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Abstract 

 

The recent availability of powerful (SBC) Single Board Computing devices has facilitated edge 

computing at a level that was previously hard to deploy. This new shift, presented a gap, hitherto 

considered tough to implement in the industry with lower power consumption at the edge.  

 

Generally, keeping in mind preventive maintenance intervention as the key purpose, a simple and 

quick implementation of federation in the industry had to be addressed. Industries need such 

predictions with data privacy and accuracy to take care of chronic spare replacements before things 

fail. 

 

We were presented with an opportunity to suggest preventive maintenance procedures and make 

manufacturing decisions based on (IIoT) Industrial Internet of Things data from multiple sensors 

across the enterprise, from multiple similar machines in different shop floors in an industrial setup 

across a varied geography. 

 

IIoT sensors chosen, ping the edge device at each location with sensor data at regular intervals. 

(MQTT) Message Queuing Telemetry Transport protocol was used [7] and the data reached the edge 

in (JSON) Javascript Object Notation format with a timestamp and sensor value. The SBC ensured 

low powered operation mode and was adequately cooled with a passive aluminium heat-sink and 

fans. This ensured that the edge server could be kept on for long periods of time, consuming only 

about an average of 15W of power.  

 

We introduce a unique method of federation, specifically, using HDF5 model file transfer. The 

checkpoint file is then synchronized to the central server using timed file transfer scripts at the nodes 

achieving simple federation. Preset cron jobs at the clients allow real time federation as a quick 

solution using off-the-shelf hardware. 

 

The setup has a central server or alternatively a cloud server for fallback, in the monitoring station. 

This was then networked to various edge devices in each shop floor across the industry. The individual 

machines and their sensor data were then captured into a named time series database at each edge 

device. The learning was done at each edge device and the model was then sent back to the central 

server without any actual sensor data for incremental learning. This learning model could be used at 

another similar deployment based on similar sensor data. 

 

This is an implementation using Split Federation and Linear, DNN, CNN, RNN models. 

 

Various sensor data was collected by the edge device in each of the industrial floors. We chose to base 

our first set of experiments on the time series voltage data relayed, since it was fluctuating at times 

from the power grid and had a seasonality pattern. Identifying periods of least fluctuations to run 
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sensitive gauging machinery was the first step in forecasting preventive maintenance routines of 

sensitive equipment across the enterprise. This even ensured higher accuracy of the said gauging 

equipment. (FL) Federated Learning models were used to predict the sensor values and make 

decisions. The sensor data was stored and processed at the edge. The (ML) Machine Learning 

techniques only operated at the edge. The models were then synchronized to the central cloud server 

and back to other edge devices in the network. Results obtained lay a foundation for FL using a split 

learning paradigm in the IIoT space with SBCs consuming the least amount of power, for an enterprise 

spread across a diverse geography. 

 

Data privacy is upheld and maintained, while at the same time reduced bandwidth requirements 

between the edge and the cloud make this a simple and easy first implementation of federation in the 

industry. 

 

There are many social implications to this approach as well. The quick and simple approach can help 

in a cheaper implementation in public service projects where site data needs to be private. Even the 

possibility of power cuts in rural areas will not affect the federation and decision making can happen 

even in the harshest of field situations. 

 

This has a lot of impact in decentralized decision making. Failure patterns can be identified and in 

general, an accurate model can be generated with limited resources. 

 

The uniqueness in this approach is that the training checkpoints are saved. In case of any interruption, 

TensorFlow Keras callback ModelCheckpoint can continuously save the training model while 

training the model, and also at the end of the training. 

 

Keywords: Synchronized models, Federated Learning, MQTT, Edge Computing, Single Board 

Computers,  The Industrial Internet of Things, Split Learning , Split Federation, Predictive 

Maintenance, Algorithmic preventive maintenance.  

________________________________________________________________________________

___ 

 

1. Introduction 

 

FL is a distributed machine learning technique wherein various devices on the edge, first train an ML 

model on their own data. They do not share their individual data with other devices. This method is 

particularly relevant for Industry 4.0 and eventually in Industry 5.0, where there is a need to analyze 

vast amounts of data generated by various connected devices [1], without compromising on data 

privacy and security. In Industry 4.0 and 5.0, Federated Learning will be implemented  to train models 

on data collected from connected machines and devices, allowing for real-time analysis and improved 

decision-making in areas such as predictive maintenance, quality control, and process optimization 

[2].  

 

We were motivated to pursue this approach to create a solution that is quick to implement on the field. 

 

We have implemented a split and federated learning approach wherein various participants train their 

models on their own data which is local only to themselves. This is then shared with a central 

coordinator without including the localized data. All the learning is eventually aggregated and 

produces a global ML model [3], [4]. 

 

The research had an objective to achieve a simple method of federation at scale using off-the-shelf 

and easily available components. It had to also be quick to implement in rural industrial settings where 

the possibility of power cuts had to be factored in. 
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Privacy takes precedence when dealing with sensitive sensor data. Related IIoT device data can be 

modeled using the same algorithm. Among the sensors, those which generate sensitive data should 

be secured well. Different sensor data can be treated with varying levels of secure algorithms as per 

the application. Electronic devices generating data securely can be aggregated at the edge using an 

encryption layer. Ever increasing data points can be resampled as per the forecast range in question. 

Prior to establishing a connection with the edge, the security protocols need to be decided upon. 

Requesting or publishing data to the broker can be done with a secure key or password. Along the 

data flow paths, a minimum number of hops ensure low latency. Online data flow paths are 

recommended to be implemented with a secure transport layer [21]. 

 

In Industry 4.0 and 5.0, federated learning can have the impact in improving collaboration and the 

sharing of learning among different organizations while maintaining data privacy and security. It can 

be used in various applications such as predictive maintenance, predictive quality control, and supply 

chain optimization [5]. By training models on decentralized data, federated learning enables 

organizations to leverage data from multiple sources and make better use of their own data, ultimately 

leading to improved accuracy and performance in Industry 4.0 and 5.0 applications [4].  

 

The original contribution here is the unique approach which can be implemented quickly with 

readily available components. 

 

 

2. Related work 

 

We briefly describe herein, some related work to this paper, in the following literature review. 

 

Christopher Briggs, Zhong Fan and Peter Andras suggest various FL strategies. This is then followed 

by a personalization step showing an improvement in model’s performance. They show that FL can 

achieve this improvement by reducing the computation load when compared with localized learning. 

They provide information about aggregating predictions to be able to build private load forecasting 

applications. 

 

Modern distributed machine learning like FL trained load forecasting (LSTM) Long Short-Term 

Memory models. At the same time, it preserved the privacy of data in the field of power consumption 

at the customer’s locations. It would enable a wider implementation of smart energy meters while 

being concerned of privacy at the same time. A comparison among different FL training methods and 

other benchmarks from regular training strategies was explored. The effect of the same on the level 

of forecasting was studied. Analysis of FL methods was done, comparing it to a variant of FL designed 

to perform well to the task of forecasting the loads. They also evaluated numerous efficiency issues 

in computation, in the FL system used in forecasting [1]. 

 

Mojtaba Vaezi , Amin Azari et al. suggest how the paradigm will shift in the next decade is made. 

Integration of new technologies associated with each other, like (AI) Artificial Intelligence and 

networks which are not terrestrial, are detailed upon. The potential of implementing deep-learning 

methods alongside emerging techniques in FL have been discussed. Their impact in improving 

communication in IoT networks has been discussed. Even future research pathways going further 

than the current 5G technology in IoT networking are discussed. 

 

Digital transformation which was initiated by IoT have inspired trends across academia as well as the  

industry. It was identified that the use of IoT creates real global interconnect. AI controls the IoT 

enabled gadgets as well as the decisions taken by these gadgets. The so-called ‘edge’, increases its 

proximity to the cloud. And IoT devices have an ever increasing set of security issues. 
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Increase in reliability, along with increasing global spread, coupled with faster 5G networks, the 

deployment of the latest in AI methodologies, such as deep neural networks and FL, will be important 

in making this trend come true. The authors identified several issues in the privacy matters and 

security concerns in these situations. The increase in IoT security issues alongside the rapid global 

interconnect,  makes IoT security threats and the related issues of data privacy concerning. This will 

need innovative and novel ideas to counter the threats in this domain in the near future [2]. 

 

Yi Liu, Neeraj Kumar, Zehui Xiong, Wei Yang Bryan Lim et al. had conducted a research where 

Convolutional Neural Network (CNN) was used. The authors used the CNN-LSTM model. The finer 

subtleties were captured using units of CNN. This method maintains the benefits of LSTM to predict 

data from a time series. They used a gradient compression technique to yield results in predicting in 

the moment getting good results in detecting anomalies as well. Bandwidth needs were reduced and 

it even improved communication efficiency. It was noted that experiments based on datasets from the 

real world, had good results in detecting anomalies accurately using the framework proposed by them. 

It improved on traditional ways of doing the same reducing overheads in communication. Finally, 

they proposed an anomaly detection score. They normalized the time series sensor data collected [3]. 

 

IoT data generated from multiple devices used in sensing humidity in a study by Mohamed Amine 

Ferrag, Othmane Friha, Djallel Hamouda et al. distances using ultrasonic methods, sensors detecting 

the level of water in applications, patient heart rate, flame, acidity level pH and moisture in soil etc., 

were collected. The study analyzed some attacks in the connectivity and communication protocols. 

(DoS) Denial of Services in network attacks, man-in-the-middle type of attacks, (DDoS) Distributed 

Denial of Services in attacks, gathering of private information were studied. (SQL) Structured Query 

Language Injection and other type of malware based attacks were also elaborated upon. Features 

extracted from varied sources like alerts, syslogs, resources, network data traffic, were studied and 

new features with high inter-relations were discovered. At the end of processing the above mentioned 

data set with security fall outs, the authors provided a preliminary exploration and then they analysed 

the sensor data. They evaluated different ML strategies in both modes : federated as well as central-

server based learning [4]. 

 

Edge Computing (EC) is a scenario where sensors can process the data collected. Even stacked 

intermediate elements can process the data. The methods used in edge computing, reduce bandwidth 

and communication related costs. Processing speeds increase if the edge device is powerful enough. 

In one study, Taimur Hafeez, Lina Xu and Gavin Mcardle explored IIoT methods to carry out (PM) 

Predictive Maintenance. They discussed how the collected sensor readings can be processed and 

where it can be analyzed. They presented sampling concepts along with techniques to reduce data 

communications. The quantity of data that was transmitted to the cloud, was diminished. Accuracy 

might be lost when ML algorithms have to deal with reduction in data. Alternative approaches move 

ML based algorithms nearer to the source of data and achieve a reduction in transmitted data. These 

techniques are categorized broadly into three types:  Device & Edge, Edge & Cloud, Device & Cloud. 

The authors demonstrated an architecture in which edge computing can be implemented for sensor 

data reduction for preventive maintenance of equipment. In instances where the connection between 

the sensor node and the central server where the readings   are processed, fails, there was a study 

which used ML and monitored how the devices performed. These methods were only edge dependent. 

The ML gets updated as soon as analytic processes running on the sensor information, locates 

anomalies at the edge layer. The edge connects to the cloud to push the update. The method used 

techniques like SNN, ANN. Some other methods like CNN, HOG etc. were also tried [5]. 

 

Abdul Rehman, Imran Razzak and Guandong Xu researched on an FL based framework that can 

aggregate models from contributions from different clients. The data set it used could train models 

on an individual basis using DNN (Deep Neural Network). Every client examines the results three 
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times resulting in over 80% accuracy. It found that their framework could detect attack from alternate 

channels. They ensured that the system logs were purged of information that would compromise the 

privacy of individuals by anonymizing the data prior to training the model [6]. 

 

Mahmoud Parto, Christopher Saldana and Thomas Kurfess mentioned a time based architecture for 

IoT. It mentioned techniques for ML at scale. The study focused on the processes of manufacture. 

They had a general architecture with three layers. They created an edge computing layer with sensors. 

Post that, they computed AI tasks in the fog, as they called the intermediate layer, and a central cloud 

server was in charge of federating the models. The whole setup was presented as a (FL) Federated 

Learning system with prior processing getting done at the edge, and the ML layer trained models 

incrementally in what was termed the fog layer. Aggregation of the models happened centrally in the 

cloud. High performance was achieved with this scalable architecture using hardware with fewer 

resources. Stacks of Raspberry Pi 3B devices were clustered and deployed, balancing minimum 

storage and computing power with better performance [7]. 

 

Mingqian Liu, Ke Yang, Nan Zhao, Yunfei Chen et al. mentioned in a paper how the reduced the 

frequency and pre-treated the signal from the nodes. The representations of the signals were then 

trained with fusing the features. FL methods combined with deep learning were used to classify the 

signals at each node. The performance of the classification was found to be good when the results at 

each sensor were aggregated to the central aggregator [8]. 

 

Yung-Lin Hsu and Hung-Yu Wei saved a lot of energy by having the processes execute at the edge 

and also reduced loss in performance [9].  Xianyi Cheng et al. used fast performing classifiers that 

culminated in accurate results using stage classifiers. Decision trees were developed for each subset 

of sensors. The predictions were accurate when used along with state transitions [10]. Mi Wen et al. 

used deep learning to detect the theft of power on the grid. (TCN) Temporal Convolutional Networks 

were used and a lot of experiments resulted in a very accurate detection rate inspite of lower compute 

power. FL frameworks were deployed to quantify the footprint of energy usage and carbon emitted 

in a decentralized setting. The authors architected green designs for FL structures [11]. 

 

Overall, a lot of new paradigms of learning have evolved in the industrial settings recently. One such 

is the continuous learning or (RL) Reinforcement Learning paradigm by Stefano Savazzi et al. where 

the model is trained at the edge itself in IIoT devices involving a periodic repetition continuously. 

The process repeats as per the varying  processes in the industry depending on a timely schedule [12]. 

 

Andrew Hard, Kanishka Rao et al. Concluded that the federated algorithm, which facilitates model 

training on a more finely tuned and high-quality dataset tailored to this particular application, 

surpasses conventional server-based training in terms of predictive precision. The authors execute a 

comparative assessment between server-based training employing stochastic gradient descent and 

training carried out on individual client devices using the FederatedAveraging algorithm. 

 

The federated learning framework empowers users through enhanced control over their data usage 

and streamlines the incorporation of privacy safeguards as an inherent feature through distributed 

training and data aggregation across a diverse array of client devices. Their primary aim is to enhance 

the predictive text functionality within a smartphone-based virtual keyboard [22]. 

 

Karim Gamal, Ahmed Gaber et al. found that The empirical results derived from various model 

configurations indicate that, in either uncontaminated or adversarial scenarios, federated learning 

achieves similar performance to traditional centralized training when predicting emojis in multiple 

languages, even when the data comes from diverse sources with varying distributions. 
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To conduct this research, emoji prediction datasets were gathered from two sources: Twitter and the 

SemEval emoji datasets. These datasets served as the basis for training and evaluating different 

transformer model settings. Notably, the trained transformer models demonstrate superior 

performance compared to alternative techniques when tested on the SemEval emoji dataset. 

Furthermore, federated learning retains its inherent privacy and distributed advantages in this context 

[23]. 

 

Faris F. Gulamali and Girish N. Nadkarni’s results demonstrate that federated models outperformed 

their local counterparts, even when assessed on local data within the test dataset. Their performance 

was on par with models using pooled data. Federated learning presents a viable alternative to the 

conventional single-institution approach while circumventing the challenges associated with data 

sharing. Models are generated and updated on-site to achieve specific learning objectives. To illustrate 

its effectiveness, the authors provide a practical example involving COVID-19-associated AKI. In 

the context of cross-silo federated learning, data remains localized, and the raw data is retained at its 

source. Notably, the improvements in performance at individual hospitals showed an inverse 

relationship with dataset size, implying that smaller hospitals have substantial room for improvement 

with federated learning methodologies [24]. 

 

We see from these studies that there has been a rapid shift in paradigms in the industry. IIoT and the 

related ML techniques used to analyze data has been slowly moving from the central server to the 

edge as time goes by. This means more computation can happen at the edge, and the central server is 

relieved of the processing load. This also means more data security and added privacy in the future 

for big data analytics of industrial sensors to aid in decision making in the industry. 

 

3. Common techniques 

 

Our Methodology was to attempt a single output forecast initially. Then for multiple sensor data, we 

also forecast for multiple outputs. After obtaining single time stepping and later multi time stepping, 

we created windows in the data in order for it to be reusable for Linear, DNN, CNN, RNN models. 

 

With the advent of powerful SBC (Single Board Computing) devices in the market, the processing 

power available at the edge has grown tremendously in the past couple of years. We suggest various 

methods and techniques to use the IIoT sensor data collected over a period, and convert it into 

actionable intelligence to aid decision making on the shop floor. 

 

The suggested layers in the IIoT network with high frequency sensor data are the centralized cloud, 

and the edge device further connected to the sensors on the machinery. The SBC Edge device uses an 

MQTT broker and for some IIoT devices, their Modbus layers to aggregate the sensor data in the IIoT 

network. This data is then analysed at the edge [7]. The time-series data collected, is processed at the 

edge itself and the central server applies federated learning methods to analyze, forecast, and create 

maintenance suggestions, and best time of operation for sensitive machinery in the industry. 

 

Algorithms enable the creation of models that make predictions based on data generated from 

multiple sources. This leads to improved efficiency, reliability, and security in industrial processes. 

Another approach uses deep-learning modeling, such as (RNN) Recurrent-Neural-Networks. They 

also explored (LSTM) long short term memory networks, and processed time series sensor data and 

make valid predictions. These models are trained on large amounts of historical sensor data and can 

make predictions based on the patterns and trends in the data [20][21]. 

 

Some commonly used federated learning algorithms for IIoT include [13] [14]: 
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Federated Averaging (FedAvg): This is a simple federated learning algorithm. The average value of 

the model parameters from a multitude of devices is computed. Post that computation, the global 

model is accordingly updated [19]. 

 

Split Learning: This is an algorithm that preserves data privacy. Data remains on the device and the 

computation only, is transferred to the server. We have used a technique in this type of FL which splits 

the learnings on various edge devices and transfers the models, aggregating learning across various 

edge devices. We used a combination of FedAvg and Split Learning in our experiment. 

 

Differential Privacy: This is a methodology that preserves privacy. It does so by adding a noise layer 

to the data. The noise added, serves as a protection layer so that privacy is not compromised, and all 

the unique data is modulated with noise, still letting the model be aggregated and to get trained with 

data. 

 

Secure Multi Party Computation (MPC): This techniques preserves privacy by enabling different 

devices to compute functions in tandem on their data, whilst keeping their data private [18]. 

 

Federated Transfer Learning: This involves transfer of knowledge from a pre-trained centralized data 

model to that on the edge device. This reduces the quantum of edge data required to be sent to the 

centralized cloud server [17]. 

 

Multi-Party Computation (MPC): An FL algorithm that enables secure computation of machine 

learning models over multiple parties, while preserving data privacy. 

 

Time series sensor data prediction refers to the process of being able to predict the next values in a 

set of data generated by sensors over time. This is an important application in Industry 4.0, as it can 

help in 

forecasting equipment failures, detecting anomalies, and improving operational efficiency. 

 

A few machine learning techniques used to make time-series data predictions are : 

 

(AR) Autoregressive Models: These type of models use the historic values in the series of data and 

suggest the next values. 

 

(MA) Moving Average Models: These models use the averages of historic values in the series in order 

to suggest the next values. 

 

(ARIMA) Autoregressive Integrated Moving Average Models: Models that combine AR and MA 

models to account for both the past values and trends in the sequence of data. 

 

(SARIMA) Seasonal Autoregressive and Integrated Moving Average Models: When seasonality of 

data extends the ARIMA model, and supports the direct modeling of the seasonal component of the 

series is called SARIMA. Mainly, it takes into consideration the seasonal variant in univariate data. 

 

(RNN) Recurrent Neural Networks: These are deep learning models. They are better suited for time-

series data. They can capture patterns and dependencies over time. 

 

(LSTM) Long Short Term Memory: These are a specific variant of RNN that can handle the long term 

co-relations and dependencies amid time series data and are found to be used in time series prediction 

tasks fairly often. 

 

5. Experiment 
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The Central Server uses an Intel Xeon processor with 32GB RAM and an Nvidia GTX 1050 Ti GPU. 

Various machines at each shop floor are connected wirelessly as well as wired to the network to relay 

sensor data. These typically used ESP32 / ESP8266 based implementations in their architecture. Each 

one of the sensor relays communicated with an (MQTT) – Message Queue Telemetry Transport 

broker running on the edge device at regular intervals, relaying sensor data which was processed only 

at the edge. The resulting models were transferred to the cloud, as part of the split and federated 

learning process. 

 

Our edge setup consists of multiple SBCs interconnected to form an edge cluster. This setup 

performs parallel processing at the edge and runs the code from the central server. 

 

Hardware and connections 

 

We used multiple Raspberry Pi 4 – 8GB boards along with a single Raspberry Pi 3B+ running as a 

storage controller, to run the open source software stack in this experiment setup. Each node 

relaying the data runs on either an STM32 or an ESP32 micro controller based board with custom 

coded embedded software that relays the telemetry data to the MQTT server. The embedded code 

was programmed with a telemetry period of 20 seconds to keep the data up-to-date for processing. 

 

 

 

Cluster 

 

Our SBC cluster was assembled using the following components as depicted in Fig 1a. 

 

1. Raspberry Pi 4 - 8GB boards – 2 units, Raspberry Pi 3B+ Storage controller – 1 unit. 

2. USB SSD boot drives – one for each SBC. 

3. Ethernet cables (for connecting the SBCs to the network switch / router). 

4. Network switch / router with 8 ports to accommodate the SBCs. 

5. Power adapters for the SBCs – capable of delivering 5.1V at 3 Amperes each. 

6. Cooling – solid aluminum heat sinks with fans to keep the boards at less than 45 degrees 

centigrade. 
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Fig 

1a. 

SBC cluster connections with two RPi 4 – 8GB and one RPi 3B+ Storage Controller 

 

 

Open source software stack 

 

We chose commonly available open source software components like the Raspberry Pi OS 

alongside a stack consisting of real time databases like InfluxDB. Open source observability 

software like Grafana, Message queueing using the Mosquitto MQTT layer, SSH clients like 

PuTTY for remote headless access to the SBCs and Ansible – an open source automation tool, were 

used to manage the cluster throughout the experiment. 

 

 

Software flow for the cluster 

 

This was our general work flow that we implemented to get the cluster up and running at the edge. 

 

1. Preparing each of the SBCs in the cluster: 

• The latest version of Raspberry Pi OS was downloaded and flashed onto the SSD. 

• Software used can be the Raspberry Pi Imager tool or Balena Etcher. 

• The USB adapted SSD cards – 500GB was plugged in into the Raspberry Pi boards USB-3 

slots as shown in Fig 1b. 
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Fig 1b. USB SSDs ensure quick bootup and optimal edge performance with 300Mb/s throughput 

 

2. Setting up networking in the cluster: 

• Each SBC is connected to the network switch / router using Ethernet cables. 

• It is ensured that all SBCs and the terminal computer are on the same local network. 

 

3. Powering on the SBCs: 

• The power adapters to each SBC is connected and turned on, one by one. 

• Each SBC in the cluster takes about 2 minutes to boot up completely. 

• Once booted, the cluster is ready for use at the edge. 

 

4. Configuring the SBCs: 

• The terminal computer is connected to the same network as the cluster. 

• DHCP IP addresses assigned to each SBC is got from the router's configuration. 

• An IP scanner tool can be used alternatively or even running nmap over SSH, works well. 

• Each SBC can be accessed via SSH using the IP address and the SSH client such as PuTTY. 

 

5. Configuring the cluster: 

 

On each SBC, Ansible is installed by running the following command: 

    

 sudo apt update 

    sudo apt install ansible 

    

• An inventory file listing the IP addresses or hostnames of all the SBCs in the cluster is 

created. It is then saved for use in scripts later. 

• An Ansible playbook was created to define the desired configuration for the cluster, such as 

software installations or system settings. 

• The Ansible playbook was executed using the following command: 
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 ansible-playbook -i <IP Addresses> <playbook> 

     

6. Testing the cluster: 

• Once the above configuration is complete, each cluster can be tested by executing parallel 

tasks or distributing workload among the SBCs. 

• Parallel commands can be executed across all the SBCs using the Ansible command: 

     

      ansible all -i <IP Addresses> -a "<user commands>" 

 

7. Power consumption: 

• We found that the typical power consumption of this edge cluster setup in Fig 1c. was 

around 45W at peak processing loads. The board temperatures averaged around 45 degrees 

centigrade. 

 

Fig 1c. Edge Cluster power usage is typically around 45W at peak processing demand 

 

 

 

Data flow 

 

The C code in the embedded devices creates a JSON formatted message that is relayed to the 

MQTT server daemon running in the SBC cluster. The MQTT broker relays data in the JSON 

formatted message. This is processed using Telegraf and then is stored into the time series database 

InfluxDB. 

 

Data aggregation 

 

The TICK stack we chose is a set of open-source tools for managing and processing time-series 

data. 

 

The Telegraf module is a plugin-driven server agent that collects, processes, and delivers metrics 

and events from multiple sources like sensors into the chosen database. 
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The InfluxDB database is scalable and is a very high-performance time-series database which is 

designed specifically to handle extremely large volumes of time-stamped data. We used this to store 

the sensor stream data. 

 

Chronograf is a web-based user interface (UI) provided by the TICK stack that helped us visualize 

and explore the data stored in the time-series database. This provides the tools to create dashboards 

and helps in managing alerts based on preset conditions as depicted in Fig 1d. 

 

Kapacitor is a processing engine in the stack that 

enables real-time streaming along with real-time 

data processing. It allowed us to define and 

execute tasks on the data which included 

aggregations, downsampling of the data, anomaly 

detection in the data stream, and also alerted us 

based on preset conditions. 

 

To aggregate our sensor stream data using the 

TICK stack described above, we followed the 

steps as described below: 

 

We first installed and configured Telegraf. We set 

up Telegraf on the cluster at the edge where the 

sensors are located. Telegraf provides various 

input plugins to collect data from different 

sources, such as MQTT, SNMP, or our custom 

written scripts. We configured Telegraf, 

specifically the telegraf.conf file, to collect data 

from the sensors over the wi-fi network and then 

send it ahead into an InfluxDB bucket via MQTT. 

 

We then installed and configured InfluxDB. 

Specific care was taken to configure the InfluxDB 

bucket to receive and store the incoming sensor 

data sent by Telegraf. We define a bucket with 

retention policy to always keep data forever, since we would need it for comparisons later. 

To verify data ingestion by the database, we ensured that Telegraf is successfully sending data to 

InfluxDB. This was done by checking the InfluxDB bucket using the web interface, to confirm that 

the data is being stored correctly. 

 

Next we explored and visualized the data using Chronograf. The Chronograf web user interface was 

used to visualize the sensor data stored in InfluxDB. We created dashboards and configured queries 

to display the data in meaningful ways using the Flux query language. Since Chronograf provides 

various visualization options, such as line graphs, bar charts, and scatter plots, it was easy to get a 

real time view of the data of different time slices on the fly. 

 

We could process the data using Kapacitor. Performing real-time calculations or analysis on the 

sensor data, we configured Kapacitor by defining tasks in Kapacitor using its Domain Specific 

Language (DSL) to perform aggregations, downsampling the data, detecting anomalies, and other 

data transformations. We also set up different alerting rules in Kapacitor and generated notifications 

based on predefined conditions. 

 

Data analytics 

     
Fig 1d. A dashboard from the data stream  
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The real time stream of the telemetry data from the shop floor is presented in customized 

dashboards reflecting the current situation at the factory floor. Similarly, predicted values, after 

processing the telemetry data stream are also presented in real time projected-timeline dashboards. 

 

Fig 

1e. 

Edge 

Cluster power usage is typically around 45W at peak processing demand 

 

 

Data federation 

 

Tensorflow running on the same SBC cluster would have ensured that processing could have 

happened on the edge. But since Tensorflow does not yet exist for this particular variant of ARM64 

processor, Jupyter Notebook was installed at the edge to run the process. The files were 

synchronized using rsync and a cron job managed it on a schedule. 

 

Predictive analysis 

 

The learning process on each SBC cluster transported through rsync. Eventually when Tensorflow 

can be installed at the edge SBC cluster on these ARM64 boards, the actual code can run at the edge 

without having the rsync. Distributed computing frameworks like Kubernetes or Apache Spark to 

utilize the cluster's capabilities for distributed processing or running containerized applications 

could be explored in the future. 

 

13



Fig.2 below, shows the general structure of the central server federating data at the edge devices and 

their individual sensor relays at the edge. Various time-series data like voltage, current, power, 

temperature, vibration, air quality, humidity etc. are relayed to the edge device. 

Fig 2. A flow of the Enterprise Server and Edge Devices with IIoT sensor relay 

 

A few sensor nodes were wired to the network using ethernet cables, but most sensor devices relayed 

the data and operated over wireless wi-fi connections. 

 

6. Experiment Flow 

 

The edge devices at each location do not relay the sensor data to central cloud. The reading 

information collected from the sensors is processed at the edge device itself, thereby maintaining the 

data privacy at each location. 

 

The edge has become increasingly powerful, with most analytical processes completed in this layer. 

Businesses requiring new solutions on the periphery, combined with a rapid increase of data from 

these sensors, have begun migrating to process most computation on the edge. Some edge nodes 

collect lots of private data which is modeled at the edge itself. 

Software plays an important role in managing the edge data layer with (API) Application 

Programming Interface access, locally served dashboards combining integration with automation and 

controls, and delivery to alerting systems. All these systems in tandem with the cloud native analytical 

software at the head quarters, are used to make real-time business decisions, both at the edge as well 

as in the wholistic level. Edge and cloud data, have strict privacy policies at times. There are many 

considerations when choosing the edge or cloud for storage and compute. Finally developers want to 

ensure these two data layers work together in an efficient way, ensuring privacy and delivering 

centralized business insights in near real-time. Federated Learning has an important role to play in 

this type of situation. 

 

MQTT  
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Fig.3 MQTT – Publish and Subscribe 

 

In HTTP, the data is transferred between the client and the server. In (MQTT) – Message Queue 

Telemetry Transport, the exchange of data is facilitated through publish-subscribe communication 

protocols as depicted in Fig.3. This was initially developed by IBM and is now popular in the IIoT 

space [17]. MQTT addresses the need for rapid communication in IIoT and stays distributed at the 

same time.  Another popular protocols for sensor data exchange is Data Distribution Service (DDS). 

In addition to that, there exist alternatives like XMPP, RabbitMQ etc. This experiment uses MQTT 

and HTTP for the IIoT gateways, sensor devices and edge devices . 

 

 

 

(TFF) TensorFlow Federated 

 

Since we are experimenting a research FL simulation, we have not implemented TFF functions as 

yet. TFF is not yet primed for installation on Raspberry Pi 4 which is the edge device of our choice 

[18]. 

 

In the documentation for TensorFlow it has been mentioned that isolated blocks of TensorFlow code, 

consisting tf.functions, that capture the logic running at a single location such as our edge device. The 

code is always executed and tested eliminating any tff.* reference in the code. This can be used again 

without the presence of TFF.  Client training loops in FedAvg is deployed as such. 
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Fig 4. The Federated Learning Model 

 

 

FL is an ideal technology for IoT applications as its efficiency and protection model make it well-

suited to this type of application. Some notable examples of these applications include wearable 

devices, self-driving cars, and smart intelligent homes. This turns complex with plenty of data waiting 

to be collected at each step in order to operate smoothly. The limited bandwidth availability of FL 

makes it difficult for these devices to relay all the data at regular intervals, which can result in slower 

response times or decreased performance [19]. 

Here, we have collected the voltage fluctuations at a location in our IIoT network. The industrial unit 

where this was deployed exists in an agricultural zone with unreliable power supply in a rural zone. 

The intent is to study  the fluctuations over a periodic cycle, and study seasonal variance of power-

cuts and times in the day when maximum fluctuations occur. Sensitive equipment can be prevented 

from operating during times prone to unreliable voltage input from the power grid. With the analytic 

information, it should be able to suggest best times of operation of sensitive gauging equipment which 

can be damaged due to such fluctuation and cuts in supply voltage. 
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Fig 5. The voltage sensor data across 3 days 

 

 

The voltage data was published to the broker every 20 seconds. The edge device subscribed to the 

sensor message queue which contained the sensor readings. This was done over a period of a month. 

For this study, the data from three days was used to perform the experiment of creating a model at the 

edge and sending it across to the central server. The seasonal daily variations in the grid supply 

voltage, the periods of heavy fluctuations and stable supply slots can be studied in this sample. This 

model ends up being vital in taking decisions on the best time to run sensitive equipment which are 

vulnerable to heavy fluctuations. 

 

 

 

Baseline performance for comparison 

 

Prior to building a model to train, it is recommended to have a baseline performance, to compare with 

the incremental models we would build in the future. Initially, we have to be able to predict the voltage 

an hour ahead, when we have the present values of each feature. We initialize with a model that would 

give us the present voltage as a forecast, thereby forecasting no change at all. Since the voltage from 

the power grid fluctuates around the 230V mark, and is 0V during power cuts, this can be considered 

a fair baseline to start with. 
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Fig 6a. Voltage sensor data normalization 

 

 

Long tail end data in the figure is the power cut part of the normalization. After the normalization 

step, we get voltage sensor data that is now as shown in Fig 6a. 

We created windows across the data:  The number of time steps, width of the input along with the 

windows labels. For the time gap between the windows, voltage is used as inputs along with the 

labels. 

 

Methodology 

 

We attempted a single output forecast initially. Then for multiple sensor data, we also forecast 

multiple outputs. After obtaining single time stepping and later multi time stepping, we created 

windows in the data in order for it to be reusable for Linear, DNN, CNN, RNN models. 

 

TensorFlow data is a bunch of arrays [17]. At the outer index through out all examples, lies the batch. 

At the middle, the time or space indices exist as width and height and the indices at the core are called 

as features. We took a set of three nine-time step windows, using five features at each step of time. 

This then obtains a single time step single featured label.  

The label has a single feature since the window got initialized as label_cols=['Voltage']. We built a 

model that forecasts labels with a singular output. 
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Fig 6b. Windows in the voltage sensor data 

 

Single stepping model 

 

The initial model we created with data predicts a singular feature value. One step of time (an hour 

ahead) using only present conditions of the voltage. The models were built forecasting voltages an 

hour ahead. A window object to create these singular-step input and label combinations is as in Fig 

6b. 
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Fig 7. Voltage sensor data inputs with forecasting 

 

The blue line depicts voltage for every step of time. All sensor data is received by the model, but the 

plot above only maps the voltage. Labels is green dots depict the forecast values of the target. Dots 

are plotted at the times of forecast. This causes the label range to shift a single step ahead as compared 

to the inputs. The forecast is depicted as orange crosses at each step of time. In case of a perfect 

forecast, the crosses would coincide with the labels as in Fig 7. 
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Fig 8. Performance of the Federated Learning Model on the Edge Devices 

________________________________________________________________________________

___ 

Algorithm: The R edge devices are indexed by r; S is the batch size, η is the learning rate and Ep is 

the number of epochs on the edge device as in Fig 8. 

________________________________________________________________________________

___ 

Server executes this algorithm in the experiment : 

Initialize  

for each iteration t = 1,2,3,... do 

  max ← max (C · R, 1) 

  ← (set of max edge devices) 

     for each edge device in n ∈  do 

  

             
 

:  // Execute at edge device r 

  S ← (split  into sets with size S) 

  for each edge epoch k from 1 to Ep do 

     for set s ∈ S do 

      
return  to central cloud 

________________________________________________________________________________

___ 
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Fig 9. Three hours of inputs given, and a single hour of forecast  

 

As a test, we gave 3 hours of input data and tried to predict 1 hour in the future. This method yielded 

fairly reasonable predictions for the short-term. Linear and LSTM models were accurate in the 

preliminary tests.  

 

Split Federation for Data Privacy - Model file transfer 

 

The model was saved in the HDF5 format. The model files are synchronized to the cloud server using 

rsync after every training process as in Fig.10. Then for incremental modeling, it is transferred back 

to another edge device. This keeps the data only at the edge, and allows for incremental modeling at 

the edge thereby federating the learning across the IIoT network edge. tf.keras was used to build and 

to train the models using TensorFlow at the edge. 

 

 

Fig.10 Trained model at the edge - HDF5 format 

 

 

 

The training checkpoints can be saved as depicted in Fig.11. In case the training at the edge is 

interrupted, the TensorFlow Keras callback ModelCheckpoint can continuously save the training 

model while training the model, and also at the end of the training. 
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Fig.11 Training checkpoints that can resume on interruption 

 

 

 

Fig 12. Forecast – Yellow crosses 

 

This Naïve Bayesian Classifier is used for quick learning. As long as B definitely occurs, then the 

probability of A occurring is denoted by p(A/B)  : 

 

 

(IGNB) Incremental Gaussian Naïve Bayes Classifier, considers the Naïve Bayes equation and can 

be used to calculate the mean deviation incrementally, as opposed to logging all sensor data for the 

data-distribution : 
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The Bayes method can be used by slicing the sensor data-sets or by considering their distributions in 

the data-set. Deviations from the mean are considered during slicing and resampling sensor data. 

 

We can see that using simple Bayesian classification at the edge device running a power-efficient 

SBC can offer reasonable analytics and forecasting abilities at the edge. The aggregated model so 

created, can be used on different similar locations, to be able to forecast and take decisions related to 

preventive maintenance at different shop floors. Data remains local to each shop floor and only the 

learning model migrates around, ensuring privacy. 

 

7. Contribution 

 

We have demonstrated a practical and simple implementation that is quick to get off the ground, based 

on open source technologies only. This approach ensures that it is easy to kick-start FL in IIoT in an 

industrial setting with a quick turn-around time. This approach emphasizes on being able to get 

reasonable results with least resources and with minimum power consumption at the edge, though 

resource-heavy processes are running on the edge devices in real-time. 

 

8. Results and Discussion 

 

In the course of our experiment of the split learning FL process, the models we created at the edge 

were transferred to the centre and were incrementally trained after being transferred back to another 

edge device. Modeling happened at the edge and the results got transferred again to the central server 

without transferring the actual data. The aggregated model was formed in the central or the cloud 

server. The computations were performed on the Raspberry Pi 4 with lower computational power than 

the central server or the cloud server for an industrial setting. FL models were aggregated on the 

central server without any data being transferred. 

 

Results confirm that the trained models of the various different shop floors across geographies can be 

aggregated with success, at the cloud. Privacy is maintained at all times. Once the model from the 

central server was trained, we were able to forecast voltage fluctuations at each site fairly reasonably. 

 

 

 

 

 

Based on the forecast as shown in Fig.12, simple flows were designed to give recommendations on 

the best times to run sensitive machinery without compromising on safety and accuracy. FL 

algorithms such as LSTM was proven to establish that such IIoT frameworks can be deployed in an 

enterprise, with higher privacy and scalability. 

 

 

24



 

Fig 13. Federated Learning models sent back to the central server 

 

 

 

The rsync of the model files combined with the use of power efficient SBCs was experimented with, 

and eventually was found to be a unique attempt at learning at the edge. The migrating of the model 

files between edge devices for incremental learning, was an approach different from that used earlier 

by other researchers. The use of cron jobs to sync files distributed the learning model among the edge 

devices modeling the same sensor data at different locations, without needing to send data across to 

headquarters. This approach can be viewed as an alternative where edge resources needs to be saved 

for more important processes. 

 

A few methods we studied and based our current experiment on, are summarized in the table 

below : 

Research Date Study Ref. IIoT at the Edge ML at the Edge Power Efficiency at the Edge  

2020 [7] YES NO NO 

2021 [8] YES YES NO 

2022 [1] YES YES NO 
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2023 Our work YES YES YES 

 

 

9. Limitations and future scope 

 

This method of federating is dependent on the energy efficient 28nm FinFet based CPU driven SBCs 

being available in the market. Currently, due to the chip shortage in early 2023, at the time of 

conducting this experiment, we found that these SBCs are in short supply. There is a wait list over 24 

months from original equipment manufacturers and  it is found that in the alternative local market, 

there is an inconsistent supply and even when available, the SBCs are marked up to almost double 

the actual suggested price. We expect the supply to be streamlined by the end of the year (2023). The 

future holds tremendous potential for federating at the edge in IIoT and it all depends on the supply 

chain stabilizing  in the post-pandemic era. Once the fab facilities get their act together and assure a 

regular supply at reasonable rates, we are sure that more research in IIoT will be accomplished with 

different techniques and different needs. 

 

10. Conclusion 

 

The Federated Learning concept (Fig.13) is best suited for situations where sensor data privacy is 

important. Split Learning can be implemented for such scenarios. This study has shown how such a 

setup can be conceived and implemented across a wide geography. The recent improvements in SBC 

power has enabled intensive processes like TensorFlow to be able to run on the edge device itself. In 

edge devices where TensorFlow Federated cannot be run, one can federate learning through the split 

learning paradigm. This decreases communication traffic between the headquarters and results in 

lower computational load on the cloud server at the cental location. It also reduced bandwidth 

requirements between the edge and the cloud. Shared ML models can be created and incremental 

learning can take place with the models aggregated with other training elements. FL is best for privacy 

where local data is not transferred to the cloud. This can be integrated into IIoT architectures in the 

industry as part of Industry 4.0 and 5.0 initiatives to utilize best practices in efficient edge-cloud 

implementation for the modern enterprise.  
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