
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

A Systematic Framework To Enhance Reusability In
Microservice Architecture

Mehdi AIT SAID1, Lahcen BELOUADDANE1, Soukaina MIHI1 and Abdellah EZZATI1

1Hassan first University, Settat, Morocco

Abstract: In the ever-evolving field of software engineering, the concepts of software reuse and Microservices Architecture (MSA)
have emerged as fundamental pillars reshaping development methodologies and project outcomes. Recognizing the transformative
potential of these paradigms, our research endeavors to delve deeper into their intersection, particularly focusing on enriching reusability
practices within the context of MSA. To achieve this objective, we have identified and meticulously addressed five challenges that
often impede optimal reusability in MSA environments: Code Duplication, Technology Heterogeneity, Service Boundaries, Versioning,
and Decision-Making. Leveraging insights gleaned from practical experiences, we propose the Reusable Microservices Framework
(RMF), a robust and comprehensive development process meticulously crafted to systematically tackle these challenges. Developed in
close collaboration with MSA practitioners deeply invested in advancing reusability practices, the RMF embodies a synthesis of expert
recommendations and industry best practices. Our validation process encompasses a multifaceted approach, ranging from a simulated
environment to real-world implementation, including the adoption of the RMF within a software company. Through rigorous validation
exercises, our findings unequivocally demonstrate the transformative potential of the RMF, showcasing significant enhancements in
reusability metrics that exceed expectations by over threefold. By offering actionable insights and a practical framework honed through
empirical validation, our study presents a compelling roadmap for harnessing the power of reusability to unlock the full potential of MSA.

Keywords: Microservice Architecture, RMF, DDD, MDD, Reusability

1. Introduction
Software reuse has been a central theme in software

engineering, with continuous efforts to enhance its methods,
techniques, and cost models. The evolution of reuse prac-
tices, often integrated into higher-level software engineering
processes, has led to substantial research contributions over
the years, Capilla et al. in 2019 [1] provided a comprehen-
sive overview of the state of software reuse, highlighting
emerging trends and opportunities in the face of an ever-
changing technological field. The shift toward advanced
programming techniques and the adoption of reuse methods
have paved the way for new research areas and forms of
reuse. Capilla et al.’s [1] exploration of the recent history of
software reuse revealed the emergence of open data, feature
models, and other novel opportunities beyond traditional
software components. Importantly, their findings identified
both opportunities and challenges in improving reusability,
particularly in the context of modern software architectures.

Building upon the insights provided by Capilla et al., our
work delves into the specific challenges and opportunities
for improving reusability within the realm of Microservices
Architecture (MSA). To achieve this, we conducted an
industrial study involving 28 microservices practitioners,
aiming to identify MSA reusability challenges and prac-
tices. In this paper, we present a framework developed based
on the expertise of MSA practitioners and guided by the
opportunities and challenges identified by Capilla et al.[1]

MSA has emerged as a transformative paradigm in

software engineering [2], offering a modular and scalable
approach to building complex applications [3]. The funda-
mental tenets of MSA involve breaking down monolithic
applications into small, independent services that commu-
nicate seamlessly [4]. One of the key advantages touted
by MSA enthusiasts is its inherent potential for enhanc-
ing software reusability [5]. In recent years, the software
engineering community has witnessed a shift toward MSA
due to its ability to facilitate agility, scalability, and ease of
deployment[6]. The decentralized nature of microservices
allows developers to create, deploy, and update individual
services independently, fostering a culture of continuous
integration and delivery [7]. As a result, MSA is often
lauded for its potential to promote software reusability
by enabling the creation of reusable and independently
deployable microservices [8].

The primary objective of our research is to contribute
to the ongoing discourse on software reuse, focusing on
the unique challenges posed by MSA. By leveraging the
insights from Capilla et al.’s work [1], we aim to not only
validate their findings in a real-world setting but also to
extend the understanding of reusability within the dynamic
context of microservices.

By conducting an industrial inquiry through a series
of interviews with 28 MSA practitioners, we identified
five challenges: Code Duplication, Technology Heterogene-
ity, Service Boundaries, Versioning, and Decision-Making.
Delving into the expert perspectives, we gained insights

189

IJCDS 1571009176

1



190 2 BACKGROUND

into how these challenges are navigated. Subsequently,
leveraging these findings, we developed the Reusable Mi-
croservices Framework (RMF). To validate its efficacy,
the RMF was implemented and adopted in a real-world
software company over a span of two years. This practical
validation served to affirm the framework’s applicability and
effectiveness in addressing the identified challenges within
the dynamic context of MSA.

The remainder of this paper is organized as follows:
Section 3 presents the background of microservices and
reusability, followed by an exploration of related work in
Section 4. Section 5 outlines our research methodology, and
Section 6 presents challenges and best practices in microser-
vice reusability. Section 7 details the proposed framework,
and Section 8 covers framework validation in a real-world
setting, presenting results with discussion. Finally, Section 9
concludes by summarizing key findings, contributions, and
implications of the RMF framework, offering insights into
future research and practical applications.

2. Background
MSA represents a transformative paradigm in software

engineering [2], offering a modular and decentralized ap-
proach to designing and deploying applications [9] [10].
In contrast to traditional monolithic architectures, where
applications are built as a single, tightly integrated unit [11],
MSA decomposes applications into a collection of small,
independent services [12], each microservice operates as a
self-contained entity, with its own database and well-defined
communication mechanisms with other services[13]. The
shift from monolithic to MSA is driven by several factors.
In a monolithic architecture, a change to one part of the
application often necessitates rebuilding and redeploying the
entire system [14]. This monolithic approach can hinder
agility, scalability, and continuous integration [15]. MSA,
on the other hand, promotes flexibility and agility by allow-
ing developers to independently build, deploy, and update
individual microservices without affecting the entire system
[12] [5]. This modular structure enables organizations to
embrace a DevOps culture, fostering faster development cy-
cles and improved responsiveness to changing requirements.
Comparing microservices with monolithic architectures un-
veils distinct advantages that contribute to the facilitation
of software reusability:

Decentralization and Independence:

• Monolithic: In a monolithic architecture, components
are tightly coupled, making it challenging to reuse
specific functionalities independently [16].

• MSA: Microservices operate independently, allowing
developers to create small, focused services with
well-defined functionalities. This independence facil-
itates the creation of reusable microservices that can
be employed across various applications [17].

Granularity of Services:

• Monolithic: Monolithic applications often consist of
large and complex codebases, making it cumbersome
to extract and reuse specific functionalities [18].

• MSA: The modular nature of microservices allows
for the creation of fine-grained services. Developers
can focus on creating small, specialized microservices
that encapsulate specific features, promoting easier
reuse in diverse contexts [19].

Technology Heterogeneity:

• Monolithic: Technology choices in a monolithic ar-
chitecture are constrained by the overarching tech-
nology stack [12].

• MSA: Each microservice can be developed using
different technologies, enabling teams to choose the
most suitable technology for a specific service [20].
This flexibility contributes to the adaptability and
reusability of microservices across diverse technolog-
ical environments[21].

Microservices, with their decentralized and modular
structure, inherently lend themselves to enhanced software
reusability [5]. The encapsulation of specific functionalities
within independent microservices allows for the creation of
reusable components that can be seamlessly integrated into
various applications. The agility provided by microservices,
coupled with their independence, fosters a culture of contin-
uous integration and delivery, further supporting the rapid
deployment and reuse of software assets [22]. Remarkably,
MSA aligns harmoniously with the 3C model [23], a pivotal
reference model in the realm of software reuse. The 3C
model, rooted in the history of software engineering’s
30-year journey, delineates three fundamental dimensions:
concept, content, and context (Figure 1). In the context of
MSA, the alignment with the 3C model becomes apparent.
Firstly, the concept in the 3C model, representing a reusable
component’s specification or ”what it is,” resonates with
the individual microservices in MSA. Each microservice
encapsulates a specific concept, defining its functionality
and purpose. Secondly, the content dimension of the 3C
model, emphasizing ”how it works,” finds resonance in the
modular and independent nature of microservices. MSA
allows developers to separate the specification from the
implementation, akin to the 3C model’s vision. For example,
different microservices may implement similar concepts but
utilize distinct technologies or implementation approaches,
providing a versatile approach to content. Lastly, the context
in the 3C model, indicating ”how it is used,” draws parallels
with the decentralized nature of microservices.

2



191

Figure 1. The 3C model contextualizing software reuse [1]

3. Related work
Within the MSA field, numerous studies have delved

into distinct facets, tackling challenges and probing oppor-
tunities in reusability contexts. This section meticulously
examines relevant works that provide key insights into the
extraction, implementation, and transformation processes
associated with enhancing reusability within the framework
of microservices adoption.

In 2019, Carvalho et al.[24] conducted an exploratory
study focusing on the extraction of reusable microservices
from legacy systems, with a particular emphasis on systems
featuring variability. The study revealed that variability is a
key criterion in structuring microservices, and the simplicity
of mechanisms used to implement variability plays a crucial
role. This research not only contributes essential insights
into the pragmatic facets of transitioning systems to an MSA
but also sheds light on the role of reusability, emphasizing
its centrality in the extraction process.

In 2019, Silva et al.[25] proposed Microservice4EHR,
a cloud tool designed to dynamically generate reusable
components from existing software artifacts in healthcare
applications. The study demonstrated that employing the
MSA enhances reusability in Health applications. Microser-
vice4EHR offers a tangible solution for improving software
reusability in the healthcare domain, aligning with the
industry’s unique requirements.

In 2023, Hamed explored the reusability of legacy
software using a microservices-based architecture [26], fo-
cusing on the transformation of an online exam system. The
study employed feature-driven microservice-specific trans-
formation rules, prioritizing performance, maintainability,
scalability, and testability. This work contributes insights
into the efficient re-architecture and reengineering of legacy
enterprise systems using microservices.

A. Comparison
These studies collectively enhance our understanding

of microservices adoption, each addressing specific areas
or domains such as migration, healthcare, legacy systems,

and DevOps practices. A notable common thread among
them is the emphasis on reusability as a pivotal aspect of
microservices impact. In exploring diverse contexts, these
studies underscore the significance of reusability in the mi-
croservices landscape. They illuminate how microservices,
when implemented thoughtfully, become reusable compo-
nents, contributing to heightened efficiency, code modular-
ity, and scalability. Whether dealing with the intricacies
of healthcare applications or navigating the challenges of
legacy system migration, the studies consistently highlight
the positive influence of microservices on fostering a culture
of reusability.

In contrast to these domain-specific studies, our frame-
work adopts a holistic perspective, prioritizing reusability as
a central tenet. By offering a versatile development process,
our framework transcends the limitations of context-specific
solutions. It is designed to be universally applicable, align-
ing seamlessly with any agile development style. In doing
so, our framework positions reusability as a core principle
in microservices adoption, acknowledging its transformative
impact on software development across diverse scenarios.

4. Methodology
Our research design aligns with the principles of De-

sign Science (DS) proposed by Peffers et al.[27] and the
Design Science Research Methodology (DSRM) proposed
by March et al [28]. DS offers an approach to developing
models, methods, and implementations with the intent of
serving human purposes, and DSRM adapts this philosophy
to the field of information systems research.

A. First phase: industrial inquiry
1) Approach

An industrial inquiry coupled with a qualitative research
methodology was employed to gain profound insights into
reusability challenges within MSA.

2) Objectives
• RQ1: Identify real-world challenges of reusability in

an MSA-based environment.

• RQ2: Understand how experts in the field address
these challenges.

3) Participants
A total of 28 practitioners, each possessing a minimum

of 5 years of experience in MSA. Participants were selected
from 24 software companies and 3 countries (Morocco,
France, and USA), ranging from startups to industry giants
such as Oracle and IBM. The selection criteria also consid-
ered the practitioners’ explicit interest or existing initiatives
related to reusing microservices within their respective
organizations.

4) Data collection
Comprehensive semi-structured interviews were con-

ducted over a period of two months, commencing in Octo-
ber 2020. The chosen qualitative approach, as outlined by

3



192 5 CHALLENGES

Brinkmann & Kvale [29], facilitated in-depth exploration of
practitioners’ experiences and perspectives. The interview
questions can be found in Table A in the data repository,
providing a detailed reference for the research methodology.

B. Second phase: Best Practices Formulation
Building on the insights garnered from the Industrial

Inquiry, the study transitioned to articulating best practices
tailored to address specific challenges. The outcome was a
systematic framework equipped with stringent guidelines to
augment reusability in MSA.

C. Third Phase: Framework Validation in a Real-World
Setting
To validate and assess the effectiveness of our frame-

work, we implemented it in a real-world software company
over a span of two years. The evaluation included measuring
two indicators, adoption cost and the percentage of code
reused for each project, and comparing it with the previous
time without our framework. The data collection process
involved gathering quantitative indicators, supplemented by
a series of interviews with stockholders and developers
who actively engaged with our framework. These interviews
aimed to elicit valuable insights and feedback, providing
a nuanced understanding for ongoing refinements and im-
provements in our framework.

D. Data repository of tables
Due to the extensive volume of data accompanying our

research paper, it has been made available for public access
via the Zenodo1 repository, accessible through the follow-
ing link: https://zenodo.org/records/10849454. The dataset
comprises three essential tables integral to our study. Table
A presents the comprehensive set of interview questions
employed to explore the challenges related to reusability
in MSA. Table B outlines the microservices identified for
the initial build of the Microservices Hub (Section 6.A.1).
Table C encompasses the evaluation questions utilized to
assess various aspects of the proposed framework, offering
a structured approach to measure its effectiveness and
user satisfaction. Access to this data repository ensures
transparency and reproducibility, enabling researchers and
practitioners alike to delve deeper into our study’s method-
ology and findings.

5. Challenges
In our exploration of the practitioner’s interviews, we’ve

distilled insights from practitioners who identified and grap-
pled with five prominent challenges. As a result of their
experiences and reflections, the challenges of Code Du-
plication, Technology Heterogeneity, Service Boundaries,
Versioning, and Decision-making emerged as focal points
influencing the field of reusability within MSA. The fre-
quency of mentions for each challenge by the practitioners
is visually encapsulated in Figure 2, offering a snapshot of
the prevalent concerns drawn directly from our interview
results.

1https://zenodo.org

A. Code duplication
1) Challenge

Code duplication has been an ancient challenge in
software engineering, having persisted over time as an
enduring concern. This challenge refers to the repetition of
code segments or functionalities within a software system.
Code duplication can lead to various problems, including
increased development and maintenance efforts, potential
inconsistencies, and difficulties in ensuring updates and
changes are applied uniformly. While code duplication
has been recognized as a general challenge in software
engineering, its manifestation within the context of MSA
introduces unique considerations. In MSA, the challenge
of code duplication takes on a distinctive character due
to the decentralized and modular nature of microservices.
MSA encourages the development of small, independent
services, each responsible for a specific functionality. This
autonomy granted to microservices can potentially result
in unintended duplications across different microservices or
even in separate projects developed by different teams. The
distributed and independent nature of microservices in MSA
introduces complexities that amplify the impact of code
duplication, making it a more intricate challenge to address
within this architectural paradigm. A concrete example
illustrating the code duplication challenge was shared by
a practitioner involved in our study: ”In my daily routine, I
used to check in with my developers to see what they were
working on. Before start using MSA, their responses were
clear and distinct, like ”I’m working on the signup feature”
or ”I’m dealing with OAuth.” These responses made sense
to me because it seemed like they were tackling different
tasks. However, with MSA in place, their answers changed
to ”I’m working on the user management system.” It became
evident that both developers were essentially working on
the same thing. Previously, in a non-MSA setting, they
might have been in different phases of the project timeline.
For instance, the first developer might finish implementing
OAuth after completing the signup feature, while the second
developer might have already built the signup functionality.
The shift to MSA blurred these distinctions, making it
apparent that their efforts were converging on a shared goal
within the broader user management system.” Quote 1

2) Addressing the challenge
Practitioners advocate for a centralized microservices

registry within MSA organizations to address code dupli-
cation. This registry serves as a shared catalog consoli-
dating information on all microservices developed across
teams. Its purpose is to provide a repository for developers
to discover and access existing microservices, preventing
unintentional code duplication. By facilitating awareness
and collaboration, the registry promotes efficient reuse of
services, fostering a culture of shared knowledge within the
organization.

4

https://zenodo.org/records/10849454
https://zenodo.org/records/10849454


193

B. Technology Heterogeneity
1) Challenge

Technology Heterogeneity, while being a notable ad-
vantage of MSA, poses a unique challenge to reusability
within this paradigm. The inherent flexibility of MSA
allows developers to choose diverse technologies for imple-
menting microservices based on project requirements, client
preferences, or team expertise. However, this advantage
becomes a double-edged sword when it comes to reusability.
The challenge arises when developers create microservices
with identical functionalities and interfaces but implement
them using different technologies. This makes it challenging
to seamlessly reuse microservices in projects with spe-
cific technological constraints, hindering the straightforward
interchangeability of components. Consequently, when a
development team seeks to reuse a particular microservice,
the decision is complicated by the need to align with the
client’s preferred technology or adhere to existing project
frameworks. One software engineer from the practitioners
mentioned: ”... despite having a handy catalog of microser-
vices, there were instances where I found myself having to
rebuild a microservice from scratch. You know how it goes
– sometimes, the client has their preferences (like a strong
preference for Java, for example), and that means starting
anew. It can be a bit frustrating, but hey, client satisfaction
comes first...” (Quote 2)

2) Addressing the challenge
Addressing the challenge of technology heterogeneity in

MSA has led practitioners to two insightful solutions:

1) Model-Driven Engineering (MDE): The majority
of our practitioners, numbering 25, have embraced
MDE as a powerful tool to navigate the complex-
ities of technology heterogeneity. They’ve created
code templates and generators for each microservice,
essentially establishing a blueprint or skeleton [30].
This approach enables them to swiftly generate the
required microservice with the preferred technology,
streamlining the development process.

2) Evolutionary Shift in Perspective or Single Tech-
nology: A smaller group of 3 practitioners has taken
a different route. They’ve chosen to overlook the
nuances of technology heterogeneity, considering it a
relic of the past when the battle between technologies
was more pronounced. Today, with technological
equality prevailing, they find that the initial ad-
vantages associated with different technologies have
largely dissipated. As one practitioner highlighted:
”Back in 2017 and earlier, NodeJs was our go-
to for real-time data microservices due to its ease
with WebSockets and Socket.IO2. However, now,
all technologies have packages that handle real-
time data efficiently, eliminating the need for diverse
languages” (Quote 3). All practitioners employing
this solution share a common trait – they operate

2https://socket.io

within domain-specialized companies. These organi-
zations focus exclusively on specific domains such as
Healthcare, E-commerce, or Education. This special-
ization allows them to tailor their technology choices
and development strategies according to the unique
needs and intricacies of their respective domains. In
doing so, they can strategically align their technology
stack with the specific requirements of their industry,
minimizing the impact of technology heterogeneity
on their microservices landscape.

C. Service boundaries
1) Challenge

The service boundaries challenge stems from the ab-
sence of a standardized methodology or clear guidelines for
identifying and extracting microservices within a project.
This results in each team adopting different methods, often
relying on experiential knowledge rather than strict guid-
ance.Ait Said et all.[5] and Zhou et al. [31] highlighted a
similar issue in their exploration of MSA practices in real-
world companies, noting that practitioners tend to rely on
experiences from similar projects for microservice identifi-
cation. The lack of a standardized approach has significant
repercussions on reusability in MSA, potentially leading
to the development of similar features across different mi-
croservices. It also poses challenges in identifying whether
a specific microservice already exists in the catalog. A
practitioner’s real-world case further illustrates this chal-
lenge: ”... so when I first jumped into MSA for an e-
commerce platform, I crafted two separate microservices –
one looking after the blogs and another for products. Now,
both these microservices had some kind of user feedback
going on. The blogs featured comments with reactions, and
the products had comments with ratings. Guess what hap-
pened next? As it turns out, these functionalities, although
developed independently as different features, were essen-
tially the same. So, to tidy things up, we created a brand
new microservice called ’feedback.’ This nifty microservice
now takes care of all comments, reactions, and ratings,
making it this an independent module that we can use
across different types of content... This scenario is repeated
especially between different teams, only in the last years, we
noted that the payment microservice was built 8 times by
different teams and 13 times payment functionalities were
implemented as part of other microservices...” (Quote 4).

2) Addressing the challenge
Addressing the service boundaries challenge involves

the adoption of two prominent methodologies of microser-
vices identification: Domain-Driven Design (DDD)[32] and
Functional Decomposition (FD)[33].

• DDD: This approach gained favor among 24 practi-
tioners who leveraged the power of Domain-specific
Language (DSL) generated through DDD. With
DDD, practitioners found a robust solution to pre-
cisely define each microservice and facilitate the
handling of similar functionalities. The DSL played

5



194 6 PROPOSED FRAMEWORK

a pivotal role in the microservices’ clarity and served
as a valuable tool for practitioners to compare new
microservices with existing ones in the catalog. The
inherent structuring and clarity afforded by DDD
proved instrumental in overcoming the challenges
associated with defining and extracting microservices
[34].

• FD: While not as widely adopted as DDD, FD
found preference among 4 practitioners. This ap-
proach involves breaking down a system into its func-
tional components, offering a distinctive perspective
on microservices design. Practitioners employing FD
focused on identifying and defining microservices
based on the discrete functions they perform within
a system. Despite being less prevalent, FD provided
an alternative framework for practitioners who found
value in a functional-centric approach to microser-
vices.

D. Versioning
1) Challenge

Versioning poses a significant challenge in MSA, es-
pecially when various versions of a microservice coexist
simultaneously or multiple updates are pushed to the catalog
concurrently with distinct functionalities. The crux of the
problem lies in the potential mismanagement of interfaces
between these versions, making it challenging to guarantee
consistent reuse of microservices across the organization.
The simultaneous usage of different microservice versions
or the concurrent introduction of updates to the catalog can
create complexities in maintaining a standardized approach
to versioning. This challenge becomes more pronounced
when the interfaces between different versions are not
effectively managed. When versioning issues arise, ensuring
seamless and consistent reuse of microservices becomes a
formidable task. Without well-defined interfaces, compati-
bility issues may surface, hindering the smooth integration
of microservices into diverse projects.

2) Addressing the challenge
Practitioners underscored key aspects of versioning

management in MSA. Semantic Versioning was highlighted
14 times for its structured approach, aiding clear communi-
cation of changes. API gateways with robust version control
were deemed essential by all 28 practitioners, centralizing
version management and enhancing visibility. Additionally,
rollout strategies like feature toggles and canary releases
were emphasized by 9 practitioners, enabling controlled and
iterative introduction of new microservice versions.

E. Decision-making
1) Challenge

Decision-making particularly regarding MDE adoption
for enhancing reusability, presents a complex dilemma.
While MDE offers significant advantages like generating
microservice templates, its implementation entails consid-
erable time and resource investment. Organizations must

carefully weigh the benefits of reusability against the costs
of MDE development. Factors such as microservice nature,
functionalities, reuse frequency, development timelines, and
long-term reusability impact must be meticulously evaluated
in the decision-making process.

2) Addressing the challenge
The practitioners who encounter the decision-making

challenge unanimously agree that relying on experience
becomes a crucial factor in navigating this complexity.
Drawing parallels with past projects, understanding the
nature of microservices, and assessing the potential benefits
against the costs of MDE implementation are common
practices. This experience-driven decision-making approach
offers a pragmatic way to balance the desire for reusability
with the practical constraints of resource allocation and
project timelines.

Figure 2. Reusability Challenges in MSA

6. Proposed Framework
A. Base concepts

In this section, we provide a foundational introduction
to the base concepts underlying our proposed framework.
By elucidating the core concepts driving our framework’s
design and development, we aim to lay a solid groundwork
for the subsequent discussion and evaluation.

1) Microservices Hub
The Microservices Hub (MH) serves as the backbone

of our proposed framework, playing a pivotal role in en-
hancing reusability within MSA. This catalog serves as a
comprehensive repository housing all previously developed
microservices, carefully curated for potential future reuse.
Every microservice enlisted in the MH undergoes meticu-
lous documentation, offering a detailed insight into its func-
tionality, purpose, and utilization. This documentation is
achieved through a clear DSL and a thorough description of
use cases, accompanied by a historical account of the teams
involved in its development. The inclusion of a change log
further enhances transparency, providing a dynamic record
of modifications and updates.

6



195

Microservices within the MH can manifest in two dis-
tinct forms, adapting to the organizational preference. For
organizations prioritizing MDE to address the Technology
Heterogeneity challenge, microservices take the form of
Models. These Models encapsulate code templates and
generators, streamlining the process of microservice devel-
opment in diverse technological landscapes. Alternatively,
organizations that do not require Technology Heterogeneity
can opt for the single code source format.

2) Tech Masters Team
The TMT, a distinctive component in our proposed

framework, introduces a paradigm shift in project dynamics
within tech organizations. Traditionally as presented in the
top side of Figure 3, projects are led by a combination
of a product manager, tech leader, software architect, and
developers. Our framework introduces an addition to this
structure, positioning the TMT at the nexus between the
product manager and development teams as shown in the
bottom side of Figure 3, with a focus on three key roles:

1) Firstly, the TMT takes on the crucial task of
identifying microservices in new projects. Even
with methodologies like DDD, the process of mi-
croservices identification often relies on experien-
tial knowledge [5], lacking strict guidelines. The
TMT bridges this gap by centralizing viewpoints and
expertise, making microservices identification more
efficient and consistent. Leveraging their experience
and insight, the TMT play a pivotal role in aligning
project requirements with potential microservices,
thereby optimizing the identification process.

2) Secondly, the TMT assumes control over the MH.
This team holds the exclusive authority to assign
development teams to specific microservices and
oversees the introduction of new microservices or
features into the MH. After the identification of
microservices, the TMT strategically matches them
with the most suitable development teams. Any addi-
tion to the MH, whether it be a new microservice or
feature, undergoes rigorous validation by the TMT.
This centralized control ensures a cohesive and stan-
dardized approach to microservices development,
enhancing overall reusability.

3) The third role of the TMT involves workflow
control. Positioned between the product manager
and development teams. As presented in Figure 4,
the TMT act as facilitators, directing project/feature
requirements and specifications to the appropriate
teams. In our framework, we aim to minimize cou-
pling between projects and microservices earmarked
for reusability. The development teams, functioning
as a supply chain for features and new microservices,
may not necessarily be aware of the project they
are contributing to. This strategic decoupling allows
teams to focus on building and upgrading specific
microservices over an extended period, fostering
specialization and expertise. The TMT orchestrates

this workflow, promoting efficiency and skill devel-
opment within the development teams.

3) Classification Framework
The Classification Framework , a cornerstone of our

proposed methodology, addresses the nuanced challenge
of deciding which microservices should be earmarked for
reusability, considering the potential costs associated with
methodologies like MDE because they add a layer on top
of the native code source. While the aim is to enhance
reusability, it’s crucial to allocate resources judiciously and
focus efforts on microservices that offer the most significant
impact.

Our framework introduces a Classification Framework
that operates across three distinct levels of reusability:
Cross-Domain (CD), In-Domain (ID), and Single Project
(SP):

1) CD Microservices: These microservices exhibit a
lack of specific domain affiliation, making them
versatile and applicable across various contexts. Ex-
amples include Payment Service and Users Man-
agement Service. CD microservices boast high
Reusability Potential (RP) and are inherently de-
signed for broad reuse. Additionally, this classifi-
cation encompasses technical capability microser-
vices like Messaging Service and File Storage and
Management Service, further contributing to their
applicability across domains.

2) ID Microservices: In this classification, microser-
vices are characterized by their ability to be reused
within specific domains. Examples include Fleet
Management Service and Point of Sale Management
Service. While ID microservices may not possess the
same level of versatility as CD microservices, they
still exhibit a moderate RP. These microservices are
well-suited for reuse within the defined boundaries of
specific domains, offering a balance between broad
applicability and contextual relevance. This type of
microservices can be considered as CD microser-
vices in organizations specializing in a single domain
such as Healthcare, Education, E-commerce...

3) SP Microservices: This category includes microser-
vices closely aligned with specific business require-
ments or use cases of a system, rather than a broader
domain. Examples could be custom microservices
tailored to unique project needs. SP microservices
have a lower RP due to their limited applicability
beyond their specific context. While their reuse may
be constrained, they play a crucial role in addressing
specific project requirements.

B. Reusable Microservices Framework (RMF)
The whole RMF process is presented in Figure 5, as

shown the process starts with the standard practice of
defining and validating project specifications and require-
ments by the product manager. Subsequently, the TMT takes

7



196 6 PROPOSED FRAMEWORK

Figure 3. Traditional project architecture VS RMF architecture

Figure 4. The high-level abstraction of RMF

center stage in the RMF process. The primary responsibility
of the TMT is to analyze the provided specifications and
requirements and apply DDD decomposition methodology
to extract a collection of microservices (MsSet = MS1,
MS2, ...MSi, . . . MSn). DDD proves instrumental in this
step by enabling the use of DSLs, thereby enhancing the
quality of documentation within specific domains. The
DSLs play a pivotal role in locating Relevant Pre-Built
Microservices (RPBMs) within the MH. The RMF unfolds
in two key cases for each MSi in the MsSet:

1) Case 1 (Presence of RPBM): If an RPBM is found
in the MH for the new variant of microservice
(MSi), the TMT identifies a suitable Dev Team.
Ideally, this could be the team that originally built
the RPBM or previously worked on it. In the absence
of the original team, the TMT decides on a new
development team. Subsequently, the chosen Dev
Team pulls the RPBM from the MH, conducts a
thorough comparison with the MSi, and determines

whether additional features are present. If affirma-
tive, the team develops the new features following
the MDE process and pushes a new version to the
MH. If not, the MDE process is invoked to generate
the code source. Customizations, such as UI/UX
enhancements, are implemented as necessary.

2) Case 2 (Absence of RPBM): If no RPBM is
found in the MH, the TMT assesses whether the
new microservice should be considered for potential
reusability based on the established Classification
Framework. A Dev Team is then assigned accord-
ingly. If the microservice is deemed reusable, the
team follows the MDE approach to build and push
it into the MH. Conversely, if the microservice
does not align with reusability criteria, traditional
development methodologies are employed.

The final steps of the RMF involve the standard proce-
dures of testing and deploying the system, ensuring that the
implemented microservices meet the specified requirements.

8



197

When new features are slated for integration into ex-
isting projects, the TMT assesses the features to determine
the most suitable team for implementation, aligning with
the standard RMF process. In projects where microservices
are already identified and developed, the Dev Team starts
from the step of checking if these new features are already
developed in the RPMS and continue the process normally.

The RMF offers a comprehensive and structured
methodology to enhance reusability within MSA, optimiz-
ing the allocation of resources and fostering a culture of
efficient microservices development and reuse. Notably, as
presented in Figures 3 and 4, there is no direct interaction
between the Product Manager and Dev Teams. However, it’s
important to highlight that the Product Manager retains the
capacity to assist and validate the development process if
necessary. This collaborative approach ensures that the de-
velopment aligns seamlessly with the project specifications
and meets the desired outcomes.

In Case 1, when the suitable Dev Team is already
engaged with the same microservice, the TMT is required to
push the new variant of microservice or features exclusively
to this team. To enhance development efficiency further,
we propose the monitoring and tracking the frequency of
adding new features to each microservice within the MH.
This information becomes invaluable when assigning dev
teams. By strategically analyzing the upgrade frequency
of a microservice in the MH, a decisive step can be
taken to establish a dedicated Dev Team for that particular
microservice. This dedicated team can adeptly handle the
continuous influx of features from various projects. If the
demand for adding features to this microservice is sub-
stantial, scalability becomes a viable option. This Single
Responsibility Principle (SRP) approach transforms the
development process into a software supply chain (Figure 4)
controlled by the TMT, where the developer might be
working on a microservice without explicit knowledge of
the associated project. This agile and scalable methodology
aligns with the concept of managing microservices as inde-
pendent units, promoting efficiency and adaptability within
the development workflow.

The collaboration between DDD and DSL significantly
boosts development efficiency. DDD offers a structured
methodology for precise microservices definition within
domains, while DSL, generated through DDD, acts as a
common language for clear communication. This synergy
aids in efficient microservice identification, utilizing DDD’s
decomposition of project specifications and DSL as a nav-
igational tool in the MH. DSL enables quick feature com-
parison, helping Dev Teams identify additional features for
new microservice versions. Standardized language reduces
extensive communication between stakeholders, fostering
seamless understanding. By treating microservices develop-
ment as a supply chain, DDD and DSL enhance team inde-
pendence, promoting autonomy and reducing dependencies.

In organizations favoring a Single Technology Ap-
proach, MDE may not be deemed necessary for microser-
vices development. However, the Classification Framework
remains crucial. While MDE streamlines reusable microser-
vices creation, its absence doesn’t diminish complexities in
building such components. Without MDE, developers may
face challenges ensuring microservices reusability across
projects. The Classification Framework evaluates reusability
potential and domain specificity, aiding in identifying reuse
opportunities and streamlining development. Thus, even
without MDE prioritization, the Classification Framework
optimizes reusable microservices creation and deployment.

7. Validation and evaluation
The RMF underwent validation and evaluation through a

two-year simulation and adoption in a real-world Moroccan
software company (size of 50 to 100), complemented by
interviews to gather feedback. Augmenting this process,
insightful interviews were conducted to solicit feedback
from the teams actively engaged in RMF adoption. This
company, with a pre-existing commitment to reusability,
adheres to the traditional Shared Catalog Approach (SCA),
encompassing code snippets, assets, and web components..
This established focus on reusability sets a robust backdrop
for validating and substantiating the efficacy of the RMF
within an environment already attuned to systematic reuse.

Our validation approach was guided by a dual focus:
firstly, understanding the adoption cost incurred during the
integration of RMF into the existing development ecosys-
tem, and secondly, quantifying the percentage of code
reusability achieved through the framework and comparing
it with another approach. These two pivotal insights form
the bedrock of our assessment, offering valuable perspec-
tives on the practicality and effectiveness of the RMF in
real-world scenarios.

A. Environment preparation for RMF adoption
The adoption of the RMF was a strategic initiative un-

dertaken by four development teams, each comprising 3 to
5 software engineers, totaling 16 experienced professionals
with a minimum of 2 years of expertise in MSA. The pivotal
TMT, consisting of a software architect and tech leader,
both boasting over a decade of experience, anchored the
adoption process with their profound understanding of MSA
and MDE. The adoption process followed in four stages:

1) Training in MDE (1 week): The journey began with
an intensive week-long training on MDE for all four
development teams by the TMT.

2) In-Depth analysis of old projects (1 week): Collab-
orating with the TMT, the development teams delved
into a comprehensive analysis of projects spanning
up to five years, irrespective of their architectural
paradigm (MSA or monolithic). The objective was
to identify recurrent patterns and common function-
alities. This meticulous exploration resulted in the
identification and extraction of 23 microservices (B

9

https://zenodo.org/records/10849454


198 7 VALIDATION AND EVALUATION

Figure 5. Reusable Microservices Framework

in the data repository), consolidating features that
served identical contexts across various projects.
In the process, we consider only the CD and ID
microservices for potential reusability.

3) Global MDE generator development (in the same
week of step 2): The subsequent step involved
the creation of a universal MDE generator capable
of producing code compatible with Java, C#, and
Python. This global generator such as Forms, and
Tables ..., not bound to any specific context, would
serve as a foundational tool for subsequent microser-
vices development.

4) Development marathon for MH building (8
weeks): The teams embarked on an 8-week devel-

opment marathon to construct the MH. Employing
MDE for microservices development, the teams har-
nessed the global generator to streamline the process.
The output was an MH housing 23 pre-built, well-
documented microservices. The MH itself developed
as a web platform built on GitLab, featuring an
interface comprising a microservice list with brief
descriptions and a search bar with tags. Each mi-
croservice has a dedicated page offering detailed
information, including historical usage in projects,
feature pushes, comments, and a comprehensive doc-
umentation page.

The compiled list of extracted microservices is docu-

10



199

mented in Table B in the data repository. These microser-
vices, derived from the in-depth analysis of past projects,
are made available for use by any company embarking on
the adoption of the RMF. This resource is particularly ben-
eficial for new companies without pre-existing projects for
analysis, providing a ready-made foundation to jumpstart
their implementation of the RMF

B. Cost Implications
The adoption and environment preparation phase en-

compassed 10 working weeks, involving the concerted
efforts of 16 software engineers and the expertise of the
TMT. After an initial 3-week intensive engagement, the
role of the TMT evolved to accommodate external tasks.
The cost incurred during this phase is foundational, serving
as a bedrock for subsequent microservices development.
It’s noteworthy that the adoption cost is an upfront in-
vestment, with additional costs incurred when new features
or microservices are considered for future reusability. The
implementation of MDE, with its abstraction layer of code
generators, introduces efficiency benefits, as attested by
the development teams who reported increased efficiency
after an initial adaptation period of 2 to 3 weeks, turning
MDE into a valuable asset, particularly when constructing
common components like Tables. Subsequent interviews
with the development teams will shed light on the evolving
dynamics and the impact of this adoption on their workflow.

C. Real-world adoption
Throughout the real-world adoption of the RMF in a

Moroccan software company, spanning approximately two
years from September 6, 2021, to the end of 2023, the
validation process unfolded. Over this period, a total of
9 projects were developed under the RMF framework,
adhering strictly to the RMF environment’s guidelines.
It’s noteworthy that only new features and maintenance
tasks from these RMF-adopted projects were integrated into
the MH, fostering its growth organically. We intentionally
focused on building a catalog of microservices exclusively
from RMF-adopted projects during this validation phase.

The development teams and the TMT occasionally en-
gaged in external tasks when no RMF-related tasks were
in progress. Throughout this period, the entire adoption
process was closely monitored by the four researchers
involved in this work. For each of the 9 projects developed
under RMF, we calculated the reusability percentage by
comparing the total number of functionalities (TF) with the
number of functionalities generated (GF) from the MH.

Concurrently, we observed the development of 31
projects by other teams within the company during the
same timeframe who adopted the SCA. The reusability
percentage for these projects was assessed using a similar
method, incorporating components from the company’s ex-
isting catalog, such as code snippets and web components.

Under the RMF framework, the reusability of func-
tionalities saw a substantial improvement, ranging from an

initial 24% to a peak of 75%, with an average reusability
percentage of 52.22%. Figure 6 illustrates the reusability
percentage for each project, ordered by their completion
date. Notably, the reusability percentage consistently in-
creased with the introduction of each new project and the
addition of new features, showcasing the positive impact of
the RMF framework.

In contrast, Figure 7 blue line presents the reusability
percentage for the observed 31 SCA projects outside of the
RMF environment, organized by their completion dates. The
reusability percentages in this case exhibited variation and
a slower increase over time, with an average of 23.68%.
This average is notably lower than the average reusability
percentage observed under the RMF framework. This con-
trast highlights the effectiveness of the RMF methodology
in systematically enhancing reusability when compared to
conventional development practices within the organization.

D. Simulation
In the real-world adoption, it became evident that the

RMF significantly enhances reusability compared to the
traditional global SCA, albeit with a slight gap. A direct
comparison between the 9 projects under RMF and other
SCA projects, which varied in specifications and require-
ments, revealed this distinction.

To address this gap, a comprehensive simulation was
conducted during the adoption period. This simulation in-
volved replicating the development of the 31 projects that
were originally executed with SCA, maintaining the same
chronological order of project arrivals and feature imple-
mentations. The simulation aimed to emulate the RMF pro-
cess for these projects, utilizing the same MH constructed at
the beginning of the adoption period. The four researchers,
acting as both the TMT and development teams, ana-
lyzed each project, extracted microservices, and simulated
the RMF process by documenting the microservices and
features without actual development. The documentation
served as a skeletal representation of each microservice’s
features, with additions made for new features.

The reusability percentage, calculated using the same
method applied in the real-world adoption, demonstrated
a noteworthy outcome. As presented in Figure 7 green
line, over each simulated project and subsequent feature
additions, the reusability percentage consistently increased.
Starting at 21%, it reached a peak of 87% by the end, with
an average reusability percentage of 54.10% and a max of
91%.

In the comparative analysis between the RMF and the
SCA, the results showcase the superior performance of
the RMF in enhancing reusability. The reusability percent-
ages across the simulated projects consistently demonstrate
higher values when using the RMF compared to the SCA.
This trend is especially noticeable in the average figures,
with the RMF demonstrating 54.10%, reaching a maxi-
mum of 91%, while the SCA lags significantly with an

11

https://zenodo.org/records/10849454


200 7 VALIDATION AND EVALUATION

average of 23.68% and a maximum of 42%, and in the
P28, the RMF successfully triples the reusability rate. This
pronounced difference underscores the efficacy of the RMF
in methodically fostering reusability across a spectrum of
diverse projects.

In the evaluation of both our RMF and the SCA,
it was observed that when receiving projects from new
domains such as P11, P16, P17, and P21, there was a
notable reduction in reusability. However, a distinct ad-
vantage emerged for RMF, as it consistently maintained
reusability percentages above 20%. This resilience can be
attributed to the foundational principle of RMF, which
relies on pre-built microservices designed for cross-domain
applicability. Noteworthy examples include microservices
like User Management and Payment Processing, which
possess versatile functionalities applicable across diverse
projects. Consequently, each new project phase introduces
a higher probability of incorporating one of these pre-built
microservices, contributing to the sustained reusability of
the RMF framework. In contrast, the SCA experienced more
substantial reductions, underlining the efficacy of RMF’s
design in enhancing reusability across varying project do-
mains.

Figure 6. Reusability Percentage in RMF Projects

Figure 7. Comparison of Reusability between SCA and RMF

E. Evaluating RMF Adoption and Impact
1) Methodology

In this section, we present the evaluation of the RMF,
employing a qualitative methodology to delve into its
multifaceted impact on software development practices
and scrutinize the adoption of RMF comprehensively, and
determine its overall worthiness as a framework for mi-
croservices development and reuse within the company’s
software engineering landscape. The evaluation is driven by
six primary objectives, including assessing user experience
(Ob1), evaluating productivity (Ob2), measuring satisfaction
levels from stakeholders (Ob3), identifying challenges and
limitations (Ob4), gathering recommendations (Ob5), and
assessing cost-effectiveness with a focus on measuring
return on investment (ROI) (Ob6).

To achieve these objectives, we conducted interviews
with key stakeholders involved in the adoption of RMF. The
interviewees included the 16 software engineers from the
development teams, the 2 experts from the TMT, and two
Managers with decision-making roles within the company.
In total, we engaged with 20 stakeholders.

For the interview process, we devised 15 questions pre-
sented in Table C in the data repository in the appendix. The
first set of questions (Q1 to Q10) were directed towards the
16 software engineers and the 2 TMT experts, focusing on
aspects related to user experience, productivity, drawbacks,
and recommendations. The second set of questions (Q11 to
Q15) was specifically tailored for the two Managers, delving
into aspects related to Satisfaction and cost-effectiveness.
This comprehensive approach ensured a holistic understand-
ing of the RMF’s impact from both the development and
managerial perspectives.

2) Results and Discussion
Ob1: Assessing User Experience The assessment of

user experience highlighted several positive impacts of
the RMF on daily work and workflow efficiency. En-
hanced collaboration among team members, accelerated
development cycles, improved task management, and re-
duced repetitive tasks were notable strengths identified.
However, an increase in stress levels, attributed to the
responsibility of developing reusable code and components,
was also acknowledged. This finding emphasizes the need
for supportive measures to mitigate potential stressors and
maintain a healthy work environment. Moreover, the exami-
nation of overall user experience revealed five key instances
demonstrating the RMF’s influence. These instances include
workflow streamlining, quality improvement, communica-
tion facilitation through DSLs, customization flexibility, and
effectiveness of provided documentation. While the MH
user interface was recognized for its value, respondents ex-
pressed a desire for improvements, particularly in enhancing
feature discoverability. The proactive approach of the TMT
in addressing this challenge through the development of a
AI-powered extension signifies a commitment to enhancing
user-friendliness and continuous improvement within the

12

https://zenodo.org/records/10849454


201

MH interface.

Ob2: Evaluating Productivity The evaluation of pro-
ductivity enhancements resulting from the adoption of the
RMF illuminated significant improvements across key agile
characteristics. Rapid adaptation to the MDE approach
within 2 to 3 weeks was observed among the majority of
engineers, indicating the accessibility and user-friendliness
of the RMF. The adoption of the RMF yielded notable
improvements in automating repetitive processes, task man-
agement, resource utilization, and development cycle ac-
celeration, aligning well with agile principles emphasizing
efficiency and continuous improvement. Additionally, the
adoption of the SRP within the RMF, where development
teams were dedicated to specific microservices, facilitated
streamlined communication, collaboration, and enhanced
code quality. The SRP approach also fostered knowledge
sharing and cross-functional collaboration, contributing to
a cohesive understanding of the microservices ecosystem.
Furthermore, respondents highlighted specific task and pro-
cess improvements, including efficiency gains in feature de-
velopment, streamlined workflows, accelerated bug identifi-
cation and resolution, enhanced code review processes, and
improved cross-team coordination. These findings under-
score the multifaceted impact of the RMF on productivity,
aligning with agile principles and demonstrating notable
gains across various aspects of the development process.

Ob3: Measuring Satisfaction Levels from Managers
The two managers expressed a high level of satisfaction
with the RMF, citing its positive impact on project timelines
and collaboration. While the RMF facilitated timely deliv-
eries and successful outcomes, challenges arose in aligning
unique or complex project requirements with the platform.
Despite these challenges, the overall influence on timelines
and collaboration remained significant, with the potential
for further adjustments and improvements. The RMF was
acknowledged for enhancing communication channels and
fostering transparent, collaborative environments, although
some complexities affected the clarity of project-related
information. Stakeholders appreciated instances where feed-
back was integrated effectively, leading to improved project
outcomes.

Ob4: Identifying Challenges and Limitations Teams
encountered challenges during the adoption and implemen-
tation of the RMF, including learning curve hurdles asso-
ciated with the MDE approach and integration complex-
ities with existing tools and workflows. These challenges
highlighted the importance of comprehensive training and
dedicated efforts to align the RMF seamlessly with es-
tablished processes. Additionally, teams faced limitations
and drawbacks such as extensive documentation overhead,
which slowed initial development speed, and challenges in
managing dependencies between microservices, necessitat-
ing meticulous coordination to mitigate disruptions. Striking
a balance between documentation and streamlined processes
is crucial for maintaining efficiency, while resolving de-

pendency management issues is essential for ensuring a
cohesive development process.

Ob5: Recommendations for RMF Enhancement
from Dev Teams and TMT vision In response to the
experiences with the RMF, several key recommendations
emerged. Teams expressed a need for enhanced customiza-
tion features, calling for greater flexibility in tailoring
RMF tools to meet specific project requirements. Improved
integration capabilities, particularly with widely used de-
velopment tools like Jira3 and Notion4, were highlighted
as essential for creating a seamless project ecosystem. The
significance of comprehensive training and ongoing support
during the adoption process was underscored, with rec-
ommendations urging investment in extensive training re-
sources. Security measures were a central concern, prompt-
ing recommendations to strengthen protocols and ensure
robust data privacy features within the RMF. These rec-
ommendations collectively aim to cultivate a platform that
is not only user-friendly and adaptable but also prioritizes
security and efficient collaboration.

Ob6: Impact on Cost-Effectiveness and Return on
Investment The perspectives of the two managers on
the RMF’s influence on cost-effectiveness and ROI were
notably positive. Despite acknowledging potential upfront
implementation costs, both managers expressed a strong
belief in the long-term value and benefits of the RMF. They
highlighted its positive impact on the cost-effectiveness of
development projects, emphasizing how the RMF stream-
lined workflows, reduced redundant tasks, and enhanced
collaboration, ultimately leading to improved project out-
comes. In terms of ROI, insights shared by the managers
focused on the considerable time and resource savings fa-
cilitated by the RMF. They noted that the initial investment
in adopting the RMF resulted in tangible benefits for their
teams and the organization as a whole. The emphasis on
long-term gains and efficiency gains underlines the strategic
and forward-thinking approach that organizations can adopt
when implementing the RMF, aligning with broader goals
of productivity and value delivery.

8. Conclusion
This work has shed light on the critical role of soft-

ware reuse within the context of MSA and its profound
implications for modern software engineering practices. By
identifying and addressing five key challenges—Code Du-
plication, Technology Heterogeneity, Service Boundaries,
Versioning, and Decision-Making—we have proposed the
RMF as a systematic approach to optimizing reusability
in MSA environments. Developed in collaboration with
MSA practitioners and grounded in industry insights, the
RMF offers a comprehensive solution to enhance reusability
practices. Through simulations and real-world implementa-
tions, including adoption in a software company setting,
we have demonstrated the significant improvements in

3https://www.atlassian.com/software/jira
4https://www.notion.so/

13



202 8 CONCLUSION

reusability achieved with the RMF, exceeding threefold
in observed cases. In future work, we plan to address
remaining challenges like tool integrations within the RMF.
Additionally, we aim to create a public platform for the MH,
enabling shared access to microservices across companies.
This initiative will foster an RMF community, promoting
the exchange of best practices and facilitating widespread
adoption of reusability within MSA.

References
[1] R. Capilla, B. Gallina, C. Cetina, and J. Favaro, “Opportunities

for software reuse in an uncertain world: From past to emerging
trends,” Journal of Software: Evolution and Process, vol. 31, no. 8,
8 2019. [Online]. Available: https://doi.org/10.1002/smr.2217

[2] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with
microservices: A systematic mapping study,” Journal of Systems
and Software, vol. 150, pp. 77–97, 4 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.01.001

[3] V. Raj and R. Sadam, “Performance and complexity comparison
of service oriented architecture and microservices architecture,”
International Journal of Communication Networks and Distributed
Systems, vol. 27, no. 1, p. 100, 1 2021. [Online]. Available:
https://doi.org/10.1504/ijcnds.2021.116463

[4] J. Lewis and M. Fowler, “Microservices,” 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[5] M. AIT SAID, A. EZZATI, S. MIHI, and L. BELOUADDANE,
“Microservices Adoption: An Industrial Inquiry into Factors
Influencing Decisions and Implementation Strategies,” International
Journal of Computing and Digital Systems, vol. 15, pp. 1417–
1432, 3 2024. [Online]. Available: http://dx.doi.org/10.12785/ijcds/
1501100

[6] A. Razzaq and S. A. K. Ghayyur, “A systematic mapping
study: The new age of software architecture from monolithic to
microservice architecture—awareness and challenges,” Computer
Applications in Engineering Education, vol. 31, no. 2, pp. 421–451,
11 2022. [Online]. Available: https://doi.org/10.1002/cae.22586

[7] M. Ait Said, A. Ezzati, and S. Arezki, “Microservices, a Step from
the Low-Code to the No-Code,” pp. 779–788, 11 2022. [Online].
Available: https://doi.org/10.1007/978-3-031-20601-6 64

[8] ——, “Microservice-Specific language, a step to the Low-
Code platforms,” pp. 817–828, 1 2023. [Online]. Available:
https://doi.org/10.1007/978-3-031-26384-2 72

[9] S. Newman, Building Microservices: Designing Fine-Grained
Systems, 2 2015, iSBN: 1491950358, URL: https://www.oreilly.
com/library/view/building-microservices/9781491950340.

[10] ——, Monolith to microservices. O’Reilly Media, 9 2019,
iSBN: 9781492047841, URL: https://www.oreilly.com/library/view/
monolith-to-microservices/9781492047834.

[11] J. Doležal and A. Buchalcevová, “Migration from monolithic
to microservice architecture : Research of Impacts on Agility,”
IDIMT-2022 : digitalization of society, business and management
in a pandemic : 30th Interdisciplinary Information Management
Talks, pp. 401–, 2022. [Online]. Available: https://doi.org/10.35011/
IDIMT-2022-401

[12] G. J. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic
vs. Microservice Architecture: A Performance and Scalability
Evaluation,” IEEE Access, vol. 10, pp. 20 357–20 374, 1 2022.
[Online]. Available: https://doi.org/10.1109/access.2022.3152803

[13] Z. Li, C. Shang, J. Wu, and Y. Li, “Microservice extraction based
on knowledge graph from monolithic applications,” Information
Software Technology, vol. 150, p. 106992, 10 2022. [Online].
Available: https://doi.org/10.1016/j.infsof.2022.106992

[14] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From
monolithic systems to Microservices: An assessment framework,”
Information Software Technology, vol. 137, p. 106600, 9 2021.
[Online]. Available: https://doi.org/10.1016/j.infsof.2021.106600

[15] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao,
J. Ge, and Z. Shan, “A dataflow-driven approach to identifying
microservices from monolithic applications,” Journal of Systems
and Software, vol. 157, p. 110380, 11 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.07.008

[16] K. Gos and W. Zabierowski, “The Comparison of Microservice and
Monolithic Architecture,” IEEE XVIth International Conference
on the Perspective Technologies and Methods in MEMS Design
(MEMSTECH), 4 2020. [Online]. Available: https://doi.org/10.
1109/memstech49584.2020.9109514

[17] H. Chawla and H. Kathuria, “Evolution of microservices
architecture,” pp. 1–20, 1 2019. [Online]. Available: https:
//doi.org/10.1007/978-1-4842-4828-7 1

[18] V. Velepucha and P. Flores, “Monoliths to microservices -
Migration Problems and Challenges: A SMS,” Second International
Conference on Information Systems and Software Technologies
(ICI2ST), 3 2021. [Online]. Available: https://doi.org/10.1109/
ici2st51859.2021.00027

[19] L. Cao and C. Zhang, “Implementation of Domain-
oriented Microservices Decomposition based on Node-
attributed Network,” 11th International Conference on Software
and Computer Applications, 2 2022. [Online]. Available:
https://doi.org/10.1145/3524304.3524325

[20] N. Santos and A. R. Silva, “A Complexity Metric for Microservices
Architecture Migration,” IEEE International Conference on
Software Architecture (ICSA), 3 2020. [Online]. Available:
https://doi.org/10.1109/icsa47634.2020.00024

[21] Y. M. Abgaz, A. McCarren, P. Eklund, D. Solan, N. Lapuz,
M. Bivol, G. Jackson, M. Yılmaz, J. Buckley, and P. M. Clarke,
“Decomposition of Monolith Applications into Microservices
Architectures: A Systematic review,” IEEE Transactions on
Software Engineering, vol. 49, no. 8, pp. 4213–4242, 8 2023.
[Online]. Available: https://doi.org/10.1109/tse.2023.3287297

[22] V. Velepucha and P. Flores, “A survey on Microservices
Architecture: Principles, Patterns and migration challenges,” IEEE
Access, vol. 11, pp. 88 339–88 358, 1 2023. [Online]. Available:
https://doi.org/10.1109/access.2023.3305687

[23] LatourLarry, WheelerTom, and FrakesBill, “Descriptive and
predictive aspects of the 3Cs model,” Ada letters, vol. XI, no. 3, pp.
9–17, 4 1991. [Online]. Available: https://doi.org/10.1145/112630.
112632

[24] L. Carvalho, A. Garcia, W. K. G. Assunção, R. Bonifácio, L. P.
Tizzei, and T. E. Colanzi, “Extraction of Configurable and Reusable

14

https://doi.org/10.1002/smr.2217
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1504/ijcnds.2021.116463
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.12785/ijcds/1501100
http://dx.doi.org/10.12785/ijcds/1501100
https://doi.org/10.1002/cae.22586
https://doi.org/10.1007/978-3-031-20601-6_64
https://doi.org/10.1007/978-3-031-26384-2_72
https://www.oreilly.com/library/view/building-microservices/9781491950340
https://www.oreilly.com/library/view/building-microservices/9781491950340
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834
https://doi.org/10.35011/IDIMT-2022-401
https://doi.org/10.35011/IDIMT-2022-401
https://doi.org/10.1109/access.2022.3152803
https://doi.org/10.1016/j.infsof.2022.106992
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1109/memstech49584.2020.9109514
https://doi.org/10.1109/memstech49584.2020.9109514
https://doi.org/10.1007/978-1-4842-4828-7_1
https://doi.org/10.1007/978-1-4842-4828-7_1
https://doi.org/10.1109/ici2st51859.2021.00027
https://doi.org/10.1109/ici2st51859.2021.00027
https://doi.org/10.1145/3524304.3524325
https://doi.org/10.1109/icsa47634.2020.00024
https://doi.org/10.1109/tse.2023.3287297
https://doi.org/10.1109/access.2023.3305687
https://doi.org/10.1145/112630.112632
https://doi.org/10.1145/112630.112632


203

Microservices from Legacy Systems,” Proceedings of the 23rd
International Systems and Software Product Line Conference, 9
2019. [Online]. Available: https://doi.org/10.1145/3336294.3336319

[25] M. A. P. Da Silva, V. C. Times, A. Araújo, and P. C.
Da Silva, “A Microservice-Based Approach for Increasing
Software Reusability in Health Applications,” IEEE/ACS 16th
International Conference on Computer Systems and Applications
(AICCSA), 11 2019. [Online]. Available: https://doi.org/10.1109/
aiccsa47632.2019.9035229

[26] S. H. A. Hamed, “Reusability of legacy software using
microservices: An online exam system example,” Al-Qadisiyah
Journal for Computer Science and Mathematics, vol. 15, no. 3, 9
2023. [Online]. Available: https://doi.org/10.29304/jqcm.2023.15.3.
1263

[27] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee,
“A Design Science research Methodology for Information Systems
research,” Journal of Management Information Systems, vol. 24,
no. 3, pp. 45–77, 12 2007. [Online]. Available: https://doi.org/10.
2753/mis0742-1222240302

[28] S. T. March and G. F. Smith, “Design and natural science
research on information technology,” Decision Support Systems,
vol. 15, no. 4, pp. 251–266, 12 1995. [Online]. Available:
https://doi.org/10.1016/0167-9236(94)00041-2

[29] S. Brinkmann and S. Kvale, Doing interviews, 1
2018, iSBN: 9781529716665, DOI: https://doi.org/10.

4135/9781529716665, URL: https://www.sagepub.com/hi/nam/
doing-interviews/book259212.

[30] J. Sorgalla, F. Rademacher, S. Sachweh, and A. Zündorf,
“Model-driven Development of Microservice Architecture: An
Experiment on the Quality in Use of a UML- and a DSL-based
Approach,” Software Engineering, 4 2020. [Online]. Available:
https://kobra.uni-kassel.de/handle/123456789/11912

[31] X. Zhou, S. Li, L. Cao, H. Zhang, Z. Jia, C. Zhong, Z. Shan, and
M. A. Babar, “Revisiting the practices and pains of microservice
architecture in reality: An industrial inquiry,” Journal of Systems
and Software, vol. 195, p. 111521, 1 2023. [Online]. Available:
https://doi.org/10.1016/j.jss.2022.111521

[32] P. Merson and J. W. Yoder, “Modeling Microservices with
DDD,” EEE International Conference on Software Architecture
Companion (ICSA-C), 3 2020. [Online]. Available: https://doi.org/
10.1109/icsa-c50368.2020.00010

[33] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying
microservices using functional decomposition,” pp. 50–65, 1 2018.
[Online]. Available: https://doi.org/10.1007/978-3-319-99933-3 4

[34] R. A. Schmidt and M. Thiry, “Microservices identification
strategies : A review focused on Model-Driven Engineering and
Domain Driven Design approaches,” 15th Iberian Conference on
Information Systems and Technologies (CISTI), 6 2020. [Online].
Available: https://doi.org/10.23919/cisti49556.2020.9141150

15

https://doi.org/10.1145/3336294.3336319
https://doi.org/10.1109/aiccsa47632.2019.9035229
https://doi.org/10.1109/aiccsa47632.2019.9035229
https://doi.org/10.29304/jqcm.2023.15.3.1263
https://doi.org/10.29304/jqcm.2023.15.3.1263
https://doi.org/10.2753/mis0742-1222240302
https://doi.org/10.2753/mis0742-1222240302
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.4135/9781529716665
https://doi.org/10.4135/9781529716665
https://www.sagepub.com/hi/nam/doing-interviews/book259212
https://www.sagepub.com/hi/nam/doing-interviews/book259212
https://kobra.uni-kassel.de/handle/123456789/11912
https://doi.org/10.1016/j.jss.2022.111521
https://doi.org/10.1109/icsa-c50368.2020.00010
https://doi.org/10.1109/icsa-c50368.2020.00010
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.23919/cisti49556.2020.9141150

	Introduction
	Background
	Related work
	Comparison

	Methodology
	First phase: industrial inquiry
	Approach
	Objectives
	Participants
	Data collection

	Second phase: Best Practices Formulation
	Third Phase: Framework Validation in a Real-World Setting
	Data repository of tables

	Challenges
	Code duplication
	Challenge
	Addressing the challenge

	Technology Heterogeneity
	Challenge
	Addressing the challenge

	Service boundaries
	Challenge
	Addressing the challenge

	Versioning
	Challenge
	Addressing the challenge

	Decision-making
	Challenge
	Addressing the challenge


	Proposed Framework
	Base concepts
	Microservices Hub
	Tech Masters Team
	Classification Framework

	Reusable Microservices Framework (RMF)

	Validation and evaluation 
	Environment preparation for RMF adoption
	Cost Implications
	Real-world adoption
	Simulation
	Evaluating RMF Adoption and Impact
	Methodology
	Results and Discussion


	Conclusion
	References

