83% consistently This showed a strong ability to

distinguish between classes in the data set.
Comparing the results, we find a small difference in

accuracy between Decision Tree, Random Forest, and SVM,
with KNN lagging slightly behind. The logistic regression,
although slightly lower in accuracy, achieved a commendable
93.65%. This variation highlights the various strengths and
weaknesses of each algorithm when applied to this particular
data set.

 After that we applied three deep machine learning (RNN

, LSTM and GRU) on both the original Fonata’s dataset of

God Class bad smell then calculate the performance metrics

(accuracy , precision , recall and f1-score). Table (4) show

the performance analysis for three models when using God

Class bad smell with quality metrics.

Machine Learning Accuracy

Logistic recognition 0.9365

Decision tree 0.9683

Random forest 0.9783

SVM 0.9683

KNN 0.9603

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

TABLE 4. The performance metrics for (RNN, LSTM and GRU) on

Fonata’s God Class dataset

Then, we analyzed our suggested SQDS dataset which was

intended to identify the God Class code smell using three

deep machine learning models: Gated Recurrent Unit (GRU),

Long Short-Term Memory (LSTM), and Recurrent Neural

Network (RNN). To assess the efficacy of these models,

performance indicators such as accuracy, precision, recall,

and F1-score were calculated. Table 5 presents the findings

of this performance investigation, which included God Class

code scent detection along with quality metrics. The table

gives a brief summary of each deep learning model's

performance in identifying complex patterns linked to the

God Class code smell while taking into account more general

software quality considerations.

TABLE 5. The performance metrics for (RNN, LSTM and GRU) on

proposed SQDS dataset

6. DISSCUSSION THE RESULT

The thorough performance metrics study for three different

recurrent neural network model types (LSTM, RNN, and

GRU) focusing on their effectiveness in identifying God

Class code odors, is shown in Tables (4,5). The assessed

metrics offer a comprehensive view of the models'

performance and include precision, recall, accuracy, and F1-

score.

Results for the RNN approach show a considerable

improvement in accuracy, from 0.90 to one, as seen in Table

(4). This significant increase demonstrates RNN's ability to

correctly detect high-quality code while reducing false

positives. Additionally, the RNN approach constantly

performs well, demonstrating strong recall and F1 score,

demonstrating its dependability in identifying God Class

code smells.

Examining the LSTM approach, the study reveals some

noteworthy advantages. The LSTM model predicts God

Class code smells with great precision, suggesting a higher

chance of correctness. Furthermore, the LSTM approach

maintains high levels of accuracy, recall, and F1 score while

exhibiting reliable and consistent performance across a

variety of criteria.

Similar to the LSTM model, the GRU method's effectiveness

in God Class code scent recognition is demonstrated by the

analysis of accuracy and recall measures. With its

competitive accuracy and F1 score, the GRU technique

shows itself to be a dependable solution for this dataset,

underscoring its general effectiveness and applicability for

God Class code scent detection.

The results of these performance measures provide light on

the unique advantages of every recurrent neural network

model and offer insightful information to practitioners and

researchers looking for efficient methods for God Class code

smell identification. Based on particular project needs and

objectives, the subtleties shown in the accuracy, recall, and

overall performance metrics offer a nuanced knowledge of

the models' capabilities and can direct the selection of the

most appropriate method.

When we compare the previous results with our findings

using the proposed SQDS dataset and three deep machine

learning models, we find some interesting trends that provide

useful information about how well each technique works to

detect God Class code smells.

The SQDS dataset demonstrates perfect accuracy in the RNN

approach, indicating the ability of RNN to accurately

anticipate God Class odors. Moreover, the balanced

metrics—memory and F1 scores, for example—highlight the

SQDS dataset's ability to support a comprehensive workflow

and demonstrate the dependability of the RNN model in this

situation.

When we switch to the LSTM approach, our SQDS dataset

shows superior memory and F1 scores, confirming that the

model can accurately and precisely identify a sizable portion

of real God Class occurrences. The LSTM approach performs

admirably on all suggested datasets, extracting data with

almost perfect accuracy.

Finally, the SQDS dataset highlights robust performance

characteristics in the GRU technique, establishing GRU as a

trustworthy model for God Class scent classification because

of its exceptional accuracy and memory. The GRU model's

applicability for the SQDS dataset is highlighted by the

balanced metric method, which further guarantees a suitable

equilibrium between model accuracy and F1 score.

In software engineering, identifying code smells is a crucial

first step in achieving the best possible code quality and

maintainability. The "God Class" is particularly notable

among these code smells because of its tendency to take on

too many responsibilities, which might have an effect on the

entire program. The complex insights gained from these

studies help to drive the ongoing search for better code smell

detection techniques, which in turn improves the overall

quality and maintainability of software systems as the field of

software engineering develops.

In this study, the complex problem of identifying God Class

code smells was tackled using three well-known deep

learning models: Recurrent Neural Network (RNN), Long

Short-Term Memory (LSTM), and Gated Recurrent Unit

(GRU). Two different datasets were used in the investigation:

The

performance

Metrics.

Precision

Recall

Accuracy

F1_score

RNN 0.90 0.87 0.85 0.88

LSTM 1 0.85 0.90 0.92

GRU 1 0.89 0.93 0.94

The

performance

Metrics.

Precision

Recall

Accuracy

F1_score

RNN 1 0.85 0.90 0.95

LSTM 1 0.96 0.97 0.98

GRU 1 0.93 0.95 0.96

7

8 Author Name: Paper Title …

http://journals.uob.edu.bh

the original dataset, which was taken from Fonata's extensive

collection and contained the essence of God Class scents, and

the proposed dataset, SQDS, which combined security and

quality metrics for a more thorough analysis.

The analysis of these models in comparison revealed

important information about their consistency, the impact of

the dataset, and factors to be taken into account when

choosing a model. Notably, LSTM performed admirably in

terms of precision, recall, accuracy, and F1 score, displaying

notable consistency across the two datasets.

Because of its constancy, LSTM is positioned as a strong

competitor for God Class fragrance identification,

demonstrating its adaptability and dependability across a

variety of dataset circumstances.

The SQDS dataset made it clear how dataset features affected

model performance. The performance of every model was

improved by adding security and quality metrics to SQDS.

This emphasizes how important dataset properties are in

determining how deep learning models are trained and

evaluated. The capacity of the SQDS dataset to enhance the

models' overall performance highlights the significance of a

nuanced dataset design that takes into account the many

facets of software security and quality.

When choosing a perfect model, the study results emphasize

that the decision should be made in accordance with the

project's particular requirements and goals. Regarding

accuracy-focused applications, RNN and LSTM are also

excellent choices. Nonetheless, LSTM turns out to be the best

option if a high degree of overall performance and a harmony

between recall and precision are required. This sophisticated

knowledge offers researchers and practitioners insightful

direction, empowering them to customize their model choices

to the particular needs of their initiatives.

As a result, this work highlights the importance of dataset

design and selection in impacting model outputs in addition

to exploring the performance of deep learning models in the

context of God Class code smell detection. The results pave

the way for improvements in software engineering techniques

and the creation of more reliable and effective tools for code

quality and maintainability. They also add to the continuing

discussion on efficient methods for code smell detection.

7. CONCLUSION

The machine learning models utilized in this extensive

investigation have exhibited strong precision in efficiently

categorizing datasets according to conservation efficiency

factors. Among these models, decision tree, random forest,

and SVM models performed exceptionally well,

demonstrating the effectiveness of machine learning in

assessing and classifying systems that prioritize both safety

and quality criteria. These results demonstrate the feasibility

of machine learning technologies for thorough system

evaluations and provide a detailed understanding of the

interaction between quality and safety concerns.

Using both datasets, the deep machine learning models RNN,

LSTM, and GRU performed well in detecting God Class code

smells. But it was clear that LSTM performed better overall

in God Class fragrance detection, routinely outperforming

RNN and GRU. This comparison approach, when applied to

the particular job of identifying complex code smells,

provides insightful information about the strengths and

capacities of various deep learning models.

The SQDS dataset was essential in improving the machine

learning models' overall performance and highlighting the

need of including safety and quality criteria in the training

process. The integration of security and quality measures in

the SQDS dataset served as a stimulant to improve the

models' detection of God Class code smells. This emphasizes

how important it is to take a comprehensive approach to

software evaluation that takes into account all relevant factors

in order to guarantee more precise and consistent model

performance.

8. FUTURE WORKS

Adding more code scent categories to the analysis opens up

an interesting new research direction. The integration of

diverse foul smells with security metrics has the capacity to

yield a more all-encompassing comprehension of the

complexities associated with software assessment.

Examining the similarities and differences across various

kinds of code smells and how they affect system security and

quality metrics might help improve and broaden the present

model framework.

Furthermore, research efforts in the future could concentrate

on creating hybrid models that fuse machine learning with

other cutting-edge methods like anomaly detection

algorithms or natural language processing. In the end, these

integrative methods may improve software engineering

techniques by producing more complex and precise outcomes

in detecting and addressing code smells.

This work lays the groundwork for other research projects

that will deepen our comprehension of software assessment

and code smell detection. In order to ensure code quality,

security, and maintainability, machine learning is expected to

become more reliable and applicable as a result of the

investigation of various foul odors and creative model

combinations.

REFERENCES

[1] ISO/IEC. (2011). Systems and software engineering —

Systems and software Quality Requirements and

Evaluation (SQuaRE) — System and software quality

models. ISO/IEC 2011.

[2] Mohammed,N. M., Alshayeb, M., Mahmood, S.,

Mohammed,N. M., & Niazi, M. (2017). Exploring

Software Security Approaches in Software Development

Lifecycle : A Systematic Mapping Study. Computer

Standards & Interfaces.50,107-115.

https://doi.org/10.1016/j.csi.2016.10.001

[3] Shahriza, N., Karim, A., Albuolayan, A., Saba, T., &

Rehman, A. (2016). The practice of secure software

development in SDLC : an investigation through existing

model and a case study. Security and Communication

8

https://doi.org/10.1016/j.csi.2016.10.001

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

Networks,9(18),5333–5345.

https://doi.org/10.1002/sec.1700

[4] Kumar, S. R. T., Sumithra, A., & Alagarsamy, K. (2010).

The Applicability of Existing Metrics for Software

Security. International Journal of Computer

Applications, 8(2), 29–33.

 [5] Daley, J. (2017). Insecure Software is Eating the World:

Promoting Cybersecurity in an Age of Ubiquitous

Software-Embedded Systems. Stanford Technology

Law Review, 19(3), 533–546.

[6] Siddiqui, Shams Tabres. (2017). Significance of Security

Metrics in Secure Software Development. International

Journal of Applied Information Systems (IJAIS), 12(6).

https://doi.org/10.5120/ijais2017451710

[7] Firesmith, D. (2004). Specifying Reusable Security

Requirements. Journal of Object Technology, 3(1), 61–

75.

 [8] Siddiqui, Shams Tabrez, Hamatta, H. S. A., & Bokhari,

M. . (2013). Multilevel Security Spiral (MSS) Model

: NOVEL Approach. International Journal of

Computer Applications (0975, 65(20), 15–20.

[9] Howard, M., & Lipner, S. (2006). The Security

Development Lifecycle. Redmond: Microsoft Press.

https://doi.org/10.1007/s11623- 010-0021-7.

[10] M. Fowler et al., “Refactoring Improving the Design

of Existing Code Second Edition,” 2019.

[11] A. Kaur and G. Dhiman, A review on search-based

tools and techniques to identify bad code smells in

object-oriented systems, vol. 741, no. September.

Springer Singapore, 2019. doi: 10.1007/978-981-13-

0761-4_86.

[12] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan,

Advances in Deep Learning, vol. 57, no. January.

2019. doi: 10.1007/978-981-13-6794-6.

[13] E. Tempero et al., “The Qualitas Corpus: A curated

collection of Java code for empirical studies,” Proc.

- Asia-Pacific Softw. Eng. Conf. APSEC, pp. 336–

345, 2010, doi: 10.1109/APSEC.2010.46.

[14] M. Fowler et al., “Refactoring Improving the

Design of Existing Code Second Edition,” 2019.

[15] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang,

“Machine learning techniques for code smell

detection: A systematic literature review and meta-

analysis,” Inf. Softw. Technol., vol. 108, pp. 115–

138, 2019, doi: 10.1016/j.infsof.2018.12.009.

[16] T. Sharma et al., “A Survey on Machine Learning

Techniques for Source Code Analysis,” vol. 0, no.

0, 2021, [Online]. Available:

http://arxiv.org/abs/2110.09610

[17] H. M. Yahya and D. B. Taha, “Software Code

Refactoring : A Comprehensive Review,” vol. 2023,

pp. 71–80, 2023, doi:

10.33899/edusj.2023.137163.1298.

[18] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G.

Guéhéneuc, “Code smells and refactoring: A tertiary

systematic review of challenges and observations,”

J. Syst. Softw., vol. 167, no. April, 2020, doi:

10.1016/j.jss.2020.110610.

[19] F. Arcelli Fontana and M. Zanoni, “Code smell

severity classification using machine learning

techniques,” Knowledge-Based Syst., vol. 128, pp.

43–58, 2017, doi: 10.1016/j.knosys.2017.04.014.

[20] Shin, Y., & Williams, L. (2008). Is Complexity

Really the Enemy of Software Security ? In

Proceedings of the 4th ACM workshop on Quality

quality of protection (pp. 47–50)

[21] Alshammari, B., Fidge, C., & Corney, D. (2010a)

Assessing The Impact of Refactoring on Software

Security-Critical Object-Oriented Designs. In

 2010 Asia Pacific Software Engineering Conference

Assessing. https://doi.org/10.1109/APSEC.2010.30

[22] Zimmermann, T., Nagappan, N., & Williams, L.

(2010). Searching for a Needle in a Haystack :

Predicting Security Vulnerabilities for Windows

Vista. In 2010 Third International Conference on

Software Testing, Verification and Validation.

https://doi.org/10.1109/ICST.2010.32

[23] Abid, C., Kessentini, M., Alizadeh, V., Dhaouadi,

M., & Kazman, R. (2020). How Does Refactoring

Impact Security When Improving Quality ? A

Security-Aware Refactoring Approach. IEEE

Transactions on Software Engineering, 5589(c), 1–

15. https://doi.org/10.1109/TSE.2020.3005995

[24] Almogahed, Abdullah & Omar, Mazni & Zakaria,

Nur Haryani & Alawadhi, Abdulwadood. (2022).

Software Security Measurements: A Survey. 1-6.

10.1109/ITSS-IoE56359.2022.9990968.

[25] RomeoLQuoiJr, “Deep Learning-Based Code Smell

Detection Using CNN and RNN,” Computer

Science & Technology, 2020.

[26] S. Subedi, “INTELLIGENT CODE. SMELL.

DETECTION SYSTEM USING DEEP

LEARNING,” 2021.

[27] T. Sharma, V. Efstathiou, P. Louridas, and D.

Spinellis, “Code smell detection by deep direct-

learning and transfer-learning,” J. Syst. Softw., vol.

176, 2021, doi: 10.1016/j.jss.2021.110936.

[28] M. Y. Mhawish and M. Gupta, “Predicting Code

Smells and Analysis of Predictions: Using Machine

Learning Techniques and Software Metrics,” J.

Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–

1445, 2020, doi: 10.1007/s11390-020-0323-7.

[29] P. Manadhata and J. Wing, “An attack surface

metric,” IEEE Transactions on Software

Engineering, vol. PP , no. 99, p. 1, 2010.

[30] U. Mansoor, M. Kessentini, B. R. Maxim, and K.

Deb, “Multi-objective code-smells detection using

good and bad design examples,” Softw. Qual. J.,

vol. 25, no. 2, pp. 529–552, 2017, doi:

10.1007/s11219-016-9309-7.

[31] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan,

Advances in Deep Learning, vol. 57, no. January.

2019. doi: 10.1007/978-981-13-6794-6.

[32] and A. J. S. Aston Zhang, Zachary C. Lipton, Mu

Li, “Dive into DeepLearning,” p. 987, 2020.

9

https://doi.org/10.1002/sec.1700
https://doi.org/10.5120/ijais2017451710
https://doi.org/10.1109/APSEC.2010.30

10 Author Name: Paper Title …

http://journals.uob.edu.bh

[33] A. Aksoy, Y. E. Ertürk, S. Erdoğan, E. Eyduran, and

M. M. Tariq, “Estimation of honey production in

beekeeping enterprises from eastern part of Turkey

through some data mining algorithms,” Pak. J.

Zool., vol. 50, no. 6, pp. 2199–2207, 2018, doi:

10.17582/journal.pjz/2018.50.6.2199.2207.

10

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

11

