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Abstract: The adaptive filtering algorithm of Normalized Least Mean Square (NLMS) is known to be highly efficient in terms of
requiring less number of iterations compared to the reference Least Mean Square (LMS) method, at the cost of having increased
computations. This is because, while a fixed value is assigned for the step size in LMS method, the step size in NLMS is continuously
updated to a new value with each iteration. The performance of the gradient descent method of LMS is found to be highly dependent
on the step size value assigned at the beginning of the iterations. Throughout the literature, the whole range of LMS step size within
which stability is assured is usually suggested and studied, while the selection of the most suitable value of the step size within
this range is still not thoroughly studied. In this work, a new method to help specifying the exact value of step size in LMS is
proposed. This method is resembled by using the step size value assigned in the first iteration in NLMS method to set the value
of the step size in LMS. This is found through the results to be highly effective in approaching NLMS behavior without having
to increase computational burden. The performance of the proposed method is evaluated using the Mean Square Error (MSE),
Weight Difference (WD) and absolute error after 1000 iterations. Relying on this way to specify the LMS step size can provide
simplicity, accuracy and high convergence speed, not only for system identification, but also for many other adaptive filtering applications.
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1. Introduction
The adaptive filter is widely used as the main part

in many statistical applications in signal processing field.
When processing signals resulting from operating in an
environment with unknown statistics, the application of an
adaptive filter will offer a clever solution because it usually
provides a significant improvement in performance over the
use of fixed filters created by conventional methods [1].
The objective behind this work is to find a method that
improves the performance of adaptive filtering with using
the original LMS method that is known with its simplicity.
This is done through an efficient selection of the step size
value, which is specifically tested for the application of
system identification.

Adaptively processing signals has recently witnessed
a great interest and growth. This has been encouraged
by the developments in the fields of VLSI circuits as
well as microelectronics. This is because those fields have
enabled performing tremendous amounts of computations
for various applications, including the processing of digital
signals [2], [3], [4].

The process of system identification means to define the
coefficients of an unknown system by analyzing its input

and output signals. System identification has a wide range
of applications in real world, such as modeling real-time
complex control systems and designing efficient control
approaches for control systems. It is also used in analytical
maintenance, fault finding and analysis, optimization of
system performance [3], [4], in addition to having wide
applications in communications. Most of those applications
would benefit from having an efficient and simple way
of identification that provides simplicity, accuracy and fast
convergence.

In the application of system identification, adaptive
filters have proved to be highly effective and stable. Other
applications of adaptive filters include acoustic echo and
noise cancellation [5], adaptive line enhancement, chan-
nel estimation [6], Direction Of Arrival (DOA) estimation
[7], adaptive channel equalization and in communications,
specifically in Pulse Code Modulation (PCM) [2], [3].
Adaptive filters are assumed to be Finite Impulse Response
(FIR) filters, due to being simple and widely applicable in
adaptive processing, compared to Infinite Impulse Response
(IIR) adaptive filters which suffer from complications result-
ing from being hardly stable and relying on gradient search
techniques that are unreliable to some extent [4]. However,
in some special situations, IIR adaptive filters have proved
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to be very useful.

The work on adaptive filters firstly started in the
1950s, where a range of adaptive filtering algorithms and
applications started to be discovered and developed [8].
Meanwhile, and specifically in 1959, a simple form of
LMS algorithm was first introduced for adaptive filtering
by Bernard Widrow and his student Ted Hoff [9], [10].

Basically, LMS is a common iterative algorithm used in
system identification application by adaptively modifying
the coefficients of the adaptive filter so as to characterize
the unknown system. After a number of iterations and mod-
ifying the coefficient values of the adaptive filter according
to the error signal after each iteration, those coefficients
eventually shall resemble the coefficients of the unknown
system.

In addition to be able to be easily implemented using
software simulation programs such as Matlab, the adaptive
method of LMS has been widely used through research
for hardware implementation due to having simple and
straightforward structure. However, in order to implement
it using hardware, the original LMS algorithm has to be
modified because of having a recursive loop in its coefficient
updating formula which prohibits it from being simply
pipelined.

When speaking about adaptive filtering, it is essential to
refer to the method: Recursive-Least-Square (RLS). This
is a well-known adaptive filtering algorithm, efficiently
utilized in applications of system identification [11], [12]. It
was introduced by Plackett in 1950, and has been verified to
be highly efficient and an accurate measure in system iden-
tification, with a drawback of having high computational
complexity.

The property of LMS of having an unchanged step size
leads to making it unique in simplicity of computations and
implementation, as compared to the followed algorithms
[2]. Step size is the parameter that panels the change made
to the adaptive filter’s coefficients with each iteration. Step
size selection in LMS directly affects the convergence rate
of algorithm. In addition to this, finding a value that is
greater than a specific boundary has the outcome of leading
LMS algorithm to unstable state.

This simplicity of LMS has one downside, resembled
by reducing convergence rate, where the total iterations
required for going to steady state is frequently compar-
atively high. One of the developed versions of the LMS
algorithm is the Normalized Least Mean Square (NLMS),
which implicates calculating of a normalized step size and
updating it with each iteration by depending on the power
of instantaneous input [13]. This readjustment of step size
has a benefit which is efficiently reducing convergence rate,
but it costs increasing the complexity of algorithm [2].

There are many variants of NLMS that have been sug-

gested in the literature, that depend upon updating step size
with each iteration depending on a particular control way
[14]. This improves convergence speed but with increased
computations. Some of the most popular of those methods
may include: Modified NLMS [14], [15], Leaky LMS [16],
Sign Error and Sign Data LMS [17], [18], Variable step size
LMS [19], frequency response shaped LMS [20], Hybrid
LMS [21], Absolute Average Error Adjusted Step-Size LMS
[2], [22], Filter Proportionate Arctangent framework-based
LMS (FP-ALMS) [23], proportionate NLMS (PNLMS) [24]
and other algorithms. The use of evolutionary techniques is
also suggested to improve convergence of adaptive filters
in the denoising operation of medical signals [25]. This
however adds further computations to the application of
adaptive filtering.

To sum up, LMS algorithm is known of its simplicity,
but it has a low convergence speed during seeking for the
optimal filter coefficients. The step size selection has a
big effect on convergence speed of LMS. However, in the
literature, there is only a range within which step size must
be selected, with no studies that help specifying the optimal
exact value, yet.

This paper proposes a method to determine the exact
LMS step size value which provides an efficient behavior
of this algorithm in terms of the number of iterations,
as well as Mean Squared Error (MSE). The novelty of
this proposal comes from that it has not been explored in
existing literature yet, which makes it a unique contribution
in this field. Results show that through this selection of
step size, LMS could approach NLMS algorithm behavior
without sacrificing the simplicity LMS is known to have.
The rest of this paper is organized as follows: section 2
provides the background behind adaptive filtering use in
system identification, with the description of both LMS and
NLMS methods. Section 3 describes the step size selection
method proposed in this work. Section 4 includes the
implementation and quality measures description. Results
are given and discussed in sections 5 and 6, respectively,
and finally the paper is concluded in section 7.

2. BackgroundMethodology
A. System Identification Using Adaptive Filtering

In order to formulate system identification problem,
suppose having an unknown linear system that is required to
be identified. This system may be an FIR or an IIR. In this
work, FIR is used for modeling the unknown system using
symbol N for filter order [3]. By connecting the adaptive
filter with this system in parallel, and exciting both of them
using an input signal x(n), an error signal is calculated from
the difference between adaptive filter’s output and the output
of the system. This configuration is symbolized by the block
diagram shown in Fig. 1.

Thus the principle behind adaptive filtering algorithms
used in system identification is to repeatedly update the
adaptive filter’s coefficients depending on the difference
between the output of the adaptive filter and the unknown
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Figure 1. Block diagram of unknown system identification using
adaptive filtering

system output. This updating operation is done repeatedly,
and eventually the values of the adaptive filter coefficients
will be highly close to those of the unknown system, where
minimizing the error signal is the target of iterations.

B. Adaptive Filtering Algorithms
1) LMS Algorithm

Assume to have an FIR filter with an adjustable set of
coefficients W and an output signal y(n), with the following
input signal [2, 3]:

x(n) = [x1(n), x2(n), ..., xk(n)], (1)

where k is the number of input samples and it is within the
range (0≤k≤N-1), and n is the number of iterations. The
filter coefficients are written as follows [2]:

W = [W1,W2, ...,Wk]. (2)

Assume to have a signal y(n) that resembles the output
of the adaptive filter, as follows [3]:

y(n) =
N−1∑
k=0

Wx(n − k), n = 0, 1, ...,m (3)

where m is the number of iterations.

In order to use this filter to identify a system with
output signal d(n) using the configuration shown in Fig. 1,
the filter coefficients must be selected so that the output
of the filter y(n) is comparable to d(n) based on this
selection. This is called (Adaptive Filter). This adjustment
requires the calculation of an error signal e(n). This error
sigkalluri1999generalnal is calculated as follows [26], [27]:

e(n) = d(n) − y(n). (4)

The optimum filter coefficients are the coefficients that
result in minimizing the squared errors summation. Mini-
mizing e(n) depending on the filter coefficients requires dif-
ferentiating error signal e(n) with each coefficient, yielding
a set of linear equations. Solving those equations involves

computing the autocorrelation of the input signal in addition
to the crosscorrelation between the desired output and the
input signal [2], producing a set of optimum coefficient
values.

An alternative method that leads to minimizing error
signal and yielding optimum filter coefficients without the
need for any mathematical evaluation of correlation se-
quences is the iterative method of LMS. It is known as the
simplest and most widely applicable form of adaptive filters.
An accurate method of RLS is a recursive method that
is used in the adaptive filtering. Despite its high accuracy
and fast convergence, RLS has the disadvantage of having
a high computational complexity, in addition to requiring
predefined information and conditions for the coefficient
updating operation [28]. This makes RLS method less
popular compared to LMS.

In LMS, the filter coefficients are iteratively updated in
order to reduce the error signal to the minimum. As the error
signal gets lower, the adaptive filter’s coefficients become
closer to the coefficients of the unknown system [29].
Firstly, a random initial value is assigned to the weights of
the adaptive filter. This value can be assumed to be zeros
[3]. Error is then calculated based on 1, and then a new
value is assigned to the adaptive filter weights as [2], [27]:

W(n + 1) = W(n) + 2µ.e(n)x(n), (5)

where µ is the step size value that is predefined at the
start of the algorithm by the user. Selecting the step size is
the factor that controls convergence speed of the algorithm
towards steady state. Larger values for this step lead to faster
convergence, but too large values may drive the algorithm
towards unstable behavior and thus the algorithm fails in
evaluating the unknown system coefficients. On the other
hand, smaller step values lead to slow convergence due to
increasing the required number of iterations [3]. Therefore,
step size selection must fulfill a trade-off between stability
and convergence speed.

LMS has been accused of having a low convergence rate
compared to the NLMS algorithm. However, it is going to
be shown through the results of this paper that making the
right selection of the step size is all that it takes for LMS to
produce results that are very near to those obtained using
NLMS, with no computations added.

2) NLMS Algorithm
Both the gradient descent methods of LMS and NLMS

are based on the continuous updating of the weight values
depending on the instantaneous error signal [4]. Unlike
LMS, NLMS continuously updates its step size after each
iteration. This has the effect of highly improving the conver-
gence rate of NLMS, compared to LMS that uses a single
predefined step size.

Step size in NLMS is updated according to the following
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formula [30]:
µNLMS (n) =

δ

ε + x1x1
, (6)

where δ is a constant ranging from 1 to 2 and it is usually set
to 1 and ε is the smallest non negative value that prevents
the case of dividing by zero. Based on that, the values of
the weights of the adaptive filters are updated according to
[1]:

W(n + 1) = W(n) + 2
δ

ε + x1x1
.e(n)x(n), (7)

3. ProposedMethod
As previously explained, the value of the step size highly

affects the behavior of LMS algorithm when going towards
the optimum solution. Throughout the literature, the limits
within which step size must be selected are specified by
more than a formula. Table 1 shows a list of references
that suggest formulas for specifying the range within which
step size in LMS must to be selected to ensure stability.
This however leaves a wide range of choices for the user to
specify the value of the step from, where a specific value
for step size is usually selected within this range without
justification, as shown in the examples in table 1. This table
also includes a column showing the value used by a number
of references for LMS step size.

TABLE I. THE WIDELY USED METHODS AND RANGES OF
LMS STEP SIZE FOR SYSTEM IDENTIFICATION

APPLICATIONS

Ref. used method used step size

[2] Small +ve value Not given
[3] 0< µ < 1/10NPx* Not given

[31], [32], [33] 0 < µ < 1/λmax** 0.0625 and 0.08
[34] 0 < µ < 2/λmax from 0.001 to 1
[35] 0 < µ < 0.2 0.01 and 0.004
[36] 0 < µ < 1 from 0.001 to 0.1
[37] 0 < µ < 2 from 0.005 to 2

* Px denotes the power included in the input signal x(n).
** λmax denotes the maximum eigenvalue of the covari-
ance matrix of the input signal x(n).

It can be noticed that the equations given in table 1 can
only be used to specify the limits of the step size, leaving
a wide range of feasible values to select the step size from.
The optimum step size within a given range has been the
material of many studies [34]-[37], where LMS behavior is
assessed at a range of step sizes and based on the results,
the most suitable value is recommended. Nevertheless, this
value is vulnerable to change when the filter order, weight
values or input signal properties is changed, limiting the
efficiency of such studies.

This work suggests adjusting the step size of LMS so
that it equals to the step size used in NLMS during the first
iteration. This can be described by the following equation:

µNLMS (n) =
δ

ε + x1(0)x1(0)′
, (8)

Unlike step size in NLMS that is continuously updated
after each iteration, step size will be fixed throughout the
LMS learning process so that no additional computational
burden is added.

It has been proven in [20] that NLMS has higher
robustness than LMS method, due to having less sensitivity
towards changes in the eigenvalue-spread associated to the
correlation matrix of the input signal. Due to the fact that
the only difference between the formulas of the two methods
is the selection and update of the step size, then suggesting
following the way of initial step size selection in NLMS
to calculate the step size in LMS is expected to raise
the robustness of the latter, leading to higher convergence
speed.

4. Implementation and QualityMetrics
In order to assess the proposed method, Matlab imple-

mentations of the LMS algorithm using various methods for
step size selection are produced, together with the NLMS
algorithm implementation for comparison. The algorithm
steps are as follows:

1- Generating the input signal, unknown system and
desired output.

2- Give an initial value to step size (for standard LMS)
or to (δ) for NLMS.

3- Generate a (For loop) statement, with specifying the
number of iterations.

4- Within the For loop:

- a portion of input signal is taken.

- step size is specified (for proposed method in the first
iteration or for NLMS with each iteration).

- adaptive filter output and error signal are found.

- the weight vector is updated.

The input is assumed to be a random signal with a nor-
mal distribution, generated using a Matlab function called
(randn) that generates a sequence of random values drawn
from the standard normal distribution, with an amplitude
of 100. This signal is generated only once and its values
are stored and reused as the input for all the implemented
methods.

According to the equations in table 1, maximizing
LMS speed of convergence without driving the system to
unstable condition is by selecting a step size that equals the
maximum limit specified in that equation. Based on this,
step sizes are found to be as given in table 2, for filter
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orders 10 and 20.

A low-pass FIR filter is used to represent the unknown
system, using a Matlab function called (fircband). This
function specifies the filter coefficients based on the given
constraints. The desired output signal d(k) is found using a
Matlab function called (filter). d(k) will be used for error
calculation after each iteration according to 1.

In addition to the plot of the amplitude of the error
signal, three different numerical metrics are used to assess
the implemented methods. Firstly, the mean squared error in
dB scale, measured for the error produced from all iterations
as follows:

MS E = log10(
1
m

m∑
n=1

e(n)2), (9)

The second performance measure is the Weight Differ-
ence (WD) that represents the summation of the absolute
difference between unknown system coefficients and the
coefficients of the adaptive filter after a specific number
of iterations, converted to dB scale, as follows:

WD = log10(
N∑

i=1

b(i) − w(i)), (10)

where b is the vector of weights of the unknown system.

The third measure is the absolute error value resulting
after 1000 iterations, in dB scale, as follows:

Er1000 = log10(|e(1000)|), (11)

During simulations, the filter order of the adaptive filter
is set to be equal to the order of the unknown system. This
is not possible in practical cases, where the filter order of
the unknown system is usually unknown. However, it is
possible to detect the filter order of this system simply as
follows: Firstly, a random value for the order of the adaptive
filter is selected. Then the result of applying LMS algorithm
will give an indication on the filter order of the unknown
system as follows:

• If the order selected for the adaptive filter was less
than that of the unknown system, the system will
either go towards instability condition at the end of
the LMS iterations, or high values of error signal
will be achieved. In other words, the error will not
be minimized at the end of the iterations and this
indicates that higher value should be assigned for to
adaptive filter order.

• Otherwise if the selected order of the adaptive filter
was more than that of the unknown system, LMS
algorithm will perform properly with simply giving
zeros to the values of the additional weights. This
means that the order of the unknown system will be
indicated by the number of non-zero coefficients, and

the order of adaptive filter will simply be amended to
the unknown system’s order.

5. Results
The proposed step size selection method is examined

through MATLAB implementation of LMS and NLMS
algorithms, using the filter orders: 10 and 20. In addition
to the proposed method, step size in LMS is selected based
on three various well-known methods given in table 1. For
a fair comparison, the upper limit in each equation that
specifies the range for step size is used, in order to provide
the fastest possible convergence to the optimum solution
provided by the equation and to assure stability at the same
time. Based on this explanation, the exact value used for
step size for each of the LMS implementations in Fig. 2 is
as given in table 2. Fig. 2 shows the convergence rate in
terms of the absolute instantaneous error value for each of
the used methods compared to NLMS algorithm, for filter
orders 10 and 20.

TABLE II. PERFORMANCE EVALUATION OF NLMS AND
LMS USING VARIOUS STEP SIZE SELECTION METHODS

AFTER 1000 ITERATIONS

Method Step size

MSE at
itera-
tion no.
1000
(dB)

WD at
itera-
tion no.
1000
(dB)

Error at
itera-
tion no.
1000
(dB)

Filter Order = 10

LMS (µ =
1/10NPx) 1.0300e-6 2.3791 -4.4587 -2.7312

LMS (µ =
1/λmax) 7.5484e-7 2.5068 -3.2928 -1.7564

LMS (µ =
2/λmax) 1.5097e-6 2.2262 -6.4913 -4.6869

LMS (µ =
µNLMS (0)) 1.0859e-5 1.7372 -15.326 -13.847

NLMS 1.6744 -15.442 -14.148

Filter Order = 20

LMS (µ =
1/10NPx) 5.0578e-7 2.6672 -1.7628 -3.1541

LMS (µ =
1/λmax) 1.4607e-6 2.2561 -5.6064 -4.6684

LMS (µ =
2/λmax) 2.9214e-6 2.0480 -11.112 -9.8142

LMS (µ =
µNLMS (0)) 5.6338e-6 2.0068 -13.141 -11.379

NLMS 1.9763 -14.336 -13.546

It can be seen from Fig. 2 that the nearest LMS behavior
to NLMS is when using the proposed method for selecting
the value of step size, at both of the used filter orders.
In addition, subjective results given in table 2 show that
it is not only the convergence time that is efficiently
reduced compared to the other implemented classic step
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Figure 2. The amplitude of the error achieved by NLMS and by LMS algorithms using various step size selection methods, for filter orders of 10
and 20.

size selection methods, but the proposed method is also
the nearest to NLMS algorithm in each of Mean Square
Error (MSE), Weight Difference (WD), and in error signal
calculated according to (11) after 1000 iterations. The high
match between the actual weights of the unknown system
and the weights produced for the adaptive filter using the
proposed method after 1000 iterations is shown in Fig. 3,
and after getting an error of less than 0.001 (after 366
iterations) is shown in Fig. 4, for filter order 20.

Another measure of the efficiency of the proposed
method is the number of iterations required to start pro-

ducing an error value of less than 0.001. This measure is
given in table 3 for filter orders 10 and 20, where various
methods for selecting step size in LMS are implemented
for comparison (from table 1), in addition to NLMS.

In Fig. 5, comparison is carried out using bar repre-
sentation for filter orders 5, 10, 15, 20 and 25, using the
proposed step size selection method as well as the three
implemented step size selection methods, in addition to
NLMS method. From the comparison in this figure, it can be
clearly noticed that the number of iterations taken by LMS
using the proposed method is the nearest to the number
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Figure 3. A high match between the optimum weights of the
unknown system and the adaptive filter weights after 1000

iterations using the proposed method using a filter order of 20.

Figure 4. A high match between the actual values of the unknown
system weights (W*) and LMS weights using the proposed method

after 366 iterations, together with NLMS weights after 320
iterations using a filter order of 20.

of iterations required by NLMS, compared to the other
implemented methods, for all the tested filter orders.

It is important to mention that the proposed method
works well with filter orders of more than 5, where it is
found that a second update of step size is required by the
proposed method to approach NLMS behavior for filters
of order 5 and less. This can be done using the same
equation used for creating the value of the first step, which
is given in (8). The reason of this behavior is the tendency
of conventional LMS towards having a high number of
iterations at low filter coefficients, because of having a
reduced value of error signals at each iteration according to

TABLE III. No. OF ITERATIONS REQUIRED TO START
PRODUCING AN ERROR OF LESS THAN 0.001. THE USED

STEP SIZES ARE THE UPPER LIMITS OF THE RANGES
GIVEN IN TABLE 2.

Method No. of Iterations
filter order=10 filter order=20

LMS (µ = 1/10NPx) >1000 >1000
LMS (µ = 1/λmax) >1000 907
LMS (µ = 2/λmax) 766 439

LMS (µ = µNLMS (0)) 219 366
NLMS 157 320

Figure 5. Bar representation of the number of iterations required
by various methods used for step size calculation, to achieve an

error of less than 0.001, using five different filter orders within the
range from 5 to 25.

(4). This is not the case for NLMS due to the update of step
size that occurs after each iteration. The proposed method
succeeds in approaching NLMS behavior at higher filter
orders, but when filer order is low, it takes a single update
of step size during the first iteration of LMS to approach
NLMS behavior. However, this is usually not a problem
since FIR filters often use filter orders of more than that.
This is a disadvantage of FIR filters over IIR filters, where
to achieve a specific level of performance, FIR filters often
require a much higher filter order than IIR filters. From
one side, during software implementation of FIR filters,
increasing filter order practically has no effect on imple-
mentation cost. On the other side, a disadvantage of FIR
filters that is accompanied with increasing their orders will
occur. This disadvantage is resembled by requiring a higher
delay compared to an IIR filter with equal performance [38],
[39], due to approaching the ideal filter response.

6. Discussion
A mathematical realization of LMS adaptive process

is given in detail in [4], as one of the steepest-descent
type of algorithms. It has been proven in this reference
that practically, having a weighting vector (W) along with
the covariance matrix and corresponding gradient, it is
possible to move from the suggested weight vector to
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the optimum weight vector in a single iteration. However,
practical adaptive systems in nature are not provided with
enough information to perfectly adapt in a single iteration.
Thus, a learning process and weight update model are
used to seek for the minimum MSE, where the process of
navigating towards this minimum is done using a number of
iterations to adjust the weight vector in smaller increments
to an optimal one.

The measurements of the number of iterations required
by various step size selection methods to reach an error of
less than 0.001 between actual and adaptive filter weights
show that those methods respond in various ways to in-
creasing the filter order. This can be clearly seen in figure
5. Both of NLMS and the proposed method are close in
requiring more iterations as filter order increases. Methods
that depend on the inverse of the maximum eigenvalue and
the inverse of the signal power have numbers of iterations
that are inversely proportional to the filter order. However,
the behavior of NLMS and the proposed method are still
shown to be superior for the tested range of filter orders, in
addition to being so close to each other.

The results given in section 5 of this work successfully
confirm that even very small changes in the value assigned
to step size in LMS can lead to a huge variation in behavior,
in terms of the convergence speed and the amount of
instantaneous error in weight estimation. The proposed step
size selection method is evaluated at various filter orders
for feasibility verification. This is to prove that making the
right selection of step size highly affects the behavior of
LMS algorithm and furthermore, it leads to approaching
the efficient behavior of the algorithm of NLMS.

As shown in tables 2 and 3, the performance of LMS
algorithm is highly sensitive even to very small amounts of
changes in step size. According to these tables, a change
of (1.4607e-06) in step size for a filter of order 20 results
in changing the number of iterations required to reach an
error of 0.001 to nearly the half (from 907 to 439 iterations).
Thus it is not feasible to specify a range that is relatively
wide for step size without ruling the selection of the step
within that range.

Improving the performance of the adaptive filters used
for system identification can be as simple as selecting the
correct step size, with no need to update the step size with
each iteration. This helps improving the performance and
lowering the amount of computations, where computational
complexity of both of LMS and NLMS is linearly dependent
on the number of iterations, i.e. it is O(m). This is because of
using matrix operations available in Matlab, so that for any
number of coefficients, the instructions within each iteration
are performed once. In real-world scenarios, without the
use of matrix operations, the computational complexity of
LMS and NLMS will grow to be a function of both m
and filter order, i.e., it becomes O(m*N). In hardware im-
plementation, NLMS requires an additional multiplier and a

divider compared to LMS [40], for step size updating. With
the proposed method, it is possible for LMS to approach
NLMS behavior without requiring further hardware, which
is suitable for resource-constrained platforms.

The proposed method of step size specification shows
a superior behavior, which is confirmed through the mea-
surements of the number of occupied iterations required to
produce 0.001 error and in both MSE and Weight Difference
(WD) measurements.

This work is dedicated to prove the efficiency of the
method proposed for selecting step size in LMS for the
application of system identification that is widely used
in many recent systems. This method is not tested for
other applications of adaptive filtering yet. However, it is
expected to have a similar behavior in approaching NLMS
performance. This is planned to be performed in future
works, where the proposed method will be tested for the
application of noise removal in communication systems and
signals. In addition, the range around the values specified
by the proposed method for LMS step size are planned to be
studied, in order to select an ultimate range that represents
the optimal solution for step size selection in the general
method of LMS for any application. The proposed method
is also planned to be tested for other variations of LMS
algorithm such as Leaky LMS [16], [41].

7. Conclusion
It is found through this work that the well-known LMS

iterative method is able to produce a superior behavior by
simply having its step size adjusted to the step size used
in the first iteration of NLMS algorithm. This ensures no
more computations are added to the original LMS while
improving convergence rate. The results found through this
work by using Matlab implementation show the efficiency
of the proposed step size selection method and clarify the
importance of the step size in directing the whole behavior
of LMS.

Two drawbacks arise with the proposed method; firstly
requiring an update for the step size after the first iteration
for filters of order 5 and less, and secondly it approaches the
performance of NLMS but it does not overcome it. Further
investigations over the range that is around the values of
the step size specified in this research may lead to further
improvement in LMS algorithm performance. Furthermore,
the proposed method can be proved to be effective not
only for the application of system identification, but also
for other applications of adaptive filters. This takes to the
next phase of this research, which is planned to involve
testing the suggested method for the application of noise
cancellation, and, for other types of LMS algorithm such
as Leaky LMS.

Acknowledgement
Authors would like to thank the Ministry of Higher

Education and Scientific Research of Iraq, as well as the
Electronics Engineering College, Ninevah University, for

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 16, No.1, 1283-1292 (Sep-24) 1291

their continuous encouragement and support of scientific
research. Authors are also thankful to the reviewers and
editorial team of the journal of IJCDS for their valuable
reviews and efforts in publishing this work.

References
[1] S. Dixit and D. Nagaria, “Lms adaptive filters for noise cancella-

tion: A review,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 7, no. 5, pp. 2520–2529, 2017.

[2] G. S. Nariman and H. D. Majeed, “Adaptive filter based on abso-
lute average error adaptive algorithm for modeling system,” UHD
Journal of Science and Technology, vol. 6, no. 1, pp. 60–69, 2022.

[3] V. K. Ingle and J. G. Proakis, Digital signal processing using
MATLAB. Brooks/Cole Publishing Co., 1999.

[4] S. D. Stearns, Of aldapfive signal processing, 1985.

[5] A. Manseur and A. Dendouga, “Enhanced noise cancellation: A
variable step size normalized least mean square approach.” Traite-
ment du Signal, vol. 41, no. 2, 2024.

[6] T. Li, L. Wang, H. Sun, and X. Wang, “Comparison of adaptive
filter algorithms for underwater acoustic channel estimation and
equalization,” in 2024 4th International Conference on Neural
Networks, Information and Communication (NNICE). IEEE, 2024,
pp. 1308–1313.

[7] S. Joel, S. K. Yadav, and N. V. George, “Enhanced bias-compensated
nlms for adaptive doa estimation,” IEEE Sensors Letters, 2024.

[8] W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a
comprehensive introduction. John Wiley & Sons, 2011.

[9] B. Widrow, “Thinking about thinking: the discovery of the lms
algorithm,” IEEE Signal Processing Magazine, vol. 22, no. 1, pp.
100–106, 2005.

[10] ——, “Recollections of norbert wiener and the first ifac world
congress,” IEEE Control Systems Magazine, vol. 21, no. 3, pp. 65–
70, 2001.

[11] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2002.

[12] V. H. Nascimento and M. T. Silva, “Adaptive filters,” in Signal
Processing and Machine Learning Theory. Elsevier, 2024, pp.
717–868.

[13] P. An, B. Brown, and C. J. Harris, “On the convergence rate
performance of the normalized least-mean-square adaptation,” IEEE
transactions on neural networks, vol. 8, no. 5, pp. 1211–1214, 1997.

[14] F. L. Perez, C. A. Pitz, and R. Seara, “A two-gain nlms algorithm
for sparse system identification,” Signal Processing, vol. 200, p.
108636, 2022.

[15] G. Modi and B. Singh, “An improved lms prefilter-based pll with
adaptive controlling parameter for grid synchronization and islanded
operation of batteryless solar pv system,” IEEE Transactions on
Industrial Informatics, 2024.

[16] L. Alhafadhi and J. Teh, “Power quality enhancement in stand-alone
pv system using leaky lms adaptive algorithm,” in Proceedings of the
11th International Conference on Robotics, Vision, Signal Process-
ing and Power Applications: Enhancing Research and Innovation

through the Fourth Industrial Revolution. Springer, 2022, pp. 449–
454.

[17] E. Shachar, I. Cohen, and B. Berdugo, “Acoustic echo cancellation
with the normalized sign-error least mean squares algorithm and
deep residual echo suppression,” Algorithms, vol. 16, no. 3, p. 137,
2023.

[18] S. H. Pauline, R. Narayanamoorthi, and S. Dhanalakshmi, “A low-
complexity underwater acoustic signal denoising technique based
on multi-stage adaptive filter configuration,” in OCEANS 2022-
Chennai. IEEE, 2022, pp. 1–4.

[19] V. Dakulagi, R. Dakulagi, K. H. Yeap, and H. Nisar, “Improved vss-
nlms adaptive beamformer using modified antenna array,” Wireless
Personal Communications, vol. 128, no. 4, pp. 2741–2752, 2023.

[20] O. Kukrer and A. Hocanin, “Frequency-response-shaped lms adap-
tive filter,” Digital Signal Processing, vol. 16, no. 6, pp. 855–869,
2006.

[21] P.-C. Chang, C.-S. Yu, and T.-H. Lee, “Hybrid lms-mmse inverse
halftoning technique,” IEEE Transactions on Image Processing,
vol. 10, no. 1, pp. 95–103, 2001.

[22] T. M. Jamel and H. Mohamed, “Noise canceller using a new
modified adaptive step size lms algorithm,” WSEAS Transactions
on Signal Processing, vol. 10, pp. 637–644, 2014.

[23] Rosalin and A. Patnaik, “A filter proportionate lms algorithm based
on the arctangent framework for sparse system identification,”
Signal, Image and Video Processing, vol. 18, no. 1, pp. 335–342,
2024.

[24] Z. Mohagheghian Bidgoli and M. Bekrani, “A switching-based vari-
able step-size pnlms adaptive filter for sparse system identification,”
Circuits, Systems, and Signal Processing, vol. 43, no. 1, pp. 568–
592, 2024.

[25] M. K. Ahirwal, A. Kumar, and G. K. Singh, “Adaptive filtering of
eeg/erp through noise cancellers using an improved pso algorithm,”
Swarm and Evolutionary Computation, vol. 14, pp. 76–91, 2014.

[26] S. Kalluri and G. R. Arce, “A general class of nonlinear normalized
adaptive filtering algorithms,” IEEE Transactions on Signal Process-
ing, vol. 47, no. 8, pp. 2262–2272, 1999.

[27] A. Ali, M. Moinuddin, and T. Y. Al-Naffouri, “Nlms is more robust
to input-correlation than lms: A proof,” IEEE Signal Processing
Letters, vol. 29, pp. 279–283, 2021.

[28] S. Kannur Vasudeva Rao, Kiran, Gowda, N. Kumar, and M. Shan-
thamallappa, “System identification of fir filters,” Journal of Engi-
neering Research and Sciences, vol. 1, no. 4, pp. 74–80, 2022.

[29] T. M. Inc., “Matlab version: 9.13.0 (r2022b),” Natick,
Massachusetts, United States, 2022. [Online]. Available:
https://www.mathworks.com
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