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Abstract: This paper presents an empirical study on advanced Deep Neural Network (DNN) models, with a focus on identifying 

potential baseline models for efficient deployment in resource-constrained environments (RCE). The systematic evaluation 

encompasses ten state-of-the-art pre-trained DNN models: ResNet50, InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2, 

EfficientNetB0, EfficientNetB1, EfficientNetB2, DenseNet121, and Xception, within the context of an RCE setting. Evaluation 

criteria, such as parameters (indicating model complexity), storage space (reflecting storage requirements), CPU usage time (for real-

time applications), and accuracy (reflecting prediction truth), are considered through systematic experimental procedures. The results 

highlight MobileNet's excellent trade-off between accuracy and resource requirements, especially in terms of CPU and storage 

consumption, in experimental scenarios where image predictions are performed on an RCE device. Consequently, MobileNet emerges 

as a suitable baseline model for future DNNs developed specifically for RCE image classification. The study's conclusions endorse 

MobileNet as a baseline model for transfer learning techniques (used in DNN design), providing valuable insights for optimizing DNN 

models in resource-constrained scenarios. This approach enhances the creation of efficiency-focused and lightweight DNN models, 

improving their application and efficacy in resource-constrained environments. Future research will leverage the identified MobileNet 

model as a foundation to create a new DNN model tailored for efficiency-driven image classification applications in RCE devices. 

 

Keywords: Basline Model, Deep neural network, Image classification, Optimization model, RCE 

 

1. INTRODUCTION 

Deep neural networks (DNNs) have gained widespread 
adoption across diverse domains, showcasing superior 
performance in applications such as autonomous vehicle 
[1], [2]  healthcare [3-5], agriculture [6-8], security [9], 
[10], and sports [11]. Particularly notable is their 
proficiency in image classification within the computer 
vision discipline [8], [12-14]. However, deploying DNN 
models on devices, while promising higher accuracy, 
introduces challenges related to resource requirements, 
specifically in terms of memory and CPU utilization [15], 
[16]. These challenges become particularly pronounced 
when implementing DNN models in devices with limited 
resources, often denoted as resource-constrained 
environments (RCE) [17], which are prevalent in real-time 
applications. 

 The significance of adapting DNNs for use in RCEs is 
underscored by the rapid growth of the Internet of Things 
(IoT) and the increasing demand for mobile devices [7], 
[18-20]. Deploying DNNs on RCE devices, given their 
limitations, necessitates carefully considering a number of 
issues, such as increased model size and computational 
complexity [21], [22]. Furthermore, optimization strategies 
are essential to minimize model size and resource 
consumption without sacrificing accuracy, addressing the 
inherent constraints of RCE devices. 

The rising popularity of RCEs can be attributed to the 
IoT and the widespread use of smart devices, leading to an 
increased demand for the integration of DNNs in these 
settings [22-24]. Onboard implementation, the direct 
deployment of DNNs on RCE devices, has several benefits, 
including real-time image classification, reduced latency, 
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lower bandwidth consumption, and strengthened privacy as 
well as security measures [2]. Rapid data processing made 
possible by onboard DNNs in RCEs speeds up decision-
making in a variety of fields, such as autonomous cars, 
smart homes, transportation, healthcare, and agriculture. 
As such, it is now more important than ever to deploy 
DNNs on RCEs in an efficient and effective manner.  

Considering the challenges of implementing DNN 
models in RCE, particularly due to their size and 
processing demands [17], [24], [25], several studies have 
explored techniques for creating lightweight models 
alongside their very deep counterparts. This simplification 
of very deep models is achieved through optimization and 
compression techniques [17], [26]. For example, depthwise 
separable convolution methods in the optimization 
paradigm utilized by Chollet [27], namely depthwise 
convolution as well as pointwise convolution to use less 
computer power to train and run larger complex models. 
However, it is important to recognize that using depthwise 
convolution techniques in DNN models results in lower 
prediction accuracy when the model is being inferred [28]. 
In order to improve accuracy, Tan and Le [29] proposed the 
compound scaling technique, which simultaneously 
increases a neural network's depth, width, and resolution. 
This is another important tactic. Although using compound 
scaling has the potential to increase accuracy, there are 
additional needs in terms of memory utilization, CPU 
usage, and computational resources. In compression 
techniques, removing unimportant weights and links from 
a DNN is called pruning [30], to reduce the size of 
networks [31], [32] and lower inference costs [33] for DNN 
models. Pruning the DNN model has advantages, but it can 
also increase complexity and cause accuracy loss when 
training a model.  An alternative method involves 
quantizing the network, which involves reducing the 
amount of bits in floating-point values that indicate 
activations and weights. To improve image classification 
accuracy, Yang et al. [34] used activation quantization and 
weights. However, using fewer bits for weights could result 
in a loss of accuracy, which would affect the accuracy of 
neural networks. Knowledge distillation is another method, 
as used in [35], [36] , which is moving knowledge from a 
large, complicated DNN (teacher network) model to a 
smaller, more straightforward DNN (student network). 
Although distillation has increased accuracy [37], there is 
a chance that information will be lost in the transfer, and 
training the huge model will cost in terms of computation. 
An alternative approach is applying transfer learning (TL) 
[2], [38], which utilizes model weights from previously 
trained models. By using feature representations that a pre-
trained model has learnt, TL eliminate the requirement to 
train an entirely new model from scratch. This results in 
decreased training time and a reduction in generalization 
error when pre-trained models are incorporated into a new 
model [2]. In the TL method, the weights of previously 
trained models can be used to initial the weights for the new 
model, facilitating a more effective training process. 
Consequently,  the TL approach deliberately employs a 
relevant pre-trained DNN model as a fundamental starting 

point to build a unique model that is suited to the particular 
needs of a particular application. 

Currently, several pre-trained DNN models exist that 
have the potential as baseline model to develop  new 
models utilizing the TL approach, such as MobileNet [28], 
[39], [40] , MobileNetV2 [38], [41] , EfficientNetB0, 
EfficientNetB1, EfficientNetB2[29],[42], DenseNet121 
[43], Xception [27], InceptionV3 [44], ResNet50 [45] and 
InceptionResNetV2 [46]. Each of these models offering its 
own set of advantages and limitation. This has been 
analyzed comprehensively by the authors in [17]. 
Identifying the most suitable pre-trained model from the 
aforementioned list to serve as a baseline model for the 
development of an efficiency-focused model in RCEs is 
crucial.  However, a notable research gap exists, as there is 
a lack of experimental studies evaluating these models 
within the context of RCE scenarios. 

The primary objective of this article is to address this 
gap by systematically evaluating the aforementioned pre-
trained DNN models through a well-defined experimental 
methodology in an RCE scenario. Our aim is to use suitable 
evaluation metrics to identify the most suitable baseline 
model for designing a new DNN model in RCE settings. 
The results obtained from this research will serve as a 
roadmap for the development of productive and successful 
image classification applications, ensuring optimal 
performance in practical situations where resource 
limitations are a common constraint. Subsequent sections 
will delve into the experimental methodology, evaluation 
metrics, comparison of results, and findings, providing 
valuable insights to guide the development of efficient 
DNN models for RCE. 

2. RESEARCH METHOD 

An empirical analysis of the DNN models was 
conducted through an experiment involving the identified 
models to assess their performance through suitable 
evaluation metrics. The objective was to determine the 
most suitable baseline model for deploying DNNs in an 
RCE scenario. The experimental environment was 
implemented using Python 3.8.18, Tensor Flow 2.3.0, 
NumPy 1.18.5, Matplotlib 3.4.3, and Pandas 1.2.4 within 
the Keras 2.4.0 framework. The RCE environment used in 
the experiment contained an Intel 1.86 GHz X4 central 
processing unit (CPU) and 4 GB of random-access memory 
(RAM) [17]. 

A. Evaluation matrices 

The assessment matrices covered in this paper are 
essential resources for understanding the complex aspects 
of DNN model performance in resource-constrained 
settings. These matrices include important elements such 
as parameters that indicate the complexity of the models, 
storage space that indicates the amount of storage needed, 
CPU utilization time for real-time applications, and 
accuracy that measures how accurate the models are [17], 
[20], [22], [26], [47], [48]. Every criterion is carefully 
investigated using methodical experimental techniques, 
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offering a comprehensive view of the strengths and trade-
offs displayed by several pre-trained DNN models. 

1) Parameters 
In a DNN, parameters are the weights and biases that 

are learned by the model during training. They establish 
how the model is put together and how it converts input 
data into predictions. In general, models with higher 
parameter counts are more complex (citation). Gaining 
knowledge of parameter numbers helps one understand 
how sophisticated the model architecture is and how much 
computing it requires. Models with fewer parameters may 
be favored in contexts with limited resources since they 
need less computing power. 

 

2) Storage Space  
The memory needed to hold the complete DNN 

model—including its architecture, parameters, and any 
extra data—is referred to as storage space. Models with 
lower storage footprints are required in resource-
constrained contexts due to limited storage capacity. 
Determining the efficacy of implementing a model in 
settings with limited memory resources requires analyzing 
storage requirements. 

 

3) CPU Usage Time  
CPU use time is important for applications that need 

real-time responsiveness since it shows how long a DNN 
model needs to analyze and predict an input. Models that 
require real-time decision-making and have shorter CPU 
usage durations are favored in cases when resources are 
limited. Analyzing this criterion provides light on how 
effective the model is in real-world, time-sensitive 
situations.  

4) Accuracy  
A DNN model's accuracy is a performance metric that 

assesses how accurate its predictions are. It shows the 
proportion of accurately anticipated cases to all instances. 
One key measure of a model's ability to correctly classify 
input data is its accuracy. Higher accuracy in image 
classification duties indicates that the model can generate 
accurate predictions. While accuracy is important, it must 
be weighed against other factors in order to balance 
resource efficiency with predictive performance.   

  

B. Experimental Procedure 

The experimental method, depicted in Fig. 1, followed 
a systematic procedure. Initially, ten DNN models were 
sequentially deployed onto a predefined RCE scenario. 
Each of the ten images selected from Fig. 1(a) was 
individually presented to every deployed model, as 
illustrated in Fig. 1. Subsequent to the image input, 
predictions generated by each model were observed and 
recorded for both accuracy and inference time, as shown in 
Fig. 1(b). This process, from deployment to observation, 
was repeated for each of the ten DNN models, ensuring a 
consistent evaluation across the identical set of images. 
Following the experimental phase, recorded accuracy and 
prediction time data were methodically organized into 
Tables 1 and 2. While Table 1 presented accuracy values, 
Table 2 outlined inference times for each model across all 
images. These recorded accuracy values and inference 
times were then used to compute mean accuracy (Mean 
Acc) and mean inference time (Mean Time), respectively.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Mean accuracy provided an average measure of 
prediction accuracy for each of the ten models, as depicted 
in Table 1. Simultaneously, mean time represented an 
average  measure of prediction time for each model, as 
detailed in Table 2. 

In Tables 1, Mean Acc for each DNN model is 
calculated as the simple average of recorded 
accuracyvalues across all images (N=10), using the 
formula (1) [49], [50]: 

 Mean Acc = 
1

𝑁
∑ 𝐴𝑐𝑐𝑖
𝑁
𝑖=1                                  (1) 

where, N is  total number of images and Acci represents the 
accuracy value for the ith image.  

Similarly, in Tables 2, Mean Inference Time (Mean 
Time) is determined as the simple average of recorded time 
values for each model across all images (N=10) 
predictions, using the formula (2) [49]:   
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Mean Time = 
1

𝑁
∑ 𝑇𝑖𝑚𝑒𝑖
𝑁
𝑖=1                                  (2) 

where, N is the total number of images and Timei 
represents the time value for the ith image. 

 

  
 

 

 

 

Figure 2. Set of images used for the experiment: (a) Images randomly selected from the  ImageNet testing dataset; (b) Examples of 

predicted images from a model, with predicted labels displayed above each image along with their corresponding accuracy. 

 

Figure 1. Overview of the experimental setup: green color box indicating the deployed DNN model on RCE, blue color oval shape 

is input image and purple is predicted image, orange color object refers RCE device 
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The empirical analysis of the selected DNN models 

included two other crucial measures in addition to accuracy 

and inference time to provide a more thorough knowledge 

of their performance attributes. These metrics include the 

number of parameters in million (M), indicating the 

model's complexity and depth; and the size of the model in 

megabytes (MB), reflecting its storage requirements. Table 

3 presents the systematic documentation on observations 

pertaining to these many criteria, which adds significant 

value to the assessment as a whole. The observations 

encompassing these diverse metrics are systematically 

documented and presented in Table 3. By incorporating 

these additional measures, the assessment goes beyond 

accuracy and inference time alone, providing valuable 

insights into computational efficiency and  resource 

utilization for the predictions. This thorough examination 

is designed to facilitate decision-making regarding the 

potential role of these DNN models as baseline models, 

particularly in the development of new, efficiency-focused 

models tailored for deployment in resource-constrained 

scenario. 
 

  

TABLE 1. RECORDED PREDICTION ACCURCY OF TEN DNN MODELS FOR TEN IMAGES

 

DNN Models Goldfish Centipede  Cat Zebra Ambulance Balloon Wheel Clock 
Bell 

Pepper 
Cup 

Mean 

Accuracy 

(%) 

MobileNetV2 89.68 93.49 75.32 96.42 85.42 67.51 88.54 68.83 92.37 61.82 81.94 

MobileNet 100.00 100.00 97.07 99.99 98.85 100.00 99.95 94.08 99.93 86.57 97.64 

EfficientNetB0 92.28 67.15 82.50 88.14 97.43 90.15 88.17 44.16 96.20 59.72 80.59 

EfficientNetB1 89.07 88.10 93.35 91.57 96.19 91.03 90.85 40.62 94.23 54.61 82.96 

DenseNet121 98.04 100.00 93.43 99.94 99.48 99.52 94.32 48.42 99.95 55.41 88.85 

EfficientNetB2 84.21 82.49 89.88 88.73 89.77 91.31 84.40 54.62 89.19 47.48 80.21 

Xception 86.94 90.00 90.68 85.64 98.02 80.80 91.82 49.78 88.06 57.08 81.88 

InceptionV3 99.08 97.37 88.36 90.87 94.18 95.18 93.88 87.33 94.71 75.25 91.62 

ResNet50 94.64 100.00 99.26 99.98 99.64 99.98 99.60 88.15 98.05 82.84 96.21 

Inception-

ResNetV2 
91.64 94.15 92.28 93.17 94.86 93.43 89.17 82.08 91.93 78.12 90.08 

 

TABLE 2. RECORDED INFERENCE TIME FOR THE PREDICTION OF TEN  IMAGES BY TEN DNN MODELS

 

DNN Models Goldfish Centipede Cat Zebra Ambulance Balloon Wheel Clock 
Bell 

Pepper 
Cup 

Mean 

Time 

MobileNetV2 5.75 5.16 5.17 5.36 5.96 6.00 5.79 5.92 5.59 5.51 5.62 

MobileNet 3.70 4.07 3.71 3.91 3.55 3.64 4.01 4.38 3.95 3.84 3.88 

EfficientNetB0 9.27 8.49 8.06 8.50 7.84 8.44 9.72 8.25 9.56 7.94 8.61 

EfficientNetB1 13.18 14.26 14.06 14.29 16.00 14.59 13.71 14.69 13.20 14.06 14.20 

DenseNet121 15.90 14.25 14.15 14.23 14.80 12.50 11.97 12.16 11.88 13.39 13.52 

EfficientNetB2 14.35 11.89 11.50 12.20 11.50 11.72 12.00 11.53 12.11 12.15 12.10 

Xception 10.49 12.71 11.24 11.33 10.88 10.78 10.99 10.63 10.52 11.39 11.10 

InceptionV3 11.75 10.92 10.81 11.10 11.10 12.51 11.88 11.39 12.10 11.33 11.49 

ResNet50 8.73 7.82 8.18 7.75 8.82 7.98 8.00 7.98 7.84 7.75 8.09 

Inception- 

ResNetV2 
26.43 26.72 27.17 27.00 26.88 27.11 25.80 26.08 26.32 26.41 26.59 
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3. RESULT AND   DISCUSSION 

The outcomes of the conducted experimentation 

involving various DNN models are documented in Table 

3, offering a thorough overview of their performance 

based on essential evaluation metrics. Fig. 3 visually 

represents a comparative analysis of these DNN models. 

The metrics used for comparison encompass the number 

of parameters in millions (m), storage requirements in 

megabytes (MB), memory utilization during prediction, 

prediction time in seconds (s), and prediction accuracy. 

This comparative approach allows for the extraction of 

valuable insights into the distinctive characteristics of each 

model. 

MobileNetV2 and MobileNet stand out for their 

simplicity and efficiency, boasting the lowest number of 

parameters (3.5m and 4.3m) and the smallest storage 

footprint (13.9MB and 16.4MB). These models are 

particularly suitable for applications where computational 

resources are limited (RCE). On the other end of the 

spectrum, InceptionResNetV2 exhibits a complex 

architecture with the highest number of parameters 

(55.9m) and requires the most storage (215MB). While 

offering high accuracy, it may be less practical for 

deployment in resource-constrained scenarios (see Fig. 

3(a) and (b)). 

MobileNet, with a mean inference time of 3.9s, emerges 

as the fastest model in our evaluation, making it well-

suited for real-time applications. In contrast, 

InceptionResNetV2 demonstrates the longest mean 

inference time (26.6s), suggesting slower processing (see 

Fig 3.(c)). DenseNet121 and ResNet50 showcase the 

highest mean accuracy (88.9% and 96.2%, respectively) 

(see Fig. 3(d)), underscoring their excellence in image 

classification. However, it's important to note that these 

models come with a higher computational cost and storage 

demand (see Fig. 3(a) and (b)). 

EfficientNetB0 and EfficientNetB1 strike a 

balance between accuracy and efficiency, demonstrating 

moderate values in both metrics. These models showcase 

a trade-off between resource utilization and prediction 

accuracy. On the other hand, EfficientNetB0 demonstrates 

a compromise, with the lowest mean accuracy (80.6%), 

highlighting the importance of considering trade-offs 

when selecting models for RCE. 

EfficientNetB1, distinguished by its heightened 

model complexity, adeptly achieves a balanced synthesis 

of computational efficiency and model accuracy. Its 

parameters, storage requirements, and inference time, 

considered collectively, position it as a versatile and well-

rounded option for applications in settings where resource 

constraints necessitate efficiency without sacrificing 

predictive accuracy.  Despite previous comprehensive 

study [17] suggesting EfficientNetB1 as a preferable base 

model for DNN development in RCE scenarios, the results 

of the current empirical study advocate MobileNet as a 

more suitable candidate (see Fig. 3(e)). 

Furthermore, MobileNet, despite its modest 

computational requirements, stands out for providing fast 

inference times and achieving high mean accuracy. This 

combination of efficiency and commendable predictive 

performance makes MobileNet a reliable and adaptable 

choice for developing new DNN models within resource-

constrained contexts. The model's ability to deliver 

efficient results without compromising accuracy makes it 

particularly valuable for scenarios where computational 

resources are limited, showcasing its versatility and 

suitability for a variety of applications. 

 
 

TABLE 3. COMPARISION OF DNN MODELS WITH FOUR EVALUATION MATRIXES 

 

`DNN Models Parameters  

(m) 

Storage 

(MB) 

Mean 

Time (s) 

Mean 

Acc (%) 

MobileNetV2 3.5 13.9 5.6 81.9 

MobileNet 4.3 16.4 3.9 97.6 

EfficientNetB0 5.3 20.9 8.6 80.6 

EfficientNetB1 7.9 30.8 14.2 83.0 

DenseNet121 8.1 31.8 13.5 88.9 
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EfficientNetB2 9.2 35.8 12.1 80.2 

Xception 22.9 87.7 11.1 81.9 

InceptionV3 23.9 91.8 11.5 91.6 

ResNet50 25.6 98.2 8.1 96.2 

InceptionResNetV2 55.9 215 26.6 90.1 
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Figure 3. Bar Charts Comparing Evaluation Metrics Across Ten DNN Models: (a) compares the number of parameters in millions for each model; (b) 

compares the storage requirements of each model in megabytes; (c) illustrates the differences in inference time between models; (d) displays the accuracy 

differences in image prediction for each model; (e) provides an overall comparison of the four metrics across the ten models. 

(e) 

7



 

 

        

 

 

4. CONCLUSION 

This paper presents an empirical study of various 

DNN(DNN) models in a Resource-Constrained 

Environment (RCE) has revealed valuable insights into 

their performance attributes. Among the models evaluated, 

MobileNet emerges as the most suitable candidate for the 

development of a new DNN model in RCE scenarios. This 

determination is based on a holistic assessment of 

MobileNet's characteristics, showcasing a favorable 

combination of key metrics. MobileNet exhibits a 

relatively low number of parameters (3.5 million), 

indicating a manageable level of model complexity and 

depth. Furthermore, the model demands a compact storage 

requirement of 13.9 megabytes, making it efficient in terms 

of resource utilization. Notably, MobileNet achieves a fast 

mean inference time of 3.9 seconds, enhancing its 

suitability for real-time applications in RCE. The model's 

commendable mean accuracy of 97.6% further solidifies its 

position as a promising choice for effective deployment. 

MobileNet, in summary, provides balanced performance in 

terms of parameters, storage, inference time, and accuracy, 

making it an ideal platform for creating effective DNN 

models that tackle the problems caused by resource 

constraints in real-world applications. This work brings 

substantial value to the field of deploying DNN models in 

resource-constrained conditions. When selecting baseline 

models for image classification applications specifically 

designed for RCE devices, it lays a foundation for decision-

making. 

   

The future research endeavors will leverage the identified 

MobileNet model as the baseline to develop a novel DNN 

model, termed GRMobiNet. This development aims to 

cater to efficiency-focused image classification 

applications specifically tailored for deployment in RCE 

devices. 
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