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Abstract: This research tackles solving a broad class of second-order partial differential
equations (PDEs) with a novel method using natural cubic splines. These equations, crucial in
science and engineering, describe phenomena like heat flow and wave propagation. The
method works for both parabolic (diffusion) and hyperbolic (wave) equations, with a focus
here on parabolic ones. The key idea lies in approximating the spatial derivatives in the PDE
with the second derivative of a natural cubic spline function. Imagine a smooth curve broken
into segments; natural cubic splines ensure these segments connect seamlessly while having
zero second derivative at the joints. This makes them ideal for mimicking the solution's
behavior. For the time derivatives, the paper employs a finite difference method. This
approximates the derivative based on the function's values at specific time steps. By combining
these approximations, the original PDE transforms into a system of solvable algebraic
equations. The paper explores solving this system explicitly (directly calculating new solutions
based on previous ones) and implicitly (solving a system of equations at each step). This offers
flexibility, with explicit schemes being faster but potentially less stable, while implicit schemes
provide more stability but require more computation. Finally, the paper validates the method's
effectiveness through numerical examples with various boundary conditions (specifying the
solution's behavior at domain edges). This showcases the method's applicability in real-world
scenarios with different constraints. In conclusion, this research offers a valuable tool for
solving diverse second-order PDEs. The method's ability to handle both constant and variable
coefficients and its exploration of different solution strategies make it a versatile and adaptable
approach.

Keywords: Second-order Parabolic equation; Natural Cubic Spline; Finite difference scheme;
Absolute errors.

1. Introduction:



Boundary value problems are encountered in many areas of science, engineering and
technology. Therefore, finding solution of these BVP’s is a fundamental challenge to the
researchers. Hence choosing the numerical method to find more accurate solution plays an
important role in their physical significance. With this reason, we developed natural cubic
spline method to solve various boundary value problems of differential equations with different
Dirichlet, Neumann and Robin conditions. NCS procedure is developed to solve different
linear, nonlinear ordinary and partial differential equations.

Partial differential equations (PDE) are very important in many branches of mathematics,
science and engineering etc such as elasticity, hydrodynamics, quantum mechanics
electromagnetic theory and etc. They also arise in diverse fields such as biology, physics,
differential geometry, control theory, metrology, material science, electro-magnetic theory,
aeronautics, nuclear physics, medicine, electro-dynamics, elasticity, fluid dynamics, diffusion
of chemicals, vibrations of solids, spread of heat, interactions of photons, structure of
molecules, flow of fluids, interactions of electrons, and radiation of electromagnetic wave
describe PDEs. Its uses spread into economics, financial forecasting, image processing, flows
in porous media, turbulent transport problems and many other fields.

One dimension infinite solid, temperature distribution in a rod and in the bar of uniform cross
section, transverse vibration of a uniform flexible beam are some examples of Parabolic PDE.
parabolic PDE has many applications in chemical separation processes, computational
hydraulics, ground water pollution problems, problems related to spread of contaminants in
fluids and etc. as heat transfer in draining films [1], dispersion of pollutants in rivers and
streams [2], thermal pollution in river systems [3], flow in porous media, spread of

contaminants in coastal seas and estuaries, etc are some applications of parabolic PDE.

We considered general second order PDE of the form:
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With the initial conditions

{u(x,O) = f(x), x €[a,b]
U (x,00=9g(x), xela,b]

And the boundary conditions

u(a,t) =1(x), x €[a,b]
u(®,0)=m(x), xe[ab]



The time derivatives in (1.1) are replaced by a central finite difference operator and the space

derivatives are replaced by natural cubic spline at the point (ih, jk)

Numerous numerical techniques have recently been developed to solve parabolic PDEs. M.M
Butt [5] solved heat equation with variable coefficients. Suayip Yuzbasi [6] devised a new
collocation approach based on Bessel functions of the first kind for the solution of linear 2"-
order PDEs with variable coefficients under various boundary conditions. The adaptive grid
Haar wavelet collocation approach was used by Shiralashetty [7] to solve parabolic partial
differential equations numerically.

We considered NCS Explicit and Implicit method in solving equation (1.1). Parabolic PDE’s
with different types of boundary conditions are considered and obtained a tri-diagonal system
of ( n+1) equations in (n+1) unknowns and represented in matrix form. It is explained in detail
how the tri diagonal matrix form will change with given boundary conditions. Exact solutions
are contrasted with examples of parabolic PDE utilising the explicit and implicit NCS methods.
Table values for various step sizes are provided to evaluate the precision of the suggested
methodology.

2. Natural Cubic Spline:

Let the cubic spline S(x) interpolates y(x) at the mesh a =X, <X <....<X,=Db.
Since S(x) is piecewise cubic spline, its second order derivative S”"(x) is piecewise linear
on the interval [X_;, X].

Using linear Lagrange interpolating formula we have

S(X) = $"(X,) 2+ §"(x,) ——
Xi - Xi—l Xi - Xi—l

Putting M, =S"(x )and M, , =S"(x_,), the above expression becomes
" 1
S (x)=H(MH(xi—x)+Mi(x—xH)) (2.1)

Integrating (2.1) twice, we get

(% —x)3 (x—xH)3
S(x)=M,, +M, +Cx+C,
6h 6h (2.2)

Where C, and C, are constants of integration to be determined

Evaluating S(x) at X;and X,_; we have
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h
Yia =M i—l€+ Cx,+GC,

(2.3)
h2
Y, =M,—+Cx, +C,
° (2.4)
Solving (2.3) and (2.4) for C, and C, we get
h h Y
Cl = (g Mi—l _E '\/II)—l——(yI hyl_l)
h? h .
C. =V, _EMi _|:E(Mil_Mi)+%}Xi
Substituting the values of C, and C, in (2.4) we have
2 —
S() :i(Mi‘l(Xi _X)3+ M, (X_Xi—1)3)+ Yia _h_ M., (Xi XJ
6h 5 . o5

ENES

The function S(x) in the interval [, X..,] is obtained by replacing i by i+1 in equation

(2.5)
Hence
S(X)ZMi(X”l X) +Mi(x Xl) I(yi_h_Mi (Xiﬂ X]
6h eh ("' 6 h 26)
h? X— X,
+(yl+l 6 Mi+l]( h Ij
Differentiating (2.5) and (2.6)
4 1 i~ Ji- Mi B Mi—
S(x)=E(—Mi_l(xi—x)2+Mi(x—xi_l)2)+y hy _( - D @.7)
2 2
S'(X) =_Mi (Xi+1 _X) + Mi+1 (X_Xi) + Yin —Yi _ (Mi + Mi+1) h
2h 2h h 6 (2.8)
calculating S'(x) at X=X
e I VRRWELY VI [k (SR ST
6 3 h (2.9)

e oo TSLLE VRLLE VS ¥l TR T R
1 | i+1
3 6 h (2.10)

Using continuity condition of the cubic spline, we have
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%(Mil +AM + M) = (Vi —2Y + Vi), 1=12,.,0.

The above relation is called the continuity or consistency relations of the cubic spline.

The cubic spline can be assumed as

5,00 =M, 59y (6 *{u-i BV J(Xi_xj
J i-1 i-1 6 i-1

6h ' 6h h
2 — A
+[uij_€Mijj(X hx'l)izl,Z,..,n.
. . ) byl
Letl! =S'(x" =—DM.‘—EM.J +M, i=01---,n-1
i i 3 i 6 i+1
- . , iyl
L ZS’(Xi)ngiJ+gMij—1+UI hUIl' i=01...n

From (2.12) and (2.13) we have

- U- E|\/|.j +—u‘j+1_ uy = LJ_DM_J _ u' —ul,
6 h e h

p - LJ_ 1§_J+1- DMJ_ ?’Jiil- uij%*_@lj-i—l- uiJOI—_ Lij_i_lg_ij_l_{_nl\/lij_ &Uii_
25" 6 B h HE h o5 25" 6
al- ul o
h
poos Ty Ly LR ulO 18- WO - w0 - uo
P2t 2 o8 h 528 h 58 h 568 h &
_ ) _ q j U i j ) R
p 2IiJ+1Li‘_1+ 1Li’+1- lgj—' U L+ul- ul B lgﬂ e ul, ui‘lilu=0
2 2 h&2 4 hg2 u
&1y j j iy
b2+ SL, 4 iU, LU B,y LU 3y g
27t 2™ hg2 24 hg2 20

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



b AU+ LU+ U, - ;gauij 3u!,+3ul,- 3u/¥=0
b I‘Il l+ I—|J+l+ 4L] - _g’uwl_ 3ui1: lg

Dividing by 6 through out

1. . 2 1
U+ S+ U = u
6 i-1 3 i 6 i+1 2h( i+1 " | 1)

This is called recurrence relation in L/

3. NCS PROCEDURE FOR PDE

Consider second-order PDE of the form:

AU g IU oI TV E D, 0 xELE> 0 (3.1)
ﬂt It Ix Ix

The time derivatives in (3.1) are replaced by a central finite difference operator and the space

derivatives are replaced by natural cubic spline at the point (ih, jk)

%ij+1 2uj + uj 19 %J+1 lg
Ag 2 BgT%- DM/ + EL + Fu! + G/,

i=0L..n, j=12,,.., nh=1

QI-IJ_I

where L/ = Sd(x), M/ = Sgx)

. 86[\/|.i'1+ M .10 &i-ly 1o
Let M! = L _+and L =& —-—then above equation becomes
i+l i 19 i*1_ i-10 -1 i*19 *10
Agui 2ku2i + U, S Bgui 2I(ui = D?Ai J;M, e Egl_ i + 4 :
[%] [5] 5] _ [%] (3.2)
+ Fu! + G/,
From (2.11), recurrence relation in M/
1. 2.1 ul. —2u) +u _
ML =M+ = 22 L= i=12,...,n-1. 3.3
6 i-1 3 i 6 i+l ( hz ] ( )



Similarly, recurrence relation in L/

lLiJ_lJrgLii +£Lij+l | Ja "
6 3 6

Similarly, for (j- 1)thand (j + 1) th time levels from (3.3), we have

_ _ _ 1oyt 4 it
%Mi‘f+§Mi‘l+%Mi‘+f=[u'l L:]Iz +u'+1} i=12...n-1

_ ) ) 'j+1_ 'j+l 'j+1
%Miﬁugmiﬁuémigl{”'-1 2‘:]'2 +u'+1j, i=12,...n-1

Similarly, for (j- 1)thand (j+ 1)th time levels from (3.4), we have

- . . .j_l_ .j_l
ENT TR Y L il i N |
6 3 6 2h

- . . .j+1_ .j-'—1
%L;jh%u*u%ujj:(%j, i=12,...,n-1.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Multiplying (3.5) and (3.6) by D/2 and again (3.7) and (3.8) by E/2 and substitute in (3.2), we

obtain

% %Mij_ll +§|\/|iil +%Mij+11 _ (Ui'_f - Z:J]il +ult DJF
j+1 i+1 i+

% %Mijzl—}-%'\/lij‘fl +%Mij+zl :(uijl _Zl:;; +uij+1 j}_}_

N m

Lyay 2ty (o ),
6 3 6 2h

L Zu g ot
6 3 6 2h

N m

Simplifying,

3.9)
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+E(D(M“1+M’+1J+E(L,"1+L“1D

3

+£(D(M.‘+‘f+M.111]+E[LJJE+L.’:3D 310
6

D(u/}—2u/™" +ul ul it —2ut ol

2 h? +? h?

+E. uij+_11_uij:11 +E uij++1l_uijj11
2 2h 2 2h

Eliminating M/ and L} from (3.2) and (3.10), we get

(A(ui‘jl —2u), + ui‘j) +B7k(ui"*l1 —uijjll)+ Ck?u), — Fk*u/, - kZGijl)+

4(A(uij+1 —-2u) + uij’l) + I'%k(uij+l - uij’l) +Ck’u) — Fk?u) —-k°G/ ] +

(A(u.’:ﬁ 2u.11+u.’+1)+B7k(u.izl—u:;ﬁ)+0k Uy szu:;—kZG.Llj— (3.11)
30K (w20 )+ 2 sz -2 )
P2 - ) 2 )

Finally, a tri-diagonal system of equations,

& BK. 3Dk2 3E|<2 Q it & BK  3Dk’8 .,
—)U

A+ — Uiy +AEA+ ——+ i

® 2 20 j j
+§A+ BK 3[51( - 35: :U.J++11— (2A+ sz)Ui'.l"' 4(2A+ I:kz)uil

2 y o (3.12)
- [\ & o .
+(2a+ FR)ui, - BA- 22 3Dk 30K B e ERbrs
2h 7 2 2h 7]
& 2 20
E_%_ 3D§-3Ek ulle (K3G),+ K2G) + K2G,
h 2h 5

On simplification,



3Erk 3Dr29 3Erko . _

”l+&i 3Dr’- ——sult=
2 0

g‘? 3Dr2+

+l &
sult+ 4§I + ——
G ;a

(m+ Fk?*)ul, + 4(m+ Fk?)u/ + (m+ Fk?)ul,

x . o .
3Erk i 4@”"' 3Dr én 3Dr2- 3Ezrk%ui,+.11
o

(3.13)

gn 3Dr’+ ——

+(kGj + k°G/) + k’G/

i+1

WhereI:A+B—k, m= 2A, n—A-% r=5.
2 2 h

4. NUMERICAL RESULTS
In this section we have considered parabolic PDE with different types of boundary conditions

EXAMPLE 1: Consider the heat equation of the form:

u =u,, 0<x<L,t>0 (4.1)

subject to:

u(x,0) =100sin(zx/80), 0<x<L;L=80cm, u(0,t)=u(Lt)=0,t>0
Exact solution: u(x,t) =100sin(zx /80)e "V

NATURAL CUBIC SPLINE EXPLICIT METHOD

Let x denote the space variable ant t denote the time variable and ¢ = 1

Replacing time derivative by forward difference operator and space derivatives by natural cubic

spline in equation (4.1) explicitly, we get

L ,
Ui Ui =Mij 4.2)
K
From (2.11),
. : ul. —oud +u)
%Mi‘_1+§Mi‘ %M,lﬂ—[%} i=12,...,n-1. (4.3)

Using (4.3), equation (4.2) becomes

ultt 4t Ut = @+ 6r)u), +4(L-3r)u) +(@+6r)u),, i=12,...,n-1. (4.4)
Equation (4.4) is known as NATURAL CUBIC SPLINE EXPLICIT recurrence relation to
solve equation (4.1). Using known values at j™ level, unknown values can be obtained at (j+1)"

level. For different index valuesiand j, a tri-diagonal system of n+1 equation in n+1 unknown

is obtained from eqn. (4.4) and represents in matrix form as



_ Juint] Iy
14100 . 0 o] © Il m n 0 0 . 0 o] ©

uitt ul
01410 . 0y "1 0Ol mn 0. 0 O 1
00141, 00 00 1 mn.

_ | - (4.5)

00...:00141u,{c1_100...:00Imnu,j“x_1
00 . . ... .0114| julloo . . ... .01 m| j
= - UNX | - __UNX |
fori=0,12,...,N, and j=0,12,...,N,,
where | =1+6r, m=4(1-3r) and n=1+6r.
Since the conditions, u(0,t)=0=>u} =0, j>0, first equation of (4.4) becomes
ug™ +4ul™ +u™ = (L+6r)ud +4(L-3r)u + (L+6r)u), i=1
= 4u/" +u)™ = 4(1-3r)u] + 1+6r)u;,
and u(L,t) =03“v£ =0, j >0, last equation in (4.4) becomes
ult +4ult +ut =@+ 6r)u) , +4@Q-3r)u), +(@+6r)u), i=n-1.
=ul? +4ult = @+6r)ul , +4(1-3r)u’,
Hence the above matrix (4.5) reduces to
410 . . .00 0w mn o 0 o[ ul |
1410 . .000(wW" ||l mno 00 0f u
01410 . . 00} - 0O I mnoO .. 0 0
000 . .014 2|00 0 . .01 mniu,
000 . . 001 4__u,§jl_l_ 00 0 . . 00 I m__u,ﬂx_l_
In short, M, X" =M X
Hence, the required solution is given by
X1t =(M ) [MeX ] (4.6)

By the inverse operation, solution is obtained and presented in fig. 4.1. The NCS solution is
coinciding with analytical solution and presented in fig.4.1. It shows that NCS method results
are correlated with analytical solution. To check the accuracy of the NCS method, absolute

10



error at t = 0.5 is calculated and presented in table 4.1 at different step sizes along space
coordinates. It is noticed that at step size 103, accuracy of 1078 is obtained for NCS method. It
is also observed from table 4.1 that if I <1, NCS is giving stable solutions. If I > 1step size
along tis 0.01 and step size along x is 0.001, convergence of the results is not obtained. Further
NCS method is also compared with finite difference method (FDM). It is clear that difference
between NCS method results and FDM is negligible and conclude that difficult to judge which
is far better. Therefore, we extend the investigation for NCS IMPLICIT method.

Analytical Solution
Natural Cubic Spline Method

100

Finite Difference Method

Figure 4.1: Solution of example 4.1 using NCS explicit method and analytical solution
Table 4.1: Absolute Error at t = 0.5 with 0.1 step size along t

Step size along x r Absolute Error
Finite Difference Method NCS method
1/10 0.00015 6.3635e-04 6.3102e-04
1/50 0.003906 2.5945e-05 2.4750e-05
1/100 0.015625 6.9312e-06 5.7427e-06

11



1/1000 1.5625 1.2239e+48 (Unstable) | 6.7244e+21 (Unstable)

NATURAL CUBIC SPLINE WITH IMPLICIT METHOD
In implicit method, replacing time derivative by forward difference operator and space

derivatives by the average of M/ = S{(x) based on natural cubic spline in equation (4.1) we

have

ult—ul 1 :

Y W _Zmiemin 47
. 2( F M) (4.7)

From (2.2),

%MQ+§M§+%MM:(51—%}iﬂﬂ}i:LZHHWJ. (4.8)

At (j+1th level we have

1 2 1

j+l j+l j+l
gMij_-;l+§Mij+l+€M.j+l:(ui_l _2ui tU;

> '“],izLZ“qn—L (4.9)

i+1

Using (4.8) and (4.9) equation (4.7) becomes
@-3r)ult +(4+6r)u) +(@-3r)u’s

i+1
k (4.10)

F .

=(1+ 3I’)Uij,1 + (4_6r)uij + (1+3r)uij+1’ r=

Equation (4.10) is known as “NATURAL CUBIC SPLINE IMPLICIT? recurrence relation
to solve equation (4.1). Using known values at j™ level, unknown values can be obtained at

(j+1)™ level. For different indicesiand j, a tri-diagonal system of n+1 equation in n+1 unknown

is obtained from eqgn. (4.10) and represents in matrix form as

12



fa b c 00 00“3_+1 1 mn 00 . 0 o]| Y
0abco o ofu | [o1 mno. 0 of u
0 0 abec 00 00 I mn . 0 0

00 .. ..00abeclul o0 . . . .001 mnful,
00 o 0abfa o0 0 m]

fori=0,12,...,N,and j=0,1,2,...,N,.
where a=1-3r,b=4+6r and c=1-3r;1 =1+3r,m=4-6r and n=1+3r.
Since u(0,t)=0=uJ =0, j >0, first equation in (4.10) becomes

@-3r)ul™ +(4+6r)u/" +(@1-3r)u)"= 1+3r)u) +(4-6r)u) +@+3r)ul, i=1
= (4+6r)u}™ +(1-3r)u)™ =(4-6r)u + (1+3r)u;,

and u(L,t)=0=> uh",x =0, j>0, last equation in (4.10) becomes

@-3r)u) +(@4+6r)ult +@-3r)u=1+3r)u) , +(4-6r)u) , +@L+3r)u’, i=n-1

» - _ _ Hence

= (1-3r)ul, +(4+6r)ull =(1+3r)ul, +(4-6r)u,,
the above matrix reduces to
_ __uj+1_ _ T ul 7

c 0 0 0O 1 m n 0 . 0 0 O 1
abco oo oWl |1 mno 00 0f u
0 a c 0 .00 0O I mnO 0 0
0 a uit,| |0 o 01l m niul
000 . .00 ahbfygs| ][00 0 . .00 1 mfy
L -L Nx—l_ = L Nx—l_
In short form
M X =M/ X (4.11)
Hence, the required solution is given by
X1t =(M ) [M X ] (4.12)
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By the inverse operation, solution is obtained and presented in fig. 4.2. The NCS solution is
compared with analytical solution and presented in fig.4.2. It shows that NCS method results
are correlated with analytical solution. To check the accuracy of the NCS method, absolute
error at t = 0.5 is calculated and presented in table 4.1 at different step sizes along space

coordinates. It is noticed that at step size 103, accuracy of 108 is obtained for NCS method. It

is also observed from table 4.1 that if ' <1orr >1, NCS is giving stable solutions. Further

NCS method is also compared with finite difference method (FDM) and results are presented
graphically and absolute error tabulated. It is clear that difference between NCS method results
and FDM is negligible if r <1. For r >1 NCS method produces better results as compared
with FDM. Therefore, we conclude that NCS method is efficient and better numerical method
to solve PDEs. With thisknowledge, we demonstrated the NCS method for different PDEs with

different examples and presented their results graphically.

Analytical Solution

Natural Cubic Spline Method

Finite Difference Method

100

80

60

40

20

Figure 4.2: Solution of example 4.1 using NCS implicit method and analytical solution
Table 4.2: Absolute Error at t = 0.5 with 0.1 step size along t

14



Step size along x r Error
NCS method | Finite Difference Method
1/10 0.000156 | 6.3575e-04 6.3219¢-04
1/50 0.003906 | 2.5351e-05 2.5938e-05
1/100 0.015625 | 6.3371e-06 6.9306e-06
1/1000 1.562500 | 6.3370e-08 6.5744e-07
1/2000 6.25000 | 1.5845e-08 6.0992e-07

EXAMPLE 4.2
Consider the PDE of the form

u =u O<x<lt>0

t T Uxx? (413)
subject to: u(x,0) =1+ x*+coszx, 0<x<1 and u,(0,t)=0,u (Lt)=0
The exact solution is given by u(x,t) =2t +x* +1+ et cos(zXx)
EXPLICIT METHOD
By NCS explicit method (4.13) becomes
ultt 4t Ut = @1+ 6r)u), +4(L-3n)u) +(@+6r)u),, i=12,...,n-1. (4.14)
where r :%.
Matrix form of (4.14)
'14100....00’”3:” T mnoo....o0o]b%
01410....0o0fuW" | mn o . 0 ol W
1 41 0 0 I mn . 0
00 .00 1 4 1fjuf? | oo .00 I m njuf,
00 014uj+1 O......Olmuj
B B N, i B __ Ny |

for j=0,1,2,...,N,.where | =1+6r, m=4(1-3r) and n=1+6r.
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Given condition u, (0,t)=0=

First equation of (4.14) becomes

I i j
%:o:uf =ul, j>0.

]

uwt +udt +u "= L+ 6ryul, +4(1-3r)ul + (L+6r)u), i=0

= uJ™ +2u/" = 4(1-3r)u + (L+6r)u/,

urjl 1_u|£1 -1 i ; .
U, (L) =0= N0y} =u) ,j20.

2h
Last equation of (4.14) becomes
urtll + 4'un n+l =

j+l

= 2ul +4ul™t = 2(1+6r)u) , +4(1-3r)u/,

n

Hence the above matrix reduces to

(4 20 0 0 0 I ¢ )
0 1 410. . . . 0
0 0 1 41 0 0
o 0 .. ..001 4 1
0 0 . . . . . .0 2V 4]
short form

M X =M/ X
Hence the required solution

Xj+l=(|\/|L)7l[|\/|RXj]

j+1
UNX

j+1
UNX

16

I put=@+6r)ul, +4(1-3r)u) +(@+6r)u

n+1?

i=n

3 -5 o
> O o

.00
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NCS Method

Analytical Solution

<~ 04
\X// 02
t 0 o

Figure 4.3: Solution of example 4.2 using NCS explicit method and analytical solution
NCS IMPLICIT METHOD
By NCS implicit method equation (4.13) becomes

@-3r)ulst +(4+6r)ult +(1-3r)ul!

i+1
: : : 4.15
=@+3r)ul, +(4-6r)u! +(2+3r)u’,, r _Kk (419)

i+1? h2 *

The above equation (4.15) is known as natural cubic spline implicit formula to solve equation
(4.13)

Representing equation (4.14) into the matrix form:

~ T, _ j
abc 00 0 0] Y% l mn 0 0 . 0 0] Y
j+1

0Oabco.. . .oo0llW [ lorl mno. 0o of
0 0 abec 00 00 I mn. 0 O
00 . ...00abec|u 00 . . . .001 mnju,
_00......0ab__u'{‘j1__00......Olm__uglx_
Where a=1-3r,b=4+6r and c=1-3r; |=1+3r,m=4-6r and n=1+3r.
forj=0,12,...,N,.

uij+1_uj

Given condition u, (0,t) =0 = 1 —0=u/=ul, j>0.
h

First equation of (4.15) becomes

@-3r)ult + (@4 +6r)ul™ +@-3r)u/" = @1+3r)u’, + (4-6r)ul +@+3r)y}, i=0
= (4+6r)ul™+2(1-3r)u/* =(4-6r)ul +2(1+3r)u;,
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ul . —u/ . .
ux(l’t) =0:> %zo:ul{lxﬂ =U,{|X,1, J > 0.

Last equation of (4.15) becomes
@-3r)u) +(@+6r)u)t +@-3r)u)t=@+3r)u) , +(4-6r)u) +@+3r)u),,, i=n

= 2(1-3r)ul;+(4+6r)u)* =2@1+3r)ul, +(4-6r)ul,

Hence the above matrix reduces to

_ fuit ] 1ol

b 2 000 .. . . 0 o]Y m22an 0 00 . . . . 0 0] %

» :

0aboco. ... 0 ofu" 0O I mn 0 0 ol Y
0 0 a b ¢ 0 O 0 0 I mn 0 O

= ,In

00 a b oclfufl o0 . . .. 001 m onju,

0 2a bl  ju 00 . . . . . .02 m|,

L -_“ﬁlj_- __u,‘ux_

short form

M X =M/ X
Hence the required solution is

X =(M ) [MXT].

NCS Method
Analytical Solution

% —
0‘5\\ ',/'/ 0.6 08
—< 0.4
02
t 0 o

x t 0 0 i

Figure 4.4: Solution of example 4.2 using NCS implicit method and analytical solution
EXAMPLE 4.3: Consider the PDE of the form

u =u,—-u 0<x<lt>0 (4.16)

subject to: u(x,0)=e*+x, u(0,t)=L u (Lt)=e"' —e™*

18



The exact solutionis u(x,t)=e*+xe™

NCS EXPLICIT METHOD
BY NCS explicit method, (4.16) becomes

ult 4t Ut = (A-k) +6r)u), + (4@A—k)—12r)u) + (LK) +6r)u/ (4.17)

i+l
Where r = % Matrix form of (4.17) reduces to

_ [0+

_ Y|

1 100 0 0] Yo Il mn 0O0. . . .0 0] Y

» _

01410 0 of u” Ol mn 0. 0 ol Y
001 41 00 00 I mn . 0 0

00 . . ..0012141fufY oo . . . .00 1 mnjul

_oo......014__ugcl_ oo . . ... .01 m‘_“rﬂx

where | = (1-k)+6r, m=4(1-k)-12r and n=(Q1-k)+6r, j=0,1,2,...,N,.
Since the conditions, u(0,t)=1=>u]} =1, j >0, first equation of (4.17) becomes

ult +4ut it = (-K)+6r)ul, + (4(L-k)-12r)u) + (@1-k) +6r)u),, i=1

= 4u/" +u)™" +1=(40-K)-12r)u + (LK) +6r)u) +1,

and u,(Lt)=e" —e" =,u} , =u} ,+2h(e"—e™), j>0.

last equation in (4.17) becomes

Ul +4ult +ult = (-k)+6r)u), +(4-k)—12r)u) +(1-k)+6r)ul,, i=n

= 2uit 140t 2he ! —e ) =2(A—K) +6r)ul, + (4A—K)—12r)u) + 2h(e ™ —eh)

Hence the above matrix reduces to
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4100 ... . o olutl[ 1 ]
1410 ... . 0 offu?
141 0 0
+ =
0000 . .01 4 1(/u'h 0
0 00O 0 0 2() 4]|uy* | [2h(e"—e™)]

m n 0 O o olfuw | 1 7
I m 0 0 0| u
0 I m 0 0

+
0000 . .01 m njfu, 0
00 00 . .00 2() mjjuf | [2h(e"~e™)]

=M/ X"+C =M X' +C,
= X" =(M_ ) [MX7+C,—C, |

NCS Method

Analytical method

Figure 4.5: Solution of example 4.3 using NCS explicit method and analytical solution
NCS IMPLICIT METHOD
BY NCS explicit method (4.16) becomes
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@-3r)ult+(4+6r)u)™ +(1-3r)ult

i+1

,— ,— ,— k (4.18)
=(1-k)+3r)u', +(4Q-k)—-6r)u’! +(@-k)+3r)u’,, r:F.
The above equation (4.18) is known as natural cubic spline implicit formula to solve equation
(4.18)
Representing (4.18) in matrix form we have
B -
fabc 0O . 0 0% | [T mnoo. 0 0] Y
0abeco. o oW o1 mno. 0 u/
0 0 abc. 00 00 I mn. 0 O
- : Where
00 . . ..00abeclubyjjoo . . . .00 mnfu?
00 . . ... .0abfga| 00 . . . . . .01 mf,
- B N, | B __ N, i

a=1-3r,b=4+6r and c=1-3r
And I =@-Kk)+3r,m=4(1-k)-6r,n=(1-k)+3r, j=0,1,2,...,N,.
Since the conditions, u(0,t)=1=>u]} =1, j >0, first equation of (4.18) becomes

@L-3r)ut+ (4 +6ru ™t +@-3r)ulit
=(1-k) +3r)ui{1 +(4(1—k) —6r)uij +((1-k) +3r)uij+1, i=1

= (4+6r)u/™" +1-3r)u" +1=(4@1-k)-6r)u} +(1-K)+3r)u) +1,

and u (Lt)=e"—e"=u) , =u) ,+ 2h(e™ —e™), j=0.

last equation in (4.18) becomes

@-3r)ultt +(4+6r)ult +(@1-3r)ut
= ((L—K)+3r)ul, + (4(L—K)—6r)u) + ((L—K) +3r), i=n
= 2(1-3r)ut + (4+6r)uit +2h(e —e)
=2((1—K)+3r)u’, + (4(1—K)—6r)u + 2h(e™ —e™)

Hence the above matrix reduces to
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M c0O0 ... . 0 olfu*]T 1
abco ... . 0 offlu*
0 ab 0 0

+ =
0000 . .0a b clluy 0
0 000 0 0 2(a) bj|ui*| [2h(e"-e™)]

m n 0 O 0 O0ff v 1
I m 0 0 0| u
0O I m 0 O

+
0000 . .01 m njfu, 0
00 00 . .00 2() mjjuf | [2h(e"~e™)]

=M/ X"+C =M X' +C,
= X" =(M_ ) [MX7+C,—C, |

NCS Method

Analytical method

Figure 4.6: Solution of example 4.3 using NCS implicit method and analytical solution
EXAMPLE 4.4: Consider PDE of the form:

U, =u, +2tu, 0<x<,t>0 (4.19)
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Subject to: u(x,0) =", u(0,t) =", u(Lt) =&

The exact solution is u(x,t) = gXHH?

NCS EXPLICIT METHOD
By NCS explicit formula (4.19) becomes

Ul 40t 0t = (+ 2kt ) + 6r)ul, + (4(L+ 2ktT) —12r)u)

i+1 . . (4.20)
+((L+2kt")+6r)ul,
The matrix form of (4.20) reduces to
_ it - T oui ]
14100 0 0] 0 Il m n 0 0 . 0 o 0
j+1
01410 o offW" | jo 1 mno. 0 o W
00141 00 00 I mn . 00
= : - |where
00 . . ..00141fufl| o0 . . . .00 1 m nju’l
_00......014_u’£+1 _oo......0|m_ug‘

| =1+2kt’ +6r, m=4(1+2kt’)-12r and n=1+2kt’ +6r, j=0,1,2,...,N,.

Since the condition, u(0,t)=e"" = ul=e"", j>0, first equation of (4.20) becomes

j+l
i+1

= ((1+2kt")+6r)ul, + (4(L+ 2kt)) —12r)u + (A+ 2kt ') +6r)u , i =1

ultt +4ut +u

= 4u/" 4l et = (AL 2ktT) — 120y + ((L+ 2kt 1)+ 6r)u) + et

1+t+t2

another condition, u(,t)=0= u,ﬁx =e" ", ]20, last equation of (4.19) becomes

uly +4ult
= ((+2kt ) +6r)ul, +(4@+2kt)) —12r)u) + (@+2kt)) +6r)u), i=n-1
= ul +4ut 4 e = 4@+ 2kt ) —12r)u) , + ((L+ 2ktT) +6r)u) , + et

The above matrix reduces to
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4 1 00 o]fu*] [e
1 4 0 0 ujt 0
0 1 0

+ =
00 1 ui,
_0 0 0 1 _ultl_l _e1+t+t2_
m n 0 . 00 o] u | [e#]
| m n O 0 0 o ul 0
O I mn 0 0

+

0 0 0 I m n|u_,
0 0 0 0 I mlju) | |e=

[ tet? ]

=M X" +C =M X' +C,

= X" =(M_)[M X +C,-C .

NCS Method Analytical Method

O 04
02
0

Figure 4.7: Solution of example 4.4 using NCS explicit method and analytical solution
NCS IMPLICIT METHOD

By using NCS implicit formula (4.19) becomes

@-3r)ulst +(4+6r)u) +(1-3r)uls
: : : : . : 421

= (L+2kt! +3r)ul, + (4Q+2kt’)—6r)u) + (L+2kt’')+3r)u’,, r= L (#.21)

i+1? h2
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The above equation (4.21) is known as natural cubic spline implicit formula to solve equation
(4.19).

Representing (4.21) in matrix form we have

_ [ Togi
abocO00O. 0 o] Y l mn 0 0 0o 0] Y
j+1
0abeco. 0 off u” 01 mn o0 0o of W
0 0 ab c . 00 0 0l mn 0 0
0 . . ..00abecluyl]joo . . . .00 mnju
o . . . . . . 0 a b, ju oo . . . .. .01 mi.j
L __ugf:__ __u,{lx_

Where a=1-3r,b=4+6rand ¢c=1-3r;
| =1+2kt’ +6r, m=4(1+2kt')-12r and n=1+2kt’ +6r, j=0,1,2,..., N,.

Since u(0,t) =e"* = uf =e"*, j>0. and uLt)=0=u} =e""", j>0.
First equation of (4.21) becomes

@-3n)u/t +(4+6r)u) +@-3r)u)!

i+1

= (1+2kt! +3r)u), + (4(@+2kt)) —6r)u) + (L+2kt") +3r)u’ , i=1

i+1?
= (4+6r)u) + (1-3r)ui™ + e = (4(1+ 2kt)) —6r)u/ + ((1+2kt?) +3r)u) + gt
ulLt)=0=>u) =", j>0.
Last equation of (4.21) becomes
@-3r)ultt +(4+6r)u’ +(@-3r)ut

i+l

= (1+2kt’ +3r)ul, + (4(L+2kt’)—6r)u) + (L +2kt') +3r)u’, i=n-1

= (4+6r)U,j,l + (1—3")Unji +el+tj+t12 _ (4(1+ 2kt")—6r)un"72 + ((1+ 2ktj)+3r)u,{',l +e1+tj+tj2

Hence the above matrix reduces to
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0 0 0 O _ulj+1_ _et+t2_
a c 0 0 0 Of u™ 0
0 a b 0 00
+ =
000 0 a b c|lul,
0 00 0 0 a __u,i*l_l _e1+t+t2_
'm n 0 00 ol v | [e
| m n O 00 0} u 0
0O I m 0 0 0
+
000 . .01 mnifu.
_0 O 0 . . 0 o0 | m__u'flx_l_ _el+t+t2_
In short
M X" +C =M X' +C,
Hence the required solution is
X1t =(M) " [MeX)+C—C, |-
NCS Method Analytical Method

Figure 4.8: Solution of example 4.4 using NCS implicit method and analytical solution
6. CONCLUSION

In this Paper, NCS method is employed to solve parabolic PDE. In detailed procedure is
explained for NCS method for two different types such as explicit and implicit. Considered
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different examples to demonstrate the developed NCS method. The results for all examples are
presented graphically. Accuracy of NCS method is calculated through absolute error
considering analytical solutions. It is worth to mention that for NCS implicit method produced
better and more accurate solutions compare to explicit. Further NCS method is also compared
with finite difference method and results are presented graphically and absolute error tabulated.
It is clear that difference between NCS method results and FDM is negligible if r<1. For
I >1 NCS method produces better results as compared with FDM. Therefore, we conclude
that NCS method is efficient and better numerical method to solve PDEs. With this knowledge,
we demonstrated the NCS method for different PDEs with different examples and presented

their results graphically.
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