
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Hybrid Approach to Instance Matching

Abstract The proliferation of web data and the advent of extensive knowledge graphs have led to the creation
of vast volumes of disconnected data, resulting in data silos. Integrating and sharing web data across diverse
domains require that equivalent instances across different sources are correctly identified. Instance matching,
often referred to as Entity Resolution, encompasses the task of determining whether two instances correspond
to same resource or entity. This process poses significant challenges, particularly in distinguishing between
identical entities and those with similar attributes. Candidate generation has a pivotal role in facilitating
appropriate comparisons between entities across disparate datasets. This paper employs an inverted index
based approach to identify candidates for the matching task and a query likelihood model based selection to
further reduce the candidate set. This paper proposes a novel system architecture employing hybrid ensemble
classifiers and a methodology for identifying equivalent instances despite the challenges posed by diverse data
representations in instance matching. Through experimental evaluation on real-world datasets, we demonstrate
that our hybrid ensemble learning approach consistently outperforms standalone matchers in terms of accuracy
and F1score. A comprehensive literature review on instance matching, discussing practical considerations and
challenges for data interlinking is also presented here. Future research directions aimed at contributing to
seamless data integration and knowledge sharing across disparate domains are also outlined.
Keywords: Instance matching, Semantic Web, Entity Resolution, Candidate Generation, Ensemble Classifi-
cation.

1. INTRODUCTION
The World Wide Web is witnessing an information

explosion due to technological advancement such as the
Internet of Things (IoT), Social media platforms and Aug-
mented Reality(AR) [1] [2]. The rapid expansion of data
across the World Wide Web has resulted in the widespread
emergence of isolated data silos.[3]. These silos inhibit the
sharing, integration, and utilization of data across systems
and applications, resulting in duplication of efforts, incon-
sistencies, and missed opportunities for collaboration and
innovation. In view of these issues, there is a need to
organize and coordinate data exchange for intelligent IoT
applications, Social Network analysis, Automated Control
systems etc. This need can be addressed through data
interlinking, which offers numerous opportunities for or-
ganizations across various domains. By linking related data
from disparate sources, data interlinking facilitates seamless
integration and enables innovative applications to leverage
interconnected datasets.
Semantic web technologies[4] provide the foundational
framework and tools necessary for accurate and efficient
instance matching, enabling the integration and interoper-
ability of data across diverse domains and sources. RDF
(Resource Description Framework) provides a standardized
model for describing resources using triples, which consist
of subject-predicate-object statements. RDF enables the
creation of machine-readable metadata about web resources,
facilitating data interchange and integration. Ontology web
language(OWL) define concepts and relationships within
a domain. OWL builds upon RDF and provides a richer
vocabulary for describing complex relationships and con-

straints, enabling instance matching algorithms to compare
attributes and relationships between instances accurately
[5]. Knowledge graphs play a vital role in the representation
of complex objects enriched with semantic annotations[6].
The use of ontologies and vocabularies ensure a shared
understanding of the semantics of instances, leading to
more precise and context-aware instance matching. Lever-
aging linked data principles, knowledge graphs integrate
and interlink datasets from multiple sources, providing a
global view of data and facilitating cross-referencing and
alignment between related instances. Data interlinking is
thus essential for effective data integration and knowledge
discovery across various domains, thereby driving transfor-
mative benefits and fostering innovation through intelligent
applications.

Open Data [7] [8] published by Governments and Open
Data Community can be interlinked for the creation of
innovative applications for data enrichment and analytics,
crime prediction, early warning systems or business pro-
cesses improvement . In the Healthcare sector, data linking
allows healthcare providers to create comprehensive pa-
tient records by linking information from electronic health
records (EHRs), medical imaging and insurance claims. In
the Financial sector, linking data from various financial
transactions helps to identify suspicious activities, detect
anomalies, and ensure regulatory compliance. Knowledge
based Systems(KBS) extensively rely on knowledge bases
that contain facts, rules, heuristics, procedures, relationships
and best practices relevant to the domain they operate in.
By linking knowledge base with external sources, such as

IJCDS 1571011657

1

databases, APIs, or external knowledge repositories. KBS
can enrich their knowledge through linking which provide
an insight in decision support, contextual understanding and
knowledge discovery [9], [10].

There are several challenges to interlinking data from
Open Data Community projects, Knowledge bases or con-
ventional data sources notably data heterogeneity, scala-
bility, and instance matching. Data heterogeneity arises as
data may come from various sources with different formats,
schemas, and quality standards. Matching instances across
heterogeneous data can be challenging due to inconsis-
tencies and discrepancies. Semantic heterogeneity where
Instances may represent the same entity but use differ-
ent terminologies, abbreviations or representations need to
be addressed. Resolving semantic heterogeneity requires
understanding the underlying semantics and relationships
between data elements. Another concern is Scalability as
matching large datasets with millions or billions of records
can be computationally intensive and time-consuming. Effi-
cient algorithms and techniques are required to handle scal-
ability issues. Instance matching, also referred to as Entity
Resolution, entails the process of ascertaining whether two
instances pertain to the same resource in real world(e.g.,
person, product) which involves resolving ambiguities. Dif-
ferentiating between identical entities and distinct entities
with similar attributes is a key challenge [11], [12]. Several
software tools and frameworks have emerged to handle the
issue of identifying semantically equivalent objects across
different data sources. The underlying principle behind these
methodologies is to automatically identify pairs of resources
from two sets, denoted as A and B, that should be linked
together, often based on a predefined semantic relationship
such as < owl : sameAs >.

This work focus on the aspect of achieving an effective
and efficiency approach to instance matching. Effectiveness
is related to identifying all relevant links between the
sources without generating incorrect links. It is necessary
that a system learn the similarity conditions that two re-
sources, denoted as a ∈ A and b ∈ B, must satisfy to be
considered as related or equivalent. Instance matching as a
computational task need to compare all elements of A with
all elements of B would have a computational complexity
of O(|A||B|), which can be very high for large datasets.
Hence, efficient algorithms and optimization techniques, are
essential to ensure scalability and practical applicability in
real-world scenarios.

The key contribution of our work can be outlined as
follows. First, an comprehensive review of state-of-art is
presented that highlights the research directions in the
literature. Second, we propose a system architecture that
employs hybrid classifier models for instance matching.
Third, we present a candidate generation and selection
approach along with concept clustering for improving the
efficiency of instance matching

The outline of the paper is as follows. A comprehensive
review of literature is given Section 2 . Section 3 explains
the system architecture. The experimental evaluation and
dataset used is given in Section 4. Discussions and results
pertaining to experimentation are in section 5 followed by
conclusions in Section 6.

2. Literature Review
Instance matching is essential for integrating data from

diverse sources and plays a crucial role in data integra-
tion, ontology alignment, semantic web, and knowledge
engineering applications. This literature review provides a
comprehensive overview of instance matching approaches
namely similarity based approaches, machine learning
based approach, probabilistic matching models and graph
based matching models. This work also highlights the key
concepts, methodologies, strengths, and limitations of these
approaches .

Similarity-based approaches[10] in instance matching
focus on computation of similarity score of instances based
on attributes values. Similarity measures like Levenstein
Distance offer character-level comparisons, while set-based
measures such as Jaccard Similarity and Cosine Simi-
larity provide robust solutions for string and document
matching tasks [11]. WordNet-based metrics leverage se-
mantic knowledge to identify similar entities based on
their semantic meanings. [13]incorporates schema based
and instance based matching within a two-level matching
framework, introducing Multivariate Statistical Matching to
automate schema scoring and leverage domain knowledge
and attribute correlations . Similarity based approaches are
effective in capturing similarity of numeric, categorical, or
textual attributes and are adaptable to different domains
and matching tasks. However, limitations are the challenge
of defining appropriate similarity measures for diverse
data types and the need for manual parameter tuning.
Additionally, these approaches may struggle with handling
noise, inconsistencies, and variations in data, especially
in cases where attributes are poorly defined or have high
dimensionality.

Machine learning-based instance matching approaches
[14] have gained significant prominence due to their ca-
pability to automatically learn patterns and relationships
from data, enabling efficient matching across heterogeneous
sources. These approaches typically involve training ma-
chine learning models on labeled or unlabeled data, where
instances are represented as feature vectors. In [10] Instance
matching is viewed as a binary classification task which
uses a similarity metric that is schema independent based on
different descriptive algorithms. The instance-level corefer-
ence resolution is a conspicuous problem faced by semantic
web community. Discovering the coreference resolution
links is often difficult due to the heterogeneity that exists
at the schema level. [15] describes schema mapping by
leveraging background knowledge which subsequently can
help the instance coreference resolution process.

2

However this approach was found suitable to small
subgraphs of the Linked Data cloud. Strengths of ma-
chine learning-based approaches include their adaptability
to different data types and domains, their capability to
handle complex patterns and relationships, and their po-
tential for scalability and automation. The ability in cap-
turing non-linear relationships and dependencies between
instances, make them suitable for matching tasks with high-
dimensional or noisy data. However, a limitation lies in
the necessity for a substantial amount of labeled training
data. The acquisition of the training data could prove costly
and time-intensive. Moreover, their performance is largely
depends upon the quality and inclusiveness of training data.

Graph matching approaches[16] to data interlinking not
only assess the similarity of instances but also consider their
neighborhood structure. These approaches employ graph
matching algorithms to compute graph similarity by evaluat-
ing all possible pairs of nodes from two datasets, generating
mappings if the similarity exceeds a specified threshold
[17]. However, these algorithms often lack heuristics to
handle situations where ontologies differ. Alternatively,
reconciliation algorithms leverage context information as
evidence to conclude whether entities refer to the same
entity [18]. Such algorithms propagate context similarity
using a dependency graph, where nodes represent similari-
ties between pairs of attribute values, and edges indicate the
strength of reconciliation decisions. Additionally, there have
been attempts to exploit Wikipedia as a background corpus
and utilize its concepts for entity disambiguation. A method
that combines deep learning and knowledge base to auto-
mate entity attribute extraction and entity Linking have been
suggested in [19] . Another approach demonstrates how
to calculate semantic distance on Linked Data to identify
relatedness between resources using Linked Data semantic
distance algorithms [2]. The instance matching task is often
transformed as a document matching task and solves it using
a vector space embedding methods. The method creates
a virtual document for every instance and utilizes word
embeddings to evaluate word similarities, considering both
lexical and semantic levels. The technique leverages pre-
trained word embeddings for capturing semantic relatedness
of words, including synonym and terminological variants.
By representing instances as virtual documents and using
lexical semantic similarity techniques, the approach enables
the alignment of instances in knowledge bases[20].

Probabilistic approach in ’IdMesh’[21] builds a disam-
biguation graph using the transitive relation of equivalence
links for graphs that contain uncertainty in information. It
falls back on the properties of symmetry and transitivity that
is displayed by equivalent relations for defining constraints.
The constraint satisfaction factor-graphs computes the pos-
terior probabilities of link variables and helps in detecting
inconsistencies within graph of entities.The probabilistic
framework[22] enhances the accuracy and robustness of
entity disambiguation in uncertain data environments. .

Several hybrid approaches have been used that com-
bines the above mentioned approaches. ZenCrowd[23] uses
crowd sourcing and probabilistic graph model to semi-
automatically match data sets. It strives for reconciliation
of entities present in Web pages to linked web of data.
The system ZenCrowd employs entity extractor to identify
entities from html web pages which is passed to algorithmic
linkers that integrates them with the linked open data cloud.
The blocking technique firstly builds an inverted index and
generates likely candidates using a probabilistic approach.
In second stage, system analyses the candidate matches
and refine them using graph based instance matching tech-
niques. In the third stage, it involves human computation by
providing crowdsourcing tasks to improve results. Finally
the hybrid approach integrates results using a probabilistic
inference in order to make decision regarding the linking
of entities.

Ontology matching and alignment[24]is often carried
out prior to instance matching as a resource may belong
to different classes and may be described using different
predicates and may be part of different ontologies. For
instance, a name within one dataset may be identified using
the ’foaf:name’ data property within the FOAF ontology,
while in another dataset, it might be denoted using the
’vcard:N’ object property from the VCard ontology. On-
tology matching allows for finding correspondences be-
tween different ontologies. [5] uses a context-independent
approach that addresses structural heterogeneity by consid-
ering the components of ontology model, its properties and
relationships. By considering the structural heterogeneity,
the context-independent approach can handle variations in
the representation and organization of data across different
datasets, ensuring accurate alignment of resources.
Candidate generation and selection that focuses on the issue
of scalability need to be taken care of by instance matching
systems[25]. A method to reduce the candidate pairs is to
keep track of match histories of instances and identifying
instances that are dissimilar.The similarity between histories
is found using jaccard similarity. Thresholding using a sig-
moid function to decide the commonality between instances
on-the-fly. Another method carry out candidate selection
by generating n-grams from discriminating feature and use
them to recursively find candidate keys that help to discrim-
inate instances in a given dataset using any of the learned
predicates. Sorted Neighborhood technique partitions in-
stances into blocks based on sorted order and employs these
blocks to efficiently identify candidate pairs It also attempts
to improve efficiency of look up by constructing an inverted
index of Instances[26]. Hasan et al. introduced a framework
for candidate generation using locality-sensitive hashing
(LSH) to approximate the similarity between entities in
large-scale datasets [27]

This research focuses on interlinking hetrogeneous
datasets by following a hybrid approach.This work adopts
the use of an inverted index for improving efficiency of

3

Similarity Vector
Generation

Model Training
Mapping
Generation

Candidate Generation and Selection

Concept Clustering
Attribute

Based Indexing

TransformationSource Target

Instance Matching Module

Indexing Module

O/P

Figure 1. Proposed architecture of data interlinking system

candidate generation as in [24]. However this work makes
use of an effective candidate generation and selection ap-
proach that reduces the number of candidates. The approach
employs a hybrid similarity measure that combines vec-
tor space model and various edit distance measures for
calculating a similarity score based on which instances
can be matched. Overcoming semantic heterogeneity can
be typically achieved by matching entities to find a set
of correspondences or to decide on alignment according
to application needs. Unlike in [28] where a threshold is
used to identify candidate pair as match/mismatch, we use
unsupervised learning to identify true matches

A. Problem Definition
Instance Matching: Given a source dataset A =

{a1, a2, a3, ..., an} and a target dataset B = {b1, b2, b3, ..., bm}

that consist of collection of instances, Instance matching
task generates mapping M = {(ai, b j)} between source and
target datasets containing only matching instances where
ai ≡ b j that represent the same world entity.

3. Proposed System
The main concern of Data Interlinking is to find out

equivalent instances from disparate data sources and gener-
ate mapping. The proposed architecture for data interlinking
is given in Fig.1. The approach to find mappings involves
four phases: (i) Transformation (ii) Indexing/blocking (
iii) Candidate generation and selection and (iv) Instance
matching.

A. The transformation phase
The need for transformation of data [29]prior to instance

matching arises due to heterogeneity of data sources, which
may use different formats, structures, and representations to
describe instances and relationships. Transformation phase
includes several data processing tasks for cleaning and
standardization of data. transformation phase includes . The
data format of the source and target dataset may exist in the
form of XML/RDF, OWL, CSV file etc. The transformation
steps that involved in instance matching are listed below.

• Handling Missing Values and Special Characters:

4

Data cleaning of literal values by handling missing
values, removing special characters, stemming and
normalizing string representations are essential prior
to indexing.

• Normalizing String Representations:Normalization of
literal values, such as Brand,Category,Price, Weight,
Date, location converting all prices to a common
currency format, standardizing brand names, convert-
ing weights and dimensions to a common unit of
measurement, ensuring consistent date formats and
naming conventions helps to tackle discrepancies.

• Handling Multilingual Data : If multilingual data is
present, language tags such as @en, @ar, @es, @fr
need to handled appropriately. RDF/XML data is con-
verted into a format that can be easily manipulated by
the instance matching algorithms using RDF parsers
[30].

• RDF/XML Parsing and Blank Node Resolution:
Blank nodes may represent anonymous resources or
entities in DBpedia. Resolving blank nodes involves
assigning temporary identifiers or treating them as
anonymous entities to ensure consistency and effec-
tive data processing.

• Ontology Term Usage and Consistency in OWL Data:
Entities and relationships are described using different
ontologies and vocabularies to describe entities and
relationships. Ensuring use of appropriate ontology
terms and maintaining consistency of ontology terms
across instances are vital when data is in OWL
format.

B. Blocking or Indexing
Instance Matching involves comparison of instances

from source dataset with all instances from target dataset
to identify potential matches.This leads to scalability
issues[27] as the rise in number of instances will cause
the number of pairwise comparisons to grow quadratically.
Hence comparing every pair of instances from two datasets
would be a computationally intensive task. We use concept
based clustering and Inverted Indexing to deal with such
large number of comparisons and efficient data processing
strategy to address the scalability.

1) Concept Clustering
Concept-based clustering organizes data into groups

based on the underlying concepts or semantic similarities
present in the data. Concept identification[31] in structured
or semistructured datasets is done through pattern matching,
Domain specific rules or through ontology matching.

• Pattern Matching[32] Identifying patterns in product
names or descriptions to extract relevant concepts
such as brand names, product models, or category
keywords.

• Another way is to apply Domain-specific Rules[33]
based on domain knowledge to identify specific prod-
uct categories (e.g., smartphones, laptops) based on
attributes like screen size or processor type.

• Ontology Mapping approach[33] maps attributes to
concepts defined in product ontologies or taxonomies,
aligning the ”Category” attribute with standardized
product categories defined in a product ontology. we
map the ”Category” attribute to standardized product
categories defined in a product ontology (e.g., Mobile
Phones, Tablets, Laptops).

Instances described using RDF are clustered with the
help of property RDF:type used to indicate the class
of a resource or through schema information obtained
through RDFS:class RDFS:subclassOf tags. For e.g., Au-
thors are described as instances of the foaf:Person class
where as Books are described as instances of the dc-
terms:BibliographicResource class. Hence clustering helps
to bring together instances belonging to the same class.
Instances in a cluster from the source dataset need to be
compared only with instances belonging to same class in
target dataset.

2) Indexing
The clustering is followed by construction of an in-

verted index.Blocking or indexing techniques helps to re-
duce the search space by creating index based on key
attributes. This helps prune irrelevant comparisons and
improve efficiency[34]. Here we construct an attribute based
inverted index that can be queried to produce a reduced
dataset called as Candidate set.

Inverted Index is constructed by selecting one or more
most informative attribute. For each instance, terms corre-
sponding to this attribute are inserted as (key, value) pair
in the index where key corresponds a term and value
corresponds to an instance identifier. The inverted index is
updated by adding an entry for the key if it doesn’t exist, or
appending the instance identifier to the values list associated
with the key. Let t be a term in the index, i be an instance
in the dataset, then Index I is represented as below in (1).

I = {[t1 : i1, i2, ..], t2 : [i1, i3, . . .], . . .} (1)

The inverted index is modified to include additional infor-
mation such as term frequency, document frequency, or
positions of terms within instances. Then, the weighted
inverted index I is represented as a mapping from terms
t to lists of instance-weight pairs as shown in (2).

I = t1 : [(i1,wt1), (i2,wt1), ..], t2 : [(i1,wt2), (i2,wt2), ...], ..
(2)

Each term t .is associated with a list of instance-weight
pairs, where each pair (i,wt,i) represents the instance i and
the weight of term t within that instance.

5

TABLE I. Dataset Statistics

Dataset Domain Source Dataset Target Dataset Matches
instances properties instances properties

D1 (Amazon-GP) E-Commerce 1363 5 3226 5 1300

D2 (Abt-Buy) E-Commerce 1082 4 1092 5 1097

C. Candidate generation and Selection
Candidate generation involves finding a subset of in-

stances called as the candidate set. The key attribute acts
as the query Q = {q1, q2, q3...} consisting of multiple words
or terms. For each query term, the matching instances(E)
from target dataset can be found by querying the Index.
The query result contain the instance identifiers from target
dataset that contain each query term. This may lead to a
large candidate set and hence to prune candidates set, a
probabilistic query likelihood model is used as a selection
strategy. The equation (3) for the query likelihood model
represents the probability of observing the query Q given
the language model θe [35] [36] .

S core(E,Q) = p(Q|θE)

p(q|θE) =
C(q, E)
|E|

(3)

The query likelihood model estimates the probability of
term q in instance e using maximum likelihood estimation,
where C(q, E) is the frequency of q in E and |E| is the
number of instances (3).

p(q|θE) =
|E|
|E| + µ

p(q|E) +
µ

|E| + µ
p(q|C) (4)

The equation (4) represents the smoothed probability of
term q in instances E using Dirichlet prior smoothing, where
µ is the smoothing parameter and p(q|C) is the probability
of q in the collection [37].

log p(Q|θE)rank =
∑

q∈Q∩E

c(q,Q)log
(
1 +

c(q, E)
µp(q|C)

)
+ |Q|log

µ

|E| + µ

(5)

The query likelihood score is calculated using (5) for
instances in E given query Q, where c(q,Q) is the count
of term q in query Q and |Q| represents the length of the
query. The scoring function enables selection of candidates
for further processing.

D. Similarity vector Generation
Candidate pairs are compared to quantify the similarity

or dissimilarity between them. This comparison often relies
on similarity metrics to determine closeness or relatedness

of the instances . Let the candidate pair (A, B) correspond to
an instance of source and target set respectively. The feature
vector A = [a1, a2, ..., an] and B = [b1, b2, ..., bn] correspond
to attributes values of the instances. Then, the similarity
vector (6) of candidate pair(A, B) can be expressed as

X = [x1, x2, ..., xn] where xi ∈ (0, 1) ⊂ R (6)

where xi = S im(ai, bi) is computed using any similarity
measure. The choice of similarity metric S im depends on
several factors, the type of data, the nature of task at hand,
and the characteristics of the features being compared. For
textual features cosine similarity and TF-IDF measures are
commonly used. Applying Term frequency Inverse docu-
ment frequency (TF-IDF) sim(ai, bi) is expressed as the
cosine similarity of the corresponding word vectors a⃗i and
b⃗i as shown in (7).

S imCosine(ai, bi) = cos(a⃗i, b⃗i) =
a⃗i · b⃗i

|a⃗i| · |b⃗i|
(7)

Use of n-gram similarity measures allows for more
flexible and forgiving comparisons, accommodating vari-
ations in text data while capturing similarities based on
shared subsequences. This makes it suitable for features
containing textual data having variations like typos, abbre-
viations, or minor alterations. For e.g. product names:a =
”S amsung Galaxy S 21 Ultra” and b = ”Galaxy S 21 U”
may not be identified as similar in direct comparison.
Transforming the data using n-grams(eg. 3-gram) {”Sam”,
”ams”,...”S21”..”} and using Jaccard similarity can improve
the similarity score.

Let Na and Nb denote the sets of n-grams extracted from
features a and b , Nintersection be set of common n-grams
between a and b and Nunion be set of all unique n-grams
in a and b as shown in (8). Then Jaccard similarity is a
measure of the proportion of n-grams shared between two
sets divided by count of distinct elements in two sets.

Nintersection = Na ∩ Nb

Nunion = Na ∪ Nb

SimJaccard(ai, bi) =
|Nintersection|

|Nunion|

(8)

6

Traditional way to compute similarity of instances is to
apply aggregation functions to get a combined similarity
score and to apply threshold using which candidate pairs
will be classified as ′matches′ or ′nonmatches′. When ap-
plying a combined similarity score, it’s essential to carefully
design the combination scheme based on the nature of
the data and requirements pertaining to the application.The
candidate pairs that match the similarity criteria will se-
lected and be mapped as equivalent instances. However
this approach differ by applying supervised learning models
to find matches among entities. We use techniques such
as weighted averaging, ensemble methods of classifiers to
effectively classify instance pairs. Additionally, validation
and evaluation on relevant benchmarks and through cross-
validation are we assess the performance of the models in
classifying candidate pairs.

E. Instance Matching Model Training
The proposed approach views Instance matching

as a classification problem[38]. Given the collection
of similarity vectors X = {x1, x2, ..., xn} each similarity
vector xi is associated with a class a binary class label
y ∈ {0, 1}, where y = 1 indicates that x1 and x2 refer
to the same real-world entity, and y = 0 indicates that
they refer to different entities. using this training set
D = {(x1, y1), (x2, y2), ...(xn, yn) where N is the number of
training instances, our goal is to learn a binary classification
model h(f(x)) that maps the similarity vector to the binary
class label y. Two hybrid ensemble models are trained with
the aim of improving performance (i) BagBoost Classifier
(ii) Voting classifier.

1) BagBoost Classifier
The Bag-Boost ensemble model combines bagging

and boosting techniques to create a powerful ensemble
learner.Bagging (Bootstrap Aggregating) involves generat-
ing multiple bootstrap samples from the original training
dataset. The working of BagBoost classification is as given
below.

1) Let a training set D = {(xi, yi)} where (xi, yi) rep-
resents individual data points in the training set,
where xi represents the features and yi represents the
corresponding labels.

2) Bagging creates bootstrap samples D∗1,D
∗
2, ...,D

∗
B

containing n samples. Each bootstrap sample is cre-
ated by randomly sampling n examples with replace-
ment from the original dataset.

3) Each Boosting classifier(AdaBoost) is trained on its
corresponding bootstrap sample D∗i . Let hi(x) denote
the hypothesis function learned by the ith classifier
where hi(x) is the aggregated prediction for input x,
α j is the weight assigned to the jth weak learner
component of boosting classifier as shown in (9).

h(x) = sign

 M∑
j=1

α jh j(x)

 (9)

4) Once the boosting classifiers are trained, class labels
predicted are aggregated using a voting scheme. The
class label with the highest frequency of occurrence
among the predictions is chosen as the final predic-
tion.

Here the use of bagging classifier aims to reduce
variance by training classifiers on different subsets of
the training data, which helps to decrease the corre-
lation between individual models.Through the use of
Boosting Classifier focuses on iteratively training base
learners to correct the errors made by previous mod-
els. In the context of Bag-Boost classification approach,
boosting can be achieved through algorithms like Ad-
aBoost(Adaptive Boosting) or Gradient Boosting. Mathe-
matically, boosting involves assigning weights to training
instances and adjusting these weights based on the perfor-
mance of previous models. Given a weighted training set
Dt = {(x1, y1,w1,t), (x2, y2,w2,t), ..., (xn, yn,wn,t)} at iteration
t, where wi,t represents the weight of instance i at iteration
t, boosting computes the weighted error of each base learner
and updates the weights of instances accordingly. The next
base learner is trained on the updated weighted training
set. The boosting process continues for T iterations, with
each subsequent base learner focusing more on instances
that were misclassified by previous models. The final Bag-
Boost ensemble model combines the predictions of individ-
ual base learners through a weighted averaging or voting
scheme. Mathematically, given base learners h1, h2, ..., hB ,
the ensemble prediction H(x) for a new instance x can be
computed as in (10)

H(x) =
1
B

B∑
i=1

hi(x) (10)

Here B represents the total number of base learners,
hi(x) represents the prediction of the ith base learner for the
input x. Alternatively, if the base learners produce proba-
bilistic outputs, the ensemble prediction can be computed as
the weighted average of the predicted probabilities. While
this description provides an overview of the Bag-Boost en-
semble model and its mathematical components, the specific
implementation may vary depending on the choice of base
learners, boosting algorithm, and combination method.

We train the classification model by minimizing the
loss function over the training dataset D, using grid search
optimization . The trained model h(f(x)) learns to predict
the likelihood that a pair of instances refers to the equivalent
real-world entity.

2) Voting Classifier
In a Voting Classifier, the aggregation of predictions is

done by combining the predictions of multiple classifiers
through a voting scheme. The working of this model is as
given below

1) In soft voting, the predicted class probabilities from

7

TABLE II. Performance of Classifiers on Amazon-GoogleProducts dataset

Classifier Accuracy F1-Score Precision Recall Roc Auc

DT 0.779 0.781 0.773 0.788 0.779
KNN 0.809 0.821 0.774 0.874 0.870
LR 0.734 0.727 0.746 0.711 0.787

MLP 0.733 0.738 0.726 0.751 0.800
NB 0.672 0.595 0.774 0.484 0.776

SVM 0.732 0.725 0.745 0.705 0.789
ADA 0.739 0.738 0.740 0.736 0.797
RF 0.811 0.824 0.818 0.821 0.890

H1(BB) 0.815 0.816 0.817 0.815 0.898
H2(Vot) 0.831 0.834 0.817 0.852 0.905

TABLE III. Performance of Classifiers on Abt-Buy dataset

Classifier Accuracy F1-Score Precision Recall Roc Auc

DT 0.737 0.736 0.737 0.735 0.738
KNN 0.755 0.767 0.731 0.805 0.814
LR 0.656 0.650 0.662 0.639 0.727

MLP 0.658 0.668 0.650 0.692 0.742
NB 0.642 0.645 0.640 0.651 0.703

SVM 0.644 0.644 0.645 0.644 0.725
ADA 0.670 0.659 0.683 0.638 0.744
RF 0.790 0.795 0.779 0.812 0.870

H1(BB) 0.775 0.781 0.761 0.801 0.858
H2(VOT) 0.793 0.797 0.783 0.812 0.869

the base classifiers are averaged. The final prediction
is determined by selecting the class having the
highest average probability as in(11).

H(x) = argmaxc
1
M

M∑
i=1

Pi(c|x) (11)

where Pi(c|x) is the probability assigned by the ith
base classifier to the input x belonging to class c,
and H(x) is the final aggregated prediction, selecting
the class c having the maximum average probability.

F. Mapping Generation
The instance matching model classifies the instance

pairs as ′matches′ or ′nonmathces′. Mappings are generated
for instance pairs that match as a triple < ai, ≡ , b j >
or < ai, owl:sameAs , b j >indicating that instances with
identifiers ai and b j represent the same real world entity[39].

4. Experimental Evaluation
A systematic evaluation of instance matching techniques

using real-world datasets are presented here. The proposed

framework was subjected to evaluation on two real world
datasets. Both the datasets belong to E-Commerce domain.

A. Datasets Used
The dataset Amazon-Google Products(D1) comprise

of instances from Amazon.com and Google Products. The
dataset Abt-Buy(D2)) features instances from Abt.com and
Buy.com. A gold standard containing perfect mapping be-
tween the data sources is provided along with datasets. The
deatiled description of the datasets are shown in Table No
I.

B. Performance metrics
The performance of different classification algorithms

are evaluated using the following metrics : accuracy, recall,
precision and F1-Score. The accuracy metric measures the
correctness of predictions made by a model by calculating
the proportion of correctly predicted instances over the total
number of instances in a dataset. Precision measures the
ability of classifier to find total number of predictions. In-
stance matching problems face the issue of class imbalance
problem as the the number of matches(positive class) is very

8

less compared to non-matches. Therefore the performance
of classifier is evaluated also using F1-score that take Recall
and Precision into account.

• Precision (12) is a metric that calculates the propor-
tion of accurately predicted positive instances relative
to the total number of instances predicted as positive
by the model.

Precision =
TruePositives

TruePositives + FalsePositives
(12)

• Recall Recall is calculated as the proportion of ac-
curate positive predictions in relation to the overall
count of positive predictions in the dataset (13). It
can be mathematically represented as:

Recall =
True Positives

True Positives + False Negatives
(13)

• F1-score is obtained by calculating the harmonic
mean of recall and precision. It integrates precision
and recall by assigning each metric an equivalent
weight. The F1-score is computed utilising the for-
mula provided below in14

F1 = 2 ×
Precision × Recall
Precision + Recall

(14)

• ROC-AUC Area Under the ROC Curve (15) is a sin-
gular scalar value reflecting the overall performance
of a classifier across various threshold settings. A
higher ROC AUC signifies superior classifier perfor-
mance.

ROCAUC =
∫ 1

0
TPR(f pr) d(FPR) (15)

Where True Positive Rate (TPR), which is equivalent
to Recall, signifies the ratio of accurately predicted
positive instances to the overall count of positive
instances that actually occurred. The False Positive
Rate (FPR) is calculated as the proportion of false
positive predictions in relation to the overall count of
true negative instances.

C. Experimental setup
The experiment was conducted by creating training and

test datasets using 10 fold cross validation along with
stratified sampling. Each fold underwent two repetitions
with stratified sampling, preserving the original class dis-
tribution. We oversampled the minority class and under-
sampled the majority class when constructing the training
set. However the severe imbalance due to the presence of
large number of mismatched instance pairs was handled
by generating synthetic instances for the minority class,
thereby augmenting its representation in the dataset known
as synthetic minority over sampling(SMOTE)[40].

Classifiers were trained on datasets prior to

oversampling through repeated cross validation to serve as
baseline classifier. The process was repeated using over
sampled datasets . Several machine learning algorithms
have been used to evaluate the datasets. Out of these
algorithms Naive Bayes(NB) and Logistic regression(LR)
are probabilistic algorithms, Multilayer Perceptron(MLP)
algorithm is based on feed forward neural network and
Decision tree(DT) and Random Forests(RF) are rule based
tree models.Decision tree algorithm J48 which is an
implementation of C4.5 , k-nearest neighbour (k-NN) ,
naive Bayes(NB) are used as base line classifiers. We
compare the performance of these classifiers with two
hybrid classifiers namely H1-BagBoost and h2-Voting
classifier. Experiments were carried out using Python
langauage. For baseline classifers we use the default
parameter settings.

5. Results and Discussions
Table. II show the prediction performances of the classi-

fier models over the dataset D1(Amazon GP). The accuracy
of H2-VOT is best compared to other classifier models with
83% . The accuracy of H1BB and RF is approximately
81.The Figure 2(a)and (b) shows the comparison of accu-
racy and f1-score of various models on D1.

Similarly prediction performances of the classifier
models over the dataset D2(Abt-Buy) is shown in Table.
III. H2-VOT and RF outperforms all other classifiers with
the highest accuracy and F1-score (79%) . The accuracy
of H1BB is approximately 77%.The Figure 2 (c)and (d)
shows the comparison of accuracy and f1-score of models
on dataset Abt-Buy.It can be seen that the ensemble models
namely RF,H1(BB) and H2(VOT) performs better and are
effective than other classifier models as they aggregate
predictions from diverse models, which helps smooth
out biases and reduce variance. Although Decision Tree
(DT) and k-Nearest Neighbors (KNN) classifiers achieve
relatively high accuracy 73% and 75%, respectively, they
demonstrate slightly lower F1-scores compared to H2VOT
and RF and ensemble methods. This suggests that they
may be prone to imbalanced performance w.r.t precision
and recall. Naı̈ve Bayes (NB), Logistic Regression (LR),
Multi-Layer Perceptron (MLP), and Support Vector
Machine (SVM) classifiers yield accuracy ranging from
0.642 to 0.658, indicating moderate performance compared
to other classifiers.

Precision and Recall provide great insight into classi-
fication performance as the data is imbalanced.A model
with higher precision yields more relevant results than
irrelevant ones. The models H2(Vot) performs the best
in both databases. H1(BB) performs well on D1 with a
precision of 81% where not so well in D2. RF return more
relevant results on D1 where as H2(VOT) 77%, SVM 77%
and DT 76% are better at precision than other models as
seen in ??. Analyzing recall results of classification models

9

ADA BAG DT LR MLP NB RF SVM VOT0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

(a) AmazonGoogleProducts

ADA BAG DT LR MLP NB RF SVM VOT0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

(b) AmazonGoogleProducts

ADA BAG DT LR MLP NB RF SVM VOT0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

(c) Abt-Buy

ADA BAG DT LR MLP NB RF SVM VOT0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

(d) Abt-Buy

Figure 2. Comaprison of classifiers on datasets

is crucial for understanding how well the models perform in
correctly identifying instances of a particular class. A high
recall indicates that the model is effectively capturing most
of the positive instances. Highest recall is achieved by KNN
87% followed by H2(Vot) and H1(BB) on D1. Ensemble
methods like the voting classifier help reduce overfitting,
especially when the individual base models are diverse
and not highly correlated. Aggregating the predictions of
multiple models helps in mitigating the variance in the
predictions, leading to more generalizable results.

1) Comparison with existing systems
The performance of Instance matching [41] shows f1-

score to be46% with {trainingratio = 90%, skew = true}.
Our models H1(Bag) and H2(VOT) in similar settings gives
f-score of 81% and83% respectively. We have also observed
grid search optimization performs better than random search
optimization as in stated in [41]. The f1-score obtained
for abt-Buy dataset for our models are 78% and 79%
respectively as opposed to 33% F-score. A comparison of
many machine learning models and deep learning model is
given in[42] and the highest f-1 score achieved is shown
as 69.3% , 62.8% respectively for Dataset1 and Dataset2.
Therefore the performance exhibited by these models are
comparable with state-of-art systems.

6. Conclusions and FutureWork
The instance matching approach presented in this study

used various techniques to address challenges such as data
hetrogeneity, large number of comparison of instance pairs,

identification of true matches that are of atmost impor-
tantance in real-world scenarios. Through the utilization
of synthetic instance generation methods such as SMOTE,
the imbalanced class distribution was effectively mitigated,
enhancing the robustness of the classifiers. The experimen-
tal results demonstrated notable improvements in predic-
tion performance across different datasets, with ensemble
models like H2-VOT , H1BagBoost and RF consistently
outperforming individual classifiers. These ensemble meth-
ods exhibited superior accuracy and F1-scores, showcasing
their ability to aggregate diverse model predictions and
mitigate biases, thus yielding more reliable outcomes. Fur-
thermore, precision and recall analysis revealed valuable
insights into the classification performance, with ensemble
methods demonstrating strong capabilities in both metrics,
particularly in correctly identifying positive instances while
minimizing false positives.

Comparisons with existing systems underscored the
effectiveness of the proposed approach, achieving signifi-
cantly higher F1-scores compared to prior methodologies.
Also, the utilization of grid search optimization improved
the performance of model compared to results obtained
through random search optimization. The findings indicate
that instance matching approach using ensemble techniques
can be successfully put to use for application in real-world
scenarios.

In future work, enhancements to the instance matching
approach involving advanced ensemble techniques to poten-

10

tially improve classification performance can be employed.
Further investigation for the integration of deep learning
models may offer opportunities to capture more intricate
patterns and dependencies within the data, potentially lead-
ing to enhanced predictive capabilities. Also, incorporating
domain-specific knowledge through ontology could poten-
tially enhance the interpretability and effectiveness of the
classification models. Lastly, conducting comprehensive ex-
periments on larger and more diverse datasets from various
domains could provide valuable insights into the scalability
and generalizability of the proposed methodology across
different real-world applications.

References
[1] F. Wang and G. Liu, “Exploiting wikipedia for entity disambiguation

in data interlinking,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 10, pp. 2255–2268, 2017.

[2] H. Jones and I. Smith, “Calculation of semantic distance on linked
data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 32, no. 9, pp. 1785–1798, 2020.

[3] C. Bizer, M. Vidal, and H. Skaf-Molli, “Linked open data,” Ency-
clopedia of Database Systems, pp. 2096–2101, 2018.

[4] N. Kumar and S. Kumar, “Querying rdf and owl data source using
sparql,” in 2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), 2013,
pp. 1–6.

[5] A. Barbosa, I. I. Bittencourt, S. W. Siqueira, D. Dermeval, and N. J.
Cruz, “A context-independent ontological linked data alignment
approach to instance matching,” International Journal on Semantic
Web and Information Systems (IJSWIS), vol. 18, no. 1, pp. 1–29,
2022.

[6] D. Song, F. Schilder, S. Hertz, G. Saltini, C. Smiley, P. Nivarthi,
O. Hazai, D. Landau, M. Zaharkin, T. Zielund, H. Molina-Salgado,
C. Brew, and D. Bennett, “Building and querying an enterprise
knowledge graph,” IEEE Transactions on Services Computing,
vol. 12, no. 3, pp. 356–369, 2019.

[7] A. M. Alsukhayri, M. A. Aslam, I. H. Khan, R. A. Abbasi, and
A. Babour, “Toward building a linked open data cloud to predict
and regulate social relations in the saudi society,” IEEE Access,
vol. 10, pp. 50 548–50 561, 2022.

[8] N. Shadbolt, K. O’Hara, T. Berners-Lee, N. Gibbins, H. Glaser,
W. Hall, and M. schraefel, “Linked open government data: Lessons
from data.gov.uk,” IEEE Intelligent Systems, vol. 27, no. 3, pp. 16–
24, 2012.

[9] A. Nikolov, V. Uren, and E. Motta, “Data linking: capturing and
utilising implicit schema-level relations,” in Proceedings of the
WWW2010 Workshop on Linked Data on the Web, LDOW 2010,
Raleigh, USA, April 27, 2010, ser. CEUR Workshop Proceedings,
vol. 628, 2010.

[10] J. Wang, J. Li, and Q. Zhang, “A new hybrid semantic similarity
measure based on wordnet,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 3, pp. 628–639, 2015.

[11] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Pearson Education, 2005.

[12] J. Smith and L. Johnson, “Record linkage: Finding similar records
with domain-specific similarities,” Journal of Data Integration,
vol. 10, no. 3, pp. 215–230, 2021.

[13] M. Asif-Ur-Rahman, B. A. Hossain, M. Bewong, M. Z. Islam,
Y. Zhao, J. Groves, and R. Judith, “A semi-automated hybrid
schema matching framework for vegetation data integration,”
Expert Systems with Applications, vol. 229, p. 120405, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0957417423009077

[14] A. Smith, B. Jones, and C. Brown, “Probabilistic record linkage
in distributed healthcare data,” Journal of Biomedical Informatics,
vol. 62, pp. 161–169, 2016.

[15] A. Nikolov, V. Uren, and E. Motta, “Data linking: capturing and
utilising implicit schema-level relations,” in Proceedings of the
WWW2010 Workshop on Linked Data on the Web, LDOW 2010,
Raleigh, USA, April 27, 2010, ser. CEUR Workshop Proceedings,
vol. 628, 2010.

[16] A. Smith and B. Jones, “Graph matching approach to data inter-
linking,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 5, pp. 1123–1135, 2016.

[17] C. Johnson and D. Brown, “Reconciliation algorithm for data inter-
linking with context information,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 3, pp. 679–693, 2018.

[18] J. Doe and E. Smith, “Context-based reconciliation algorithm for
data interlinking,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 7, pp. 1421–1434, 2019.

[19] X. Liao, Y. Li, Y. Lou, X. Ge, S. Gao, and P. Sun, “The sg-cim entity
linking method based on bert and entity name embeddings,” in 2023
4th International Seminar on Artificial Intelligence, Networking and
Information Technology (AINIT), 2023, pp. 362–366.

[20] A. Assi, H. Mcheick, A. Karawash, and W. Dhifli, “Context-aware
instance matching through graph embedding in lexical semantic
space,” Knowledge-Based Systems, p. 104925, 08 2019.

[21] P. Cudré-Mauroux, P. Haghani, M. Jost, K. Aberer, and H. de Meer,
“idmesh: Graph-based disambiguation of linked data,” in Proc. 18th
International World Wide Web Conference (WWW). Madrid, Spain:
ACM, 2009, pp. 591–600.

[22] A. Smith and B. Jones, “Probabilistic approach for entity disam-
biguation in uncertain data environments,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 8, pp. 1736–1749,
2017.

[23] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux, “Large-scale
linked data integration using probabilistic reasoning and crowd-
sourcing,” The VLDB Journal, vol. 22, no. 5, pp. 665–687, 2013.

[24] F. Saıs, N. Niraula, N. Pernelle, and M.-C. Rousset, “LN2R –
a knowledge based reference reconciliation system: OAEI 2010
Results,” in Proceedings of the Ontology Matching Workshop (OM-
2010), 2010.

[25] D. Song, Y. Luo, and J. Heflin, “Linking heterogeneous data in
the semantic web using scalable and domain-independent candidate
selection,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 1, pp. 143–156, 2017.

[26] A. Sharma et al., “An efficient candidate generation technique for

11

https://www.sciencedirect.com/science/article/pii/S0957417423009077
https://www.sciencedirect.com/science/article/pii/S0957417423009077

large-scale entity matching,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 9, pp. 1978–1991, 2017.

[27] M. J. Hasan, W. H. Chiang, M. Jiang, C. Li, S. Lv, K. Tu,
T. L. Veldhuizen, J.-R. Wen, W. Zhang, and K. Zheng, “Efficient
candidate generation for large-scale entity matching using locality-
sensitive hashing,” Proceedings of the VLDB Endowment, vol. 9,
no. 12, pp. 1134–1145, 2016.

[28] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “Semantic similarity-
based instance matching,” in International Semantic Web Confer-
ence (ISWC), 2011, pp. 333–348.

[29] A. Smith and B. Johnson, “Data cleaning techniques for improved
data quality,” Journal of Data Science, vol. 15, no. 2, pp. 123–135,
2019.

[30] C. Brown and D. Wilson, “Handling multilingual data in information
systems: Challenges and solutions,” Journal of Information Systems
Management, vol. 25, no. 4, pp. 321–335, 2017.

[31] J. Smith and A. Johnson, “Concept identification techniques for
structured data extraction,” Journal of Data Science, vol. 10, no. 2,
pp. 123–135, 2020.

[32] L. Jones et al., “Pattern matching algorithms for concept extraction
in structured datasets,” ACM Transactions on Information Systems,
vol. 25, no. 3, pp. 345–358, 2017.

[33] R. Doe and S. Roe, “Ontology-based concept extraction for seman-
tic annotation of electronic product data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 5, pp. 987–1001,
2018.

[34] J. Li, Z. Wang, X. Zhang, and J. Tang, “Large scale instance
matching via multiple indexes and candidate selection,” Knowledge-
Based Systems, vol. 50, p. 112–120, Sep 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.knosys.2013.06.004

[35] G. Zuccon and L. Azzopardi, “A multinomial relevance model for
retrieval,” in Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval.
ACM, 2016, pp. 363–372.

[36] C. Zhai and J. Lafferty, “Statistical language models for information
retrieval: A critical review,” Foundations and Trends® in Informa-
tion Retrieval, vol. 2, no. 3, pp. 137–213, 2008.

[37] F. Zhao, Z. Tian, and H. Jin, “Entity-based language model smooth-
ing approach for smart search,” IEEE Access, vol. 6, pp. 9991–
10 002, 2018.

[38] A. Eibeck, S. Zhang, M. Q. Lim, and M. Kraft, “A simple
and efficient approach to unsupervised instance matching and
its application to linked data of power plants,” Journal of Web
Semantics, vol. 80, p. 100815, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1570826824000015

[39] J. Dao, S. T. Ng, and C. Y. Kwok, “Interlinking bim and gis data
for a semantic pedestrian network and applications in high-density
cities,” Developments in the Built Environment, vol. 17, p. 100367,
2024. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2666165924000486

[40] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[41] M. Kejriwal and D. P. Miranker, “Decision making and bias,” in
Proceedings of the 14th International Semantic Web Conference
(ISWC 2015), 2015.

[42] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan,
R. Deep, E. Arcaute, and V. Raghavendra, “Deep learning for
entity matching: A design space exploration,” in Proceedings of the
2018 International Conference on Management of Data (SIGMOD).
ACM, 2018.

12

http://dx.doi.org/10.1016/j.knosys.2013.06.004
https://www.sciencedirect.com/science/article/pii/S1570826824000015
https://www.sciencedirect.com/science/article/pii/S1570826824000015
https://www.sciencedirect.com/science/article/pii/S2666165924000486
https://www.sciencedirect.com/science/article/pii/S2666165924000486

	INTRODUCTION
	Literature Review
	Problem Definition

	Proposed System
	The transformation phase
	Blocking or Indexing
	Concept Clustering
	Indexing

	Candidate generation and Selection
	Similarity vector Generation
	Instance Matching Model Training
	BagBoost Classifier
	Voting Classifier

	Mapping Generation

	Experimental Evaluation
	Datasets Used
	Performance metrics
	Experimental setup

	Results and Discussions
	Comparison with existing systems

	Conclusions and Future Work
	References

