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Abstract 

A Pulmonary Embolism (PE) is a critical 

condition that poses a life-threatening risk when 

blood vessels in the lungs become obstructed. To 

detect and precisely locate PE, medical 

professionals typically employ a specialized X-ray 

technique known as Computed Tomography 

Pulmonary Angiography (CTPA). Leveraging 

Deep Learning methodologies, particularly U-

shaped encoder-decoder architectures, has 

emerged as a promising avenue for automating PE 

segmentation from CTPA images. This research 

endeavours to assess and compare the 

performance of several U-shaped networks, 

including UNET, UNET++, Residual UNET, 

ARUX, and Attention UNET, in accurately 

segmenting PE regions. Utilizing a publicly 

available PE challenge dataset, comprehensive 

training, validation, and testing procedures are 

conducted, with a meticulous evaluation based on 

metrics such as the Dice Coefficient, Jaccard 

Similarity Index, Sensitivity, alongside 

considerations of training time and model 

parameters. The findings from this study offer 

valuable insights into the efficacy and suitability 

of various deep learning architectures for PE  

 

 

segmentation, paving the way for enhanced diagnostic 

capabilities in clinical settings. 

 

Keywords: Pulmonary Embolism (PE) ;  Computed 

Aided Design; CTPA;  UNET; Deep Learning; PE 

segmentation; 

1. Introduction 

Pulmonary Embolism (PE) stands as the predominant 

cardiovascular ailment in the United States, 

associated with significant morbidity and disability 

[1]. PE is the blood clots in the pulmonary arteries, 

which migrate through the bloodstream from other 

regions of the body to the lung. The obstruction in 

the pulmonary arteries can result in insufficient 

oxygen supply to the body. This may lead to 

unexpected death and severe cases of extremely low 

blood pressure may be there [2]. Doctors must 

confirm the PE illness using a range of diagnostic 

techniques to quickly diagnose it, although its 

symptoms resemble with other diseases as well [5]. 

Chest pain, shortness of breath, hemoptysis, 

hypotension, loss of consciousness and tachycardia 

are some of the non-specific symptoms of 

pulmonary embolism. It is very challenging task to 
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diagnose PE by looking at symptoms only. Prompt 

medical attention is crucial for diagnosing and 

managing any type of pulmonary embolism, as it 

can be a serious condition if not treated promptly 

[5].  Some of the diagnostic procedures for PE 

include blood test, an electrocardiogram, computed 

tomography (CT) scan [6], chest X-ray and CTPA 

[2]. The most popular and effective approach for its 

detection is Computed Tomography Pulmonary 

Angiography (CTPA), due to greatly better 

visualization [8]. Single CTPA consists of number 

of slices (images), so manually study of single 

CTPA is time consuming task. The increasing 

patient population and the shortage of physicians 

could influence both medically underserved 

individuals and modern healthcare institutions [3]. 

Numerous automated systems have been created for 

automatically detection of PE, showing outperform 

the expert panels. According to a study, the 

sensitivity range for a typical radiologist is between 

77% and 94%. These automated systems can help 

radiologists in automatic PE detection with greater 

sensitivity and speed [8].  

2. Related Work 

The diagnosis of PE in CTPA is not an easy task 

because PE’s position is not defined. It can be in 

central position, segmental or sub-segmental 

arteries. Radiologists should carefully examine the 

extensive system of pulmonary arteries using 

several CT slices in order to look for a filling 

defect. Pulmonary Embolism comes in many 

shapes and intensities. Radiologists must pay close 

attention to the visual signs of PE because of artery 

blockage. Third, when other pulmonary disorders 

are present or the quality of the CT picture is poor, 

the ability to diagnose PE may be hindered. The 

use of computer-aided diagnosis for pulmonary 

embolism has demonstrated effectiveness in 

enhancing the diagnostic abilities of radiologists 

when assessing PE [27]. The medical industry has 

not adopted computer aided diagnosis software 

because shows high number of false positives. 

Many researchers are attempting to lower the 

number of false positives with new methodologies 

and strategies [7]. CTPA images are most effective 

method used by CAD systems to diagnose PE. 

CAD systems commonly handle the tasks of 

classifying, detecting, and segmenting pulmonary 

embolism. In the context of medical imaging, 

detection refers to finding location of PE in the 

image (CT scan) and classification involves 

categorizing images as either having or lacking 

pulmonary embolism, while segmentation entails 

isolating and extracting the specific area 

corresponding to pulmonary embolism from an 

image. 

 

A procedure known as segmentation that divides 

an image into parts with comparable 

characteristics such as grey level, different color, 

brightness, texture and contrast medical image 

segmentation is very helpful in the diagnosis of 

various diseases [29]. UNET is a well-known deep 

learning (DL) model that may integrate shallow 

information with leveraging profound information 

to generate impactful segmentation outcomes is 

crucial in the realm of semantic segmentation 

applied to biomedical applications. For PE lesion 
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segmentation, recent studies have only used 

supervised learning techniques. UNET models 

with various dimensions (2D, 2.5 D, 3D) are used 

to segment PE from CTPA and analyzed how 

these models different [17]. Table 1 summaries all 

the approaches used in detection, segmentation, 

and classification of PE.

Table 1. Summary of related papers 

Paper 

Year of 

publication Dataset  

Size of 

dataset  Methodology 

Evaluation 

techniques Category Investigative Lapse 

[12] 2007 

Private 

Dataset 

12 CT 

scans  

Tobogganing, 

ANN & kNN  sensitivity 

Machine 

Learning 

(ML) 

segmentation of the 

vascular structure 

hampers the overall 

performance 

[10] 2008 

Private 

Dataset 38 CTA 

Feature 

calculation & 

classification 

techniques sensitivity  

Machine 

Learning 

(ML) 

computationally 

complex, require 

high-quality data, 

and risk overfitting 

[13] 2015 

Public 

Dataset 

(PE 

challenge 

and 

Private 

dataset 

141 

CTPA 

Tobogganing 

& CNN sensitivity 

Machine 

Learning 

and Deep 

Learning 

CNN struggles to 

effectively eliminate 

false positives 

[14] 2017 

Private 

Dataset 33 CTPA 

ANN, SVM & 

kNN sensitivity  

Machine 

Learning 

(ML) Dataset is very small. 

[15] 2019 

Both 

Public (PE 

challenge) 

dataset & 

Private 

dataset 

149 

CTPA 

Two stage 

CNN sensitivity 

Deep 

Learning 

Require high 

computation power 

[4] 2020 

Private 

Dataset 

2592 CT 

studies 

2D UNet & 2D 

Convolution 

LSTM  AUC  

Deep 

Learning 

Only few parameters 

are used. 

[16] 2020 

Private 

dataset 

590 

CTPA UNET 

sensitivity & 

specificity  

Deep 

Learning 

It is sensitive to input 

variations 

[9] 2020 

Private 

dataset 

(Kinetics-

600 

dataset)   3D CNN AUROC  

Deep 

Learning 

Performance with 

imaging artifacts is 

not checked 
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[17] 2020 

Public 

dataset 80 CTPA 

2D UNET, 

2.5D UNET & 

3D UNET 

sensitivity, 

Dice 

Coefficients, 

FROC curve 

Deep 

Learning 

Challenged in 

efficiently detecting 

sub-0.5 mL emboli. 

[19] 2020 

Private 

dataset 

 5856 

(positive) 

and 5196 

(negative) 

Scans CNN & RCNN AUC  

Deep 

Learning 

Extra computation 

power required 

[20] 2021 

Public 

(RSPECT) 

dataset  

7279 

TPA CNN & LSTM AUC  

Deep 

Learning 

Extra computation 

power required 

[21] 2021 

Public 

(CHAOS) 

dataset & 

Private 

dataset 70 CTPA Residual Unet 

Dice 

coefficient, 

Precision, 

Recall  

Deep 

Learning 

It segments only 

pulmonary arteries 

[11] 2022 

Private 

dataset 20 CTPA 

ANN with k-

NN, 

Tobogganing 

& Genetic 

Algorithm sensitivity  

Machine 

Learning 

(ML) 

True Positive rate is 

very low and small 

dataset is used. 

[22] 2021 

Public 

(CHAOS) 

dataset & 

Private 

dataset 

120 

CTPA 

Residual Deep 

UNET 

Precision, 

Recall & 

SSIM, DSE  

Deep 

Learning 

only segments the 

pulmonary arteries 

[23] 2022 

Private 

dataset 

800 

CTPA CNN & LSTM  

 

sensitivity 

and 

specificity 

Deep 

Learning 

models lack the 

capability to offer 

precise information 

regarding the 

localization of 

emboli 

[24] 2022 

Public 

(FUMPE) 

dataset & 

private 

(NCKUH) 

dataset  

200 

CTPA 

Classification 

& 

segmentation      

Small individual 

lesions are prone to 

misdiagnosis 
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[18] 2023 

Public 

(FUMPE) 

dataset & 

private 

(NCKUH) 

dataset 

132 

CTPA 

HRNet 

architecture sensitivity  

Deep 

Learning 

model's accuracy did 

not improve on the 

testing data with the 

FUMPE dataset 

 

3. Material and Methods 

Chest CT scans, specifically in the form of 

CTPA, undergo analysis where distinct sections of 

the images are identified and labeled through the 

application of a widely recognized semantic 

segmentation technique. Semantic segmentation 

facilitates the partitioning of images into regions 

characterized by comparable intensity, 

homogeneity, and texture. In this work various 

deep learning based UNET models are used to 

segment PE. Input of model is CTPA image and 

output is segmented mask (which highlights the 

affected area). The performance of models is 

evaluated using computing dice coefficient, 

Jaccard similarity index and sensitivity.  

3.1 Dataset 

In this work publicly available PE challenge is 

used [31]. This dataset includes medical images 

and the corresponding reference standard in the 

form of mask images. It contains CTPA of 91 

patients. Each CTPA consists of 3D volumetric 

data has axial plane, sagittal plane and coronal 

plane. The dataset was created for the IEEE 

International Symposium of Biomedical Imaging 

(ISBI) challenge cad-pe. Medical data was 

acquired from six different hospitals that 

emphases the Radiologic Imaging of the Madrid. 

Image size is of 512 × 512. The thickness of each 

reconstructed slice falls within the range of 0.75 to 

1.5 mm while the image size of pixel is between 

0.58 and 0.85 mm. Each CTPA is labelled by at 

least one radiologist having experience more than 

10 years. Each radiologist diagnosed all emboli 

present in an image separately by finding the 

effective area in each axial slice. Sagittal and 

coronal images were examined to determine 

whether emboli were present. Segmentation is 

done based on thresholding followed by connected 

component analysis. Image specialist eliminated 

useless pixels and defined boundary for each 

segmentation in every image [28]. Figure 1 shows 

the axial plane that is a cross-sectional view of the 

body. It is like slicing a loaf of bread horizontally. 

In a CT scan, axial images are obtained as if you 

were looking down at a person or object from 

above. Figure   shows the coronal plane, which is 

another vertical section, separates the body or 

object into its front and rear portions. In CT scans, 

coronal images offer a frontal view, akin to 

directly facing a person and figure 3 sagittal plane 

represents a vertical division that separates the 

body or object into its right and left sides. Sagittal 

CT images offer a lateral view, enabling the 

observation of structures from a sideways 

perspective.  
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 Figure 1. (a) Axial view of image  

            (b) Axial view of corresponding mask 

                                  

              (c)                            (d) 

Figure 2. (c) coronal view of image  

               (d) coronal view of corresponding mask 

 

 

 

 

 

                (e)                         (f)                    

Figure 3. (e) Sagittal view of image  

            (f) Sagittal view of corresponding mask                   

  

 3.2 Pre-processing of Data 

 Data is pre-processed before feeding to the model. 

Firstly, all CTPA axial slices are extracted, then 

normalize the values of pixels to a desired range, 

such as between 0 and 1. This step helps in 

standardizing the intensity values and making 

them suitable for further processing or analysis. 

Min-max normalization is employed to 

standardize the data, involving the calculation of 

the minimum and maximum pixel values within 

the image. The formula used to normalize each 

pixel value in the image is shown in equation (1). 

  𝒀𝒊 = 𝒎𝒂𝒙(𝒙) − 𝒎𝒊𝒏(𝒙)/(𝒙𝒊 − 𝒎𝒊𝒏(𝒙))                                            

(1) 

where 

𝒀𝒊: normalized intensity value of ith pixel 

𝒙𝒊 : ith pixel intensity value 

𝒎𝒂𝒙(𝒙)  : The highest intensity value in the 

image. 𝒎𝒊𝒏(𝒙) :  The lowest intensity value in the 

image 

Figure 4.  presents a normalized CTPA for a single 

patient, comprising all axial slices within a stack. 

The number of slices in each CTPA can range 

from 102 to 350. Additionally, Figure 5 displays 

the corresponding ground truth mask images for 

the slices presented in Figure 4. 
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Figure 4. CTPA images of one patient 
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Figure 5. Masked images of corresponding images shown in Figure 4 

After reading and visualizing the all slices and its 

corresponding mask images. it has been observed 

that some of upper and lower slices (images) are 

blank. It means upper and lower slices does not 

contain much information about presence of PE.  

The required information or features needed to 

detect PE are available only in middle slices. To 

improve accuracy and save resources some of 

upper and lower slices are removed from each 

CTPA as shown in figure 6. To speedup training 

and reduce computation cost all slices are resized 

to 256 × 256. At last data is divided into training 

and testing. 
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Figure 6. Pre-processing of Data 

3.3 Network Architectures  

This work explores and implements several 

segmentation models, including UNET, Residual 

UNet, UNet++, Attention UNet, and ARUX 

models. A thorough analysis is conducted on 

diverse similarity matrices, and the results are 

presented through both qualitative and 

quantitative comparisons.  

3.3.1 UNET model 

Deep learning based UNET model is widely used 

medical image segmentation [29] as shown in 

figure 7. UNET model consist of Encoder and 

Decoder part and there are bridge layers to 

combine the encoder and decoder part of UNET. 

Four blocks are there in each encoder and decoder 

part. The Encoder path refers to the standard 

convolutional network architecture where each 

block uses a convolution layer,  

 

followed by ReLU, and down sampling is 

accomplished using a 2x2 

 

Figure 7. UNET model architecture [17] 

max pooling process. Every time in downscale 

feature channels is doubled. To keep the input and 

output size consistent during the convolutional 

operation, the same padding is always applied to 
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the input tensors. To combine Encoder and 

decoder part, in the bridge we used two 

convolution layers one after the another. One layer 

takes input from encoder and another layer 

provide the input to decoder.  The decoding 

pathway begins with an up-sampling of a feature 

map at each step, followed by a 2x2 convolution 

that results in a halving of the number of feature 

channels. Subsequently, there is a concatenation 

with the uniformly cropped feature map from the 

contraction path, followed by a 3x3 convolution 

with a ReLU activation. Last layer employs 1x1 

convolution. UNET model is effective for pixel 

level segmentation, provides fast inference. 

UNET's disadvantage is that it prevents 

convergence during training and results in 

vanishing gradients. There is another problem of 

insufficient feature extraction in UNET [17]. 

3.3.2 ResUNet (Residual UNet) model 

To overcome the problem of insufficient feature 

extraction in UNET [17] another enhanced 

ResUNet [21] model is used for PE segmentation. 

It facilitates effective information flow as its 

architecture is shown in figure 8. 

 

Figure 8. ResUNet model architecture [21] 

The UNET structure is first chosen as the base 

structure. Second, this model adds residual 

connections to enhance the flow of gradients 

within the network. In improved ResUNet the 

simple convolution layers are replaced with 

residual blocks that mix the data from the bottom 

and top layers to reduce loss while feature 

extraction. Four encoder and decoder blocks are 

used in improved ResUNet. The key addition in 

ResUNet is the inclusion of residual connections. 

These types of connections permit the network to 

directly pass the input features from one layer to a 

deeper layer, thereby creating shortcut 

connections. These shortcuts enable the network 

to efficiently propagate gradients and learn 

residual mappings, which can help to improve the 

overall training process by improving the 

vanishing gradient problem. In the decoding path 

of ResUNet, the spatial resolution is gradually 

increased through up sampling operations. Like 

the encoding path, each block in the decoding path 

often contains two convolutional layers. Finally, 

the output of ResUNet is generated by a 1x1 

convolutional layer, which maps the extracted 

features to the desired output. By incorporating 

residual connections, ResUNet aims to improve 

gradient flow, enhance the learning of deep 

representations, and potentially boost the 

segmentation performance. 

3.3.3 UNet++ model 

To reduce information, lose during the encoding 

and decoding stages of UNET [17] and Res-UNet 

[21], another model called UNet++ [25] was 

introduced. Ts architecture is shown in figure 9.  
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Figure 9. UNet++ model architecture [25] 

It represents a refinement of the UNET 

architecture, incorporating multiple adjustments to 

improve overall performance and segmentation 

accuracy. The key idea behind UNET++ is to 

capture multi-scale contextual information by 

incorporating nested and densely connected skip 

pathways within the network. This helps the model 

effectively capture both local and global context 

while maintaining high-resolution feature maps. 

The structure comprises an encoding path that 

gradually diminishes spatial dimensions through a 

combination of convolutional layers and pooling 

operations. In decoding path, it employs nested 

and densely connected skip pathways. These skip 

connections facilitate the integration of multi-

scale contextual information, allowing the model 

to capture local and global context while 

maintaining high-resolution feature maps. 

UNet++ has dense blocks within each stage, that 

promotes feature reuse and efficient learning. The 

transition up operation increases spatial 

resolution, and the final output is generated 

through a 1x1 convolutional layer. It shows better 

results than ResUNet and UNET. UNet++ needs 

lots of computation power [25], thus it is slow than 

base model. 

 3.3.4 Attention-UNet model 

Attention-UNet [26] is another form of the UNET 

model that includes self-attention mechanisms to 

improve model's capability to emphasis on 

relevant image features through segmentation 

process. As shown in figure 10, It  combines the 

UNET's U-shaped architecture with the attention 

mechanism, which allows the network to 

selectively attend to different spatial locations and 

feature channels. 

 

  

Figure 10.  Attention-UNet model architecture 

[26]  

In Attention-UNet, the encoding path follows the 

standard UNet structure, gradually reducing the 

spatial dimensions through convolutional layers 

and pooling operations. In every phase of the 

encoding path, there are several convolutional 

layers followed by a down sampling operation. 

The key addition in Attention-UNet is the 

integration of self-attention modules in the 

decoding path. Self-attention mechanisms 

calculate attention weights for each spatial  
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location within a feature map based on the 

relationships between different spatial locations. 

These attention weights are then used to weight the 

importance of different features. In the decoding 

path of Attention-UNet, the attention modules are 

typically applied before the up-sampling 

operations. The segmentation accuracy is 

increased by the attention mechanism, which 

allows the model to choose focus on relevant 

spatial areas and feature channels while 

suppressing noise or irrelevant regions. 

Additionally, Attention- UNet often employs skip 

connections, like the original UNET architecture, 

to transfer features from encoding part to decoding 

part. These skip connections help maintain the 

high-resolution information in both local and 

global framework. Self-attention mechanisms of 

Attention-UNet aims to improve the model's 

ability to attend to informative features while 

suppressing irrelevant ones, leading to better 

segmentation performance. 

3.3.5 ARUX (Attention Residual UNET) model 

Two CNN structures make up the ARUX-Net [24] 

architecture as shown in figure 11. 

  

Figure 11.  ARUX-Net model architecture [24] 

RUX-Net constitutes the architecture of an 

encoder-decoder, while A-Net represents the 

architecture of an attention mechanism. CNN 

structure consists of four layers and an A-Net.  It 

executes an encoder and decoder blocks in RUX-

Net utilizing four down sampling layers, a join 

pyramids up sampling instrument, and three up 

sampling layers. Each down sampling layer used a 

squeeze-and-excitation layer, two convolution 

sets, and down sampling. Every convolution set 

included a convolution layer, cluster 

standardization layer, and actuation layer. there is 

a squeeze-and-excitation layer, which involves the 

concatenation of Down3 and Down4's feature 

maps and the refinement of the feature 

representation through joint pyramid up sampling.  

After that, three up sampling layers were used to 

up sample the feature map, and a shortcut is to 

integration of features from Down1 and Down2 

was achieved using U-Net. It provides the benefit 

of both Attention [26] and residual blocks [21]. It 

solves the vanishing gradient problem via residual 

block and attention mechanisms, enabling the 

model to concentrate on the target areas. 

3.5 Evaluation matrices 

To evaluate the segmentation models, two-

similarity metrics Dice Coefficient [30], Jaccard 

Similarity Index [30] are used as shown in table 2. 

These metrics provide a measure of similarity 

between the predicted output results and ground 

truth annotations. The alignment between the 

anticipated segmentation masks and the actual 

segmentation masks is evaluated quantitatively 

using these evaluation matrices. They provide as a 

means of evaluating the predictability, excellence, 

and similarity of the segmentation findings in an 

objective manner. The Dice coefficient is 
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frequently employed in image segmentation to 

evaluate the similarity between predicted masks 

(P) and ground truth masks (G). It quantifies the 

overlap or intersection between the regions 

identified as true positives and those predicted by 

the model. It is defined as  

twice the overlap between the predicted and 

ground truth regions to the sum of the sizes of the 

predicted and true positive regions. The Jaccard 

Similarity Index (JSI) which is also called as the 

Jaccard coefficient or Jaccard index, Intersection 

over Union evaluate the overlap between the 

predicted masks and the ground truth masks. It 

measures the agreement between the two sets of  

Table 2. Similarity matrices used in this study 

sSimilarity 

Coefficient 

 

Formula 

(P=Predicted, 

G=Ground 

truth) 

Equation 

(p=predicted, 

g=ground truth) 

 

 

Dice 

Similarity 

Coefficient 

[30] 

 

𝐷𝑆𝐶(𝑃, 𝐺)

= 2 ∗ |𝑃 ∩ 𝐺|

∕ (|𝑃| + |𝐺|) 

 

 

 Jaccard  

Similarity  

Index [30] 

     

     𝐽 (𝑃, 𝐺) =

 |𝑃 ∩ 𝐺| ∕

|𝑃 ∪ 𝐺| 

 

 

Sensitivity of all the models is also calculated. The 

formula to calculate the sensitivity is shown in 

equation 2 where pi represents the predicted mask 

and gi represents the ground truth or mask image. 

Sensitivity= 
∑ min (1,pi

N
i=1 gi  )

∑ min (1,
N
i=1 gi  )

            (2) 

3.6 Implementation Details  

In this study an extensive investigation is 

conducted into training deep learning models for 

the detection of Pulmonary Embolism (PE) in 

Computed Tomography Pulmonary Angiography 

(CTPA) images. To train the models, a dataset 

consisting of CTPA images from 60 patients, 

sourced from the PE challenge dataset is utilized. 

Specifically, 80% of the dataset, totaling 16,789 

slices, was allocated for training, while the 

remaining 20% (3,357 slices) was reserved for 

validation purposes for optimizing the models, the 

Adam optimizer is used as it is recognized for its 

superior performance compared to other 

optimizers. Adam represents an advancement in 

stochastic gradient descent algorithms, integrating 

adaptive learning rates and momentum. This 

optimizer maintains adaptive learning rates for 

each parameter in the model, computed by 

aggregating first and second moment estimations 

of the gradients. After hyperparameter tuning the 

learning rate is initialized at 0.005 for training, 

ensuring effective optimization. Additionally, a 

dropout rate of 10% was fixed to prevent 

overfitting. To introduce non-linearity and enable 

feature extraction, the Rectifier Linear Unit 

(ReLU) activation function is applied to all layers 

except the final one. The models underwent 

          

2 ∑ pi
N
i=1 gi    

∑ pi
2N

i=1
+

∑ gi
2N

i=1
  

          

        2 ∑ pi
N
i=1 gi    

∑ pi
2N

i=1
+

∑ gi
2N

i=1
− 

∑ pi
N
i=1 gi     
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training for a total of 200 epochs, with the 

implementation of early stopping mechanisms. 

This strategy aimed to mitigate overfitting issues 

and enhance model generalization. Training was 

halted when there was no improvement in 

performance on the validation set for 40 

consecutive epochs. The hyperparameters are 

meticulously documented and utilized for model 

training and validation, as outlined in Table 3. 

Furthermore, the models are trained on hardware 

equipped with 15GB of GPU RAM, 40GB of 

system RAM, and an 80GB hard disk, ensuring 

computational efficiency and storage adequacy for 

model training and evaluation. This exhaustive 

study aimed to provide the comprehensive insights 

into the training process of deep learning models 

for PE detection in CTPA images, leveraging 

state-of-the-art techniques and optimizing model 

performance for enhanced diagnostic accuracy 

and efficiency. 

Table 3. Summary of the hyperparameter used 

in this study 

Batch 

Size 

32 

Dropout 

Rate 

10% 

Optimizer Adam 

Learning 

rate 

0.005 

Epochs 200 (Early stopping is used) 

Training 

Data 

80% 

Validation 

Data 

20% 

Matrices dice coefficient, Jaccard 

similarity Index, Sensitivity 

Loss 

function 

1-dice coefficient 

4.  Experimental Results and analysis 

Comparative analysis of Deep learning models 

UNET[17], Residual UNet[21], Attention 

UNET[26], ARUX[24], UNET++[25] has been 

done. To compare all the models on an equal 

footing, all models have been trained with the 

same hyperparameter configuration. Google 

collaboration platform is used with Keras 

framework and TensorFlow as backend. Training 

and validation performance with dice coefficient, 

Jaccard Similarity index and sensitivity with 

Adam optimizer are shown in figure 12(a), 12(b) 

and 12(c) respectively.  

 

Figure. 12(a) Jaccard Similarity Index Analysis  

 

Figure 12(b). Dice Coefficient Analysis 
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Figure 12(c). Sensitivity Analysis 

4.1 Comparative study of the models 

This section shows the quantitative analysis of the 

models. Table 4 shows performance metrics and 

table 5 represents the resource requirement and 

training parameters, which is graphically 

represented in figure 14 (a & b). These models 

have been evaluated using various evaluation 

criteria, including the Dice Coefficient, Jaccard 

Similarity Index, and Sensitivity. Figure 13 shows 

the comparative analysis on test data. 

Table 4. Model results 

sModel 

Dice 

Coefficie

nt 

Jaccard 

Similarit

y Index 

Sensitivit

y 

UNET 

[17] 0.9175 0.9074 0.8673 

ResUNE

T [21] 0.7952 0.7024 0.6516 

UNET+

+ [25] 0.9017 0.9132 0.8677 

ARUX 

[24] 0.8736 0.8175 0.8295 

Attentio

n- UNet 

[26] 0.9092 0.8720 0.8121 

 

Table 5. Training parameters and resource 

requirements 

Model Training Time 

No. of 

parameters 

trained 

UNET [17] 2 hr 32 min 8641697 

ResUNET [21] 3 hr 35 min 14152417 

UNET++ [25] 3 hr 4 min 1493521 

ARUX [24] 3 hr 6 min 476799 

Attention- 

UNET [26] 
2 hr 55 min 8211297 

 

 

Figure 13. comparative analysis of 

models 

 

Figure 14 (a). Model’s Training time                        
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Figure 14 (b). Number of parameters 

trained by Models 

In comprehensive analysis of semantic 

segmentation models after comparing their 

performance based on Dice Coefficient, Jaccard 

Similarity Index, and Sensitivity the results shows 

that UNET and Attention-UNet stand out with the 

highest Dice Coefficient values of 0.9175 and 

0.9092, respectively, while UNET++ excels in 

Jaccard Similarity Index at 0.9132. Sensitivity is 

highest for UNET at 0.8673 and Attention-UNet 

at 0.8121. In terms of training parameters, UNET 

has the shortest training time at 2 hours and 32 

minutes, and ARUX is the most lightweight with 

476,799 parameters, while ResUNET requires the 

longest training time and has the most parameters 

at 14,152,417. These findings highlight the trade-

offs between segmentation accuracy, 

computational efficiency, and model complexity, 

emphasizing the importance of choosing a model 

that aligns with specific application requirements 

and resource constraints. Qualitative segmentation 

results are shown in figure 15 Input is CTPA 

image (slice) the and its corresponding ground 

truth (mask image). Segmentation output of 

UNET, ResUNET, UNET++, ARUX, Attention 

UNET model is checked and compared with 

ground truth image.
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Figure 15.  Segmentation results: The initial row displays the original image. Next row shows the labelled 

annotated image by an expert radiologist (ground truth), third row onwards shows the segmentation result 

(predicted mask) provide by different model.  
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5. Conclusion 

In conclusion, the comparative analysis of 

semantic segmentation models for automatically 

segmenting Pulmonary Embolism (PE) in 

Computed Tomography Pulmonary Angiography 

(CTPA) images provides valuable insights for the 

development of efficient computer-assisted 

systems in healthcare. By facilitating prompt 

diagnosis and treatment of patients, these systems 

play a crucial role in improving clinical outcomes. 

Our study highlights nuanced trade-offs in 

performance and resource requirements among 

various deep learning architectures. UNET and 

Attention-UNET emerge as top performers, 

demonstrating high Dice Coefficients and 

sensitivities, while UNET++ excels in Jaccard 

Similarity Index. The selection of a model should 

be driven by specific application needs and 

computational constraints. UNET proves efficient 

with the shortest training time, whereas ARUX 

offers a lightweight option with minimal 

parameters. Despite longer training times and 

higher parameter counts, ResUNET may be 

preferred in scenarios prioritizing segmentation 

accuracy over computational efficiency. Our 

analysis underscores the importance of 

considering segmentation metrics alongside 

computational efficiency, training times, and 

model complexity to select the most suitable 

model for a given application. This 

comprehensive evaluation contributes to the 

advancement of computer-assisted systems, 

ultimately enhancing the diagnostic capabilities of 

healthcare professionals and benefiting patient 

care. 

6. Future scope 

Future work could involve proposing a novel 

model architecture that combines features from 

different models, enhancing segmentation 

performance for conditions like Pulmonary 

Embolism (PE). Incorporating image patches in 

training may improve result visualization. 

Evaluating the model with 2.5D and 3D data can 

provide a comprehensive performance 

assessment. The model's versatility extends to 

segmenting other diseases, such as pulmonary 

nodules, showcasing its potential for broader 

medical imaging applications. These suggestions 

aim to advance the current model, ensuring it 

remains adaptable and impactful in evolving 

medical imaging landscapes. 
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