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Abstract: Automated fish disease detection can eliminate the need for manual labor and provides earlier detection of fish disease 

such as EUS (Epizootic Ulcerative Syndrome) before it further spreads throughout the water. One of the problems that is faced on 

implementing a semantic segmentation fish disease detection system is the limited size of the semantic segmentation dataset. On the 

other hand, classification datasets for fish disease detections are more common and available in larger sizes, which cannot be used in 

segmentation tasks directly since it lacks the necessary label for such tasks. In this paper, we propose a training strategy based on 

transfer learning to learn from both ImageNet and classification dataset before being trained on the segmentation dataset. 

Specifically, we first train the ImageNet pre-trained VGG16 on a classification task with the classification dataset, then we transfer 

the weights into a semantic segmentation architectures such as U-Net and SegNet, and finally train the segmentation network on a 

segmentation task with the segmentation dataset. We modify the U-Net architecture so that the pre-trained VGG16 weights can be 

transferred into the architecture. We used a classification dataset containing 304 images of fish diseases for classification task and a 

segmentation dataset containing 25 images of EUS-affected fishes for the segmentation task. The proposed training strategy is then 

compared with alternative training strategies such as training VGG16 on ImageNet alone or classification dataset alone. When 

applied to SegNet and U-Net, the proposed training strategy surpasses their respective architecture trained on ImageNet or 

classification dataset alone. Between these two architectures with all compared training strategies, the SegNet architecture trained 

with our proposed training strategy achieves the best performance with validation and testing mIoU of 66.53% and 63.46%, 

respectively. 

 

Keywords: Fish Disease Detection, Semantic Segmentation, Transfer Learning, U-Net Model, SegNet Model. 

 

1. INTRODUCTION 

Due to the geography of the country, fish has become 

one of the major source of income in Indonesia. 

According to BPS, fish production has increased from 

15.24 million tons in year 2017 to 16.12 million tons in 

year 2018 [1]. 

Like many other animals, most fish are susceptible to 

fish diseases. One of the diseases is Epizootic Ulcerative 

Syndrome (EUS), which is caused by Aphanomyces 

invadans. This disease is easily identified by the red spots 

that appear on the fish body, hence this disease is also 

known as Red Spot disease. Fish that are affected by EUS 

will start to lose appetite, thus consuming less feed and 

growing slower. The affected fish may also even die, with 

a mortality rate of around 20-80% [2]. Furthermore, EUS 

can spread from the infected fish to other healthy fishes in 

the same body of water. Therefore, early detection of fish 

disease can potentially prevent further infections and 

mortalities in the affected fish pond. 

One conventional approach for detecting fish diseases 

is to manually monitor the fish. The person observes the 

fish in the fish tank and notices for any anomalies visible 

on the fish skin. However, this approach is time-

consuming and requires an individual that is capable at 

identifying fish diseases. 

Computer vision is a study that tries to mimic the 

human’s capability of recognizing images through the use 

of a computer. While traditional computer vision methods 

rely on algorithm selected to extract features from images 

such as edge detection, more recent computer vision 

methods employ deep learning neural network to 

automatically extract features from images, without the 

need to manually selecting certain features. 

There exists many works that are aimed at detecting 

fish diseases through image classification from hand-
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crafted features [3][4] and image classification using deep 

neural network [5][6][7]. There are also other works that 

also aims to detect fish disease through image 

segmentation [8][9], although image segmentation 

approaches are far less common than image classification 

approaches. 

One of the problems faced by one previous work was 

the limited sample size of the semantic segmentation 

dataset, which resulted in the model performing worse on 

testing data split [8]. Semantic segmentation datasets are 

annotated with pixel-level labels. That is, the label is 

applied to each individual pixel by creating a mask of 

different classes in the image. Due to the complexity and 

level of expertise required to annotate pixel-level labels, 

they are more costly to annotate. Thus, they are less 

common and available in smaller sample sizes. 

One common method used to overcome the dataset 

small sample sizes is to employ data augmentation. While 

data augmentation can help to increase the model 

performance slightly, the synthetic data created from data 

augmentation does not introduce new features and as such 

the model can still overfit from the limited features. 

On the other hand, classification datasets are more 

common and available in larger sample sizes. In contrast 

to segmentation datasets, classification datasets are 

annotated with image-level labels. That is, the label is 

applied to the whole image rather than the individual 

pixels. image-level labels are easier to annotate than pixel-

level labels. However, image-level datasets are 

incompatible with segmentation models which produce 

pixel-level outputs and cannot be directly used in 

segmentation tasks. Therefore, incorporating the features 

from the more abundant image-level datasets into 

segmentation models can be seen as a challenge. 

An approach for a model to learn both image-level and 

pixel-level features is to build an architecture with one 

shared encoder and two outputs, one for classification, 

and another for segmentation. The shared encoder learns 

from input data by summing the losses from the 

respective label output. This approach is also known as 

Multi-task learning. Several works have proposed Multi-

task learning architectures for classification and 

segmentation tasks [10][11][12]. Such architectures are 

more complicated to build. 

On the other hand, there are several works that have 

applied transfer learning based on ImageNet for semantic 

segmentation problems [13][14][15]. Transfer learning is 

a method of reusing the knowledge on a different yet 

related domain to the target domain. This is done by 

transferring the weights from a pre-trained network to 

another compatible network.  

The idea of this work is based on the observations that 

most of the previous works related to transfer learning 

uses networks that were pre-trained on ImageNet, which 

is a large image-level dataset, to be transferred into a 

different network or architectures of a different task, such 

as segmentation tasks. Since the weights transferred to the 

segmentation network can originate from a classification 

network, it is possible to transfer the image-level features 

to the segmentation network by first training the 

classification network on a more abundant image-level 

dataset. After the weights have been transferred into a 

segmentation network, it can be further trained on a scarce 

pixel-level dataset to incorporate the pixel-level features. 

The resulting segmentation network will have the image-

level features incorporated along with the pixel-level 

features. Additionally, ImageNet pre-trained network 

weights can be transferred into the classification model 

before training to incorporate ImageNet features into the 

network, which could further improve the model 

performance. 

Therefore, this work proposes a training strategy based 

on transfer learning where a network is trained in 

classification tasks on ImageNet and classification dataset 

before the weights in the network are transferred to 

another network for segmentation tasks. We start with a 

classification network pre-trained on a large-scale dataset 

in a different domain such as ImageNet. The network is 

then trained on a fish disease classification dataset in the 

classification task. Finally, the network weights are 

transferred to a segmentation network and trained again 

on a fish EUS segmentation dataset in the segmentation 

task. The main contributions made in this work are as 

follows: 
1) A proposed training strategy that can be applied 

to existing semantic segmentation models for 
improving fish disease detection. The proposed 
training strategy allows semantic segmentation 
models to be trained with both segmentation data 
and classification data without the need of a 
complicated architecture. 

2) We demonstrated and compare the effectiveness 
of our proposed training strategy, which uses both 
ImageNet and fish disease classification dataset, 
with alternative training strategies, which only 
uses either ImageNet alone or fish disease 
classification dataset alone. 

The rest of the work is structured as follows. In 

Section 2, various related works for fish disease detection 

and transfer learning are presented. The proposed training 

strategy and network architectures used on this work are 

shown in Section 3 as well as the datasets used. Section 4 

presents the comparison and results of various training 

strategies including our proposed training strategy. We 

discuss our findings based on the results we presented in 

Section 5. Finally, we conclude our findings in Section 6. 
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2. RELATED WORKS 

A. Fish Disease Detection 

Chakravorty et al. [9] was one of the earliest work that 

suggested the use of semantic segmentation to detect fish 

disease from fish images. The work implemented a 

system to segment diseased areas using PCA and k-Means 

clustering. The results indicate that the implemented 

algorithm can work with above 90% accuracy. The 

authors suggested that more sophisticated approaches 

such as neural networks or SVM (Support Vector 

Machines) should be used for this problem. Continuing 

from this, Rachman [8] proposed and compared four 

different deep learning semantic segmentation models 

with backbone networks for detecting EUS. Although the 

performance was heavily affected by the very limited 

dataset, the U-Net with ResNet50 backbone network 

achieved the highest test score out of the four tested 

models with an mIoU (mean Intersection over Union) of 

59.33%. 

Ahmed et al. [3] proposed a method of classifying 

infected salmon fish using SVM. Features such as 

statistical features and GLCM (Grey-Level Co-occurrence 

Matrix) is extracted from preprocessed salmon fish 

images and then fed to the SVM classifier. The highest 

accuracy obtained by the SVM classifier is 94.12% with 

area under ROC curve of 96.71%. Similarly, Mia et al. [4] 

proposed an expert system based on feature extraction of 

statistical feature and GLCM to detect fish diseases. 

Unlike the previous work, this work employs eight 

different machine learning algorithms. The Random 

Forest model performed the best with 88.66% accuracy 

and an area under ROC curve of 89.71%. 

Waleed [16] proposed a system based on Raspberry Pi 

to detect fish disease using the deep learning approach. 

The images are preprocessed and segmented to obtain the 

diseased part of the fish, then a CNN (Convolutional 

Neural Network) model classifies the disease of the fish. 

The model AlexNet reaches 99.0446% accuracy when 

XYZ colorspace is used. Gupta et al. [5] proposed a 

modified VGG network for detecting lice and wound on 

salmon fish. The images are preprocessed to adjust 

contrast. The proposed model reached 96.7% accuracy, 

which is 3.89% higher than the unmodified VGG19 

network trained on the same dataset. Y.P. Huang and 

Khabusi [6] proposes an architecture based on attention 

mechanism, multilayer fusion, and online sequential 

extreme learning machine to classify five different fish 

diseases. The images are preprocessed to adjust contrast 

and remove the image background. The proposed 

architecture reached 94.28% accuracy. 

B. Transfer Learning 

Pravitasari et al. [13] proposed the UNet-VGG16 

architecture and applied the transfer learning method for 

segmentation of brain tumor. The proposed architecture 

Figure 1. The U-Net+VGG architecture 
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UNet-VGG16 was modified so that the encoder resembles 

the VGG16 network and the decoder to match the encoder 

layers. Imad et al. [15] proposes the use of transfer 

learning to semantically segment 3D objects from LiDAR 

data. The proposed network, which shape was inspired by 

the U-Net architecture, receives the pre-trained 

MobileNetV2 weights before being trained on pre-

processed bird-eye view images from raw point clouds. 

Sakurai et.al. [17] proposed a two-step transfer learning 

for semantic segmentation of plants. The FCN-8s network 

was first pre-trained on ImageNet, then trained on a 

broader plant dataset, and lastly trained on a narrower 

plant dataset. 

3. MATERIALS AND METHODS 

A. Proposed Training Strategy 

The training strategy we propose is as follows. First, 

we obtain the pre-trained VGG16 network. This pre-

trained network should be pre-trained on a large-scale 

dataset. As the network was previously trained on a 

different dataset, the number of classes on the network 

output will differ from the number of classes on our 

dataset. Therefore, we replace the very last dense layer 

with our own to match the number of classes in our 

classification dataset. The pre-trained network is then re-

trained on the classification task with the classification 

dataset of the target domain. Re-training the network with 

a dataset that is similar to the target domain will introduce 

new features relevant with the target domain to the 

network. 

After the VGG16 network has been re-trained on the 

classification dataset, we transfer the weights of the 

convolutional layers from the VGG16 into the encoder 

layers of the architecture used. The chosen architecture is 

then trained on a segmentation task with the segmentation 

dataset. The weights on both encoder and decoder layers 

are not frozen and allowed to change during training. 

Figure 2 shows the process of our training strategy. 

 

Figure 2. Our proposed training strategy. 

B. Network Architectures 

To test our proposed training strategy, we chose 

VGG16 as the classification network. We also chose 

SegNet and U-Net to be tested as the segmentation 

networks. The VGG16 network was chosen primarily due 

to the network being easy to adapt and transfer to the 

chosen segmentation networks. 

The U-Net architecture is divided into two parts, the 

encoder layers, and the decoder layers. Except for the last 

encoder layer, the encoder layers are connected to the 

respective decoder layers using skip connections. 

However, the VGG16 weights cannot be direcly 

transferred into U-Net architecture as the architecture does 

not contain the VGG16 network. Therefore, we modify 

the encoder layers to contain the VGG16 convolutional 

layers. This modified architecture will be referred to as U-

Net+VGG throughout this paper. Unlike the architecture 

proposed in [13], the decoder layers of the U-Net+VGG 

are not modified and remains the same. The U-Net+VGG 

architecture is illustrated in Figure 1. 

The SegNet architecture resembles the U-Net 

architecture with the main difference in the skip 

connection, which only transfers max-pool indices into 

the respective decoder layers rather than feature maps 

[18]. Since the encoder layers of the SegNet architecture 

resemble the VGG16 convolutional layers by design, no 

modifications are necessary. We directly transfer the 

VGG16 weights into the encoder layers. 

All architectures are adjusted to receive images with 

an input size of 448×448 in order to preserve the pixel 

sizing between datasets. Batch normalization is applied 

after every convolutional layer and before the Rectified 

Linear Unit (ReLU) layer. 

C. Datasets 

1) Classification Dataset 

The classification dataset contains 460 images of fish 

obtained from Kaggle [19]. The dataset contains pictures 

of fish that contracted various fish diseases, as well as 

pictures of healthy fish. Each image in this dataset is 

labeled by the class it is categorized in. The dataset 

contains 7 classes of fish disease, including healthy fish. 

We discovered that the dataset contains several 

duplicated images within the same classes and between 

different classes. Additionally, the dataset overlaps with 

the segmentation dataset. To prevent leaking testing data 

to the model, image deduplication is performed through 

the use of a Python library to detect duplicated images and 

overlapping data from another dataset. The found 

duplicated images are then removed, prioritizing duplicate 

images from the largest class. After deduplicating the 

images, 304 images are left and split into training data, 

validating data, and testing data containing 213, 47, and 

44 images respectively. 
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To match the segmentation network, the images are 

simply resized and stretched to 448×448 pixels. No image 

pre-processing was applied. 

2) Segmentation Dataset 

The segmentation dataset contains 26 images of fish 

obtained from Roboflow [20]. The dataset contains 

pictures of fish that contracted EUS. Each image is 

labeled with a segmentation mask. The dataset contains 

only EUS class. 

Similar to the classification dataset, we also 

deduplicate the image using the same method, resulting in 

25 images left in the dataset. The dataset is then split into 

training data, validating data, and testing data containing 

15, 5, and 5 images respectively. 

The segmentation dataset contains images with 

varying sizes. To ensure that the next image preprocessing 

method can work, the images are first resized to have the 

same width and varying height. We chose the width to be 

fixed at the median width of the segmentation dataset of 

374 pixels. 

Next, we employ an image preprocessing method to 

extend the height of the image using mirroring and 

padding. The method is as follows. For training image 

data, the image is extended by mirroring the original 

image. For validation and testing image data, the image is 

extended by padding with black pixels. The segmentation 

masks are also extended or mirrored along with the 

images. To further illustrate the method used, an example 

is given in Figure 3. 

 

Figure 3. An example of the image processing method used for squaring 
images. A: Original image and mask. B: Padding with black pixels. C: 

Mirroring the original image 

The resulting image size of this dataset is 374×374 

pixels. To fit the image with the model input size, we 

further resize and stretch the images to 448×448. 

D. Data Augmentation 

During the training process in both classification and 

segmentation tasks, image augmentations are applied to 

images right before being fed into the network. The image 

augmentations are only applied to the training data splits. 

The validation and testing data splits do not receive any 

image augmentation whatsoever. Image augmentations 

are applied to all training strategies equally. The image 

augmentations used for this work are as follows, which 

are applied in order of appearance: 
1) Affine transformation. The image is translated up 

to 20% up/down and left/right by a random value, 
and scaled up/down by a random value between 
90% and 130%. 

2) Horizontal and Vertical flipping. The image is 
flipped on the horizontal and vertical axis, with 
each axis flips applied independently. 

3) Color shifting. The brightness, contrast, and 
saturation of the image is shifted by a random 
value between -15% and 15%. 

4) Elastic deformations. The image is deformed by 
warping the image elastically [21]. 

5) Random rotation. The image is rotated to a 
random value between -90° to 90°. 

E. Evaluation 

To help describe the training strategies, we first 

introduce two VGG16 networks that will be used for 

transfer learning. The VGG16 networks are: 

• VGG16-C: VGG16 network initialized with 
random weights and trained on classification 
dataset. 

• VGG16-IC: VGG16 network initialized with 
ImageNet-1K VGG16 weights and trained on 
classification dataset. 

In order to compare the performance of our training 

strategy, we train several models with different training 

strategies. 

• U-Net: U-Net architecture with encoder layers 
initialized with random weights.  

• U-Net+VGG: U-Net+VGG architecture with 
encoder layers initialized with random weights. 

• U-Net+VGG-C: U-Net+VGG architecture with 
encoder  layers initialized with VGG16-C 
weights. 

• U-Net+VGG-I: U-Net+VGG architecture with 
encoder layers initialized with ImageNet-1K 
VGG16 weights. 

• U-Net+VGG-IC: U-Net+VGG architecture with 
encoder layers initialized with VGG16-IC 
weights. This is our proposed training strategy. 

• SegNet: SegNet architecture with encoder layers 
initialized with random weights. 
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• SegNet-C: SegNet architecture with encoder 
layers initialized with VGG16-C weights. 

• SegNet-I: SegNet architecture with encoder layers 
initialized with with ImageNet-1K VGG16 
weights. 

• SegNet-IC: SegNet architecture with encoder 
layers initialized with VGG16-IC weights. This is 
our proposed training strategy. 

To measure the improvement between training 

strategies, we use mean Intersection over Union (mIoU) 

as a metric. The metric mIoU is widely used for 

evaluating the performance of semantic segmentation 

models. The mIoU is calculated by taking the mean of all 

the IoU value across all the classes (excluding the 

background class) and across all the images in the data 

split. Note that since there is only one non-background 

class in our dataset, we simply compute the mean across 

all the images. The IoU of a class of an image is computed 

by the following equation, 

 𝐼𝑜𝑈 =
𝑃 ∩ 𝐺

𝑃 ∪ 𝐺
 () 

Where P is the predicted pixels in the image that 

belong to the class, and G is the ground truth pixels in the 

image that belong to the class. 

4. RESULTS 

A. Experimental Setup 

The training setup was implemented using PyTorch 

2.1.1 library and written in Python programming 

language. The pre-trained VGG16 model was obtained 

from PyTorch Hub. The data augmentation pipeline was 

implemented with TorchVision 0.16 that comes with 

PyTorch itself. The models are trained with GPU 

hardware acceleration enabled in a computer with 10GB 

of Video RAM. 

All weights in each training strategy, except the 

weights that have been initialized as per the training 

strategy, are initialized using Kaiming initialization with 

normal distribution [22]. Each training strategy was 

repeated 8 times with the same data split distributions, 

producing 8 models per training strategy. Out of the 8 

models produced, the model with the best validation 

mIoU score is chosen to represent the result for the 

training strategy. 

B. Classification Task 

The VGG16-C and VGG16-IC network was trained 

on the classification dataset with SGD optimizer. The 

SGD uses a fixed learning rate of 0.0001 and momentum 

of 0.9. The batch size used for training VGG16 network is 

8. Weighted cross-entropy loss was used for calculating 

losses, with each loss weights for each class set to the 

mean class output frequency divided by individual class 

output frequency. This is done to address the class 

imbalance over-representing the healthy fish class in the 

classification dataset. The networks were trained until the 

validation score shows no improvement for the last 100 

epochs, with the exception of VGG16-IC, which is only 

trained until validation score shows no improvement for 

the last 10 epochs. TABLE 1 shows the performance 

results of VGG16 networks on the classification dataset. 

TABLE 1. Performance results of VGG16 on the classification task 

Training Strategy Epoch Accuracy (%) 

Train Valid Test 

VGG16-C 159 75.59 34.04 36.36 

VGG16-IC 51 87.79 63.83 63.64 

C. Segmentation Task 

The U-Net and SegNet training strategies also used 

SGD optimizer during training. For U-Net, the fixed 

learning rate is 0.0001 and momentum of 0.99. For 

SegNet, the fixed learning rate is 0.1 and momentum is 

0.9. Batch sizes used for training both U-Net and SegNet 

are 4 and 5, respectively. Dice loss was used for 

calculating losses. Both U-Net and SegNet training 

strategies are trained until the validation score shows no 

improvement for the last 50 epochs. 

TABLE 2 shows the performance results for each 

training strategy employed at the end of training, with the 

performance calculated at the epoch when the model 

achieves its lowest validation score. The number of epoch 

when the model achived its lowest validation mIoU score 

is shown in the table. 

TABLE 2. Performance results of all the training strategies tested on the 

segmentation task 

Training Strategy Epoch Mean IoU (%) 

Train Valid Test 

U-Net 565 47.36 47.12 50.03 

U-Net+VGG 449 46.10 47.24 52.17 

U-Net+VGG-C 283 50.03 48.47 49.26 

U-Net+VGG-I 572 66.62 55.41 53.37 

U-Net+VGG-IC 334 68.83 56.53 53.90 

SegNet 191 61.18 52.18 49.55 

SegNet-C 113 55.36 57.27 51.69 

SegNet-I 277 78.72 66.07 57.54 

SegNet-IC 148 75.22 66.53 63.46 

Comparing U-Net+VGG to U-Net+VGG-C, the 

training and validation mIoU score for U-Net+VGG-C 

has improved but the testing mIoU score has lowered. 

However, in the SegNet and SegNet-C case, the validation 

6



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        7 

 

 
http://journals.uob.edu.bh 

 

and testing mIoU score in SegNet-C was improved but the 

training mIoU score was lowered. 

In the U-Net+VGG and U-Net+VGG-I case, there is a 

strong improvement in the mIoU score in all data splits 

for U-Net+VGG-I. The same improvement also happens 

for SegNet-I in the SegNet to SegNet-I case. This 

confirms that ImageNet transfer learning improves model 

performance. 

However, comparing U-Net+VGG-I to U-Net+VGG-

IC, there is a slight improvement in the mIoU score in all 

data splits for U-Net+VGG-IC. In the SegNet-I and 

SegNet-IC case, there is a strong improvement in the 

testing mIoU score and a slight improvement in the 

validation mIoU score, but only a slight decrease in the 

training mIoU score. This shows that the proposed 

training strategy gives better performance than the 

alternative training strategies. 

Figure 4 and Figure 5 shows the training loss curve for 

the U-Net and SegNet training strategies, respectively. 

The training loss curve shows how the loss of the model 

converges. Note that some models have shorter curves as 

these models were trained shorter due to their validation 

score showing no more improvement. 

 

Figure 4. Training loss curves of the U-Net training strategies 

 

 

Figure 5. Training loss curves of the SegNet training strategies 

From the training loss curves, it can be seen that the 

model U-Net+VGG-IC converges the fastest among the 

other U-Net training strategies. Although SegNet-IC has a 

slight decrease to the training mIoU score compared to 

SegNet-I, there is not a visible difference to the loss 

convergence between the two training strategies. 

Among all the training strategies we tested, the 

SegNet-IC performed the best with a validation and 

testing mIoU score of 66.53% and 63.46%, respectively. 

This suggests that SegNet works the best in segmenting 

fish EUS disease. 

To further validate the results, we also show two 

difficult segmentation cases, image A and B, in Figure 6. 

The areas marked in yellow show the EUS-diseased area, 

while the background class is marked in purple. As the 

segmentation masks show, the SegNet-IC produced the 

best segmentation masks for both images. U-Net+VGG-

IC produced a slightly worse segmentation mask than U-

Net+VGG-I in image A but still performs well in image 

B. 

5. DISCUSSION 

We trained the classification network on a fish disease 

classification dataset in order to acquire the weights for 

testing different training strategies. The acquired weights 

are then transferred to the respective traning strategies. 

We then train and test different training strategies 

including our proposed strategy in order to compare the 

performance. We showed the training loss curves for 

different strategies to see how the model loss converges 

during training. We showed the mIoU scores of each 

training strategy in three different data splits. 

The U-Net architecture is modified to allow the 

transfer of VGG16 weights. The modified U-Net 

architecture achieves a roughly similar performance 

compared to the unmodified U-Net architecture. This 

suggests that the model was not underfitting the data and 

only receives little benefit from the increased parameter 

count in the modified U-Net architecture. 

The training strategy that we propose, which uses both 

ImageNet and classification dataset, are also compared 

with alternative strategies which only uses either 

ImageNet or classification dataset. This was done to 

confirm our beliefs that the inclusion of both ImageNet 

and classification dataset improves the performance of the 

network more than either ImageNet or classification 

dataset alone. 

We tested the training strategies on both U-Net and 

SegNet to show that the training strategy that we propose 

can be applied to various conventional semantic 

segmentation architectures. As both SegNet and U-Net 

produced the best performance on the respective 

architectures when our proposed training strategy was 

applied, this confirms that the proposed training strategy 

can work on different segmentation architectures, without 

the need of a complicated Multi-task architecture. 
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We have also looked at and evaluated other loss 

functions for improving semantic segmentation 

performance, including Cross-entropy and Focal loss. 

However, we did not see any significant improvements to 

the model performance with other loss functions. 

We noticed that the results for each training strategy 

were influenced by the performance of the network its 

weights were transferred from. During the training, we 

further noticed that the performance of the VGG16 

network differed as we resampled the classification 

dataset. This suggests that ensuring a good data split 

distribution is important as it will later affect the model 

performance in segmentation task. 

This work is primarily focused on fish disease 

detection and uses datasets that contain images of fish 

diseases, especially EUS,. However, we believe that the 

proposed training strategy could also be applied for other 

datasets of different target domains. 

6. CONCLUSION AND FUTURE WORK 

We have proposed a training strategy based on transfer 

learning to improve the semantic fish EUS segmentation. 

The proposed training strategy involves training the 

classification network on both ImageNet and 

classification dataset before being transferred into the 

segmentation architecture. To test the proposed training 

strategy, we chose VGG16 as the classification network 

and both U-Net and SegNet as the segmentation 

architectures. Two datasets were used for the experiment, 

one for classification task, and another for segmentation 

task. In order to allow the VGG16 weights to be 

transferred into U-Net, we modified the architecture to 

include a VGG16 encoder layer. To compare and show 

the effectiveness of the proposed training strategy, we 

compare the proposed training strategy with alternative 

training strategies. 

The results are then compared with different training 

strategies. Both architectures trained with our proposed 

training strategy performed better than the alternative 

training strategies we have shown, which shows the 

effectiveness of our proposed training strategy. The best 

performing training strategy is SegNet-IC with validation 

and testing mIoU score of 66.53% and 63.46%, 

respectively. 

In the future, more recent semantic segmentation 

models can be researched to improve the segmentation 

quality of fish diseases. We will also look into working 

with object detection networks and region-level labeled 

datasets that are less difficult to annotate than pixel-level 

labeled datasets. 

Figure 6. Comparison of segmentation maps produced by each training strategies 
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