
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Industrial IoT Sensor Data Federation in an Enterprise for an Early

Failure Prediction

Sachin Bhoite1, Chandrashekhar Himmatrao Patil*, 2, Harshali Patil3

1,2 Department of Computer Science and Application, Dr. Vishwanath Karad, MIT World

Peace

University, Pune, India

3, Sri Balaji University, Pune, India

Email: sachintenjuly@gmail.com, chpatil.mca@gmail.com, hkarankal@gmail.com

Correspondence: chpatil.mca@gmail.com;

Abstract

The recent availability of powerful (SBC) Single Board Computing devices has facilitated edge

computing at a level that was previously hard to deploy. This new shift, presented a gap, hitherto

considered tough to implement in the industry with lower power consumption at the edge.

Generally, keeping in mind preventive maintenance intervention as the key purpose, a simple and

quick implementation of federation in the industry had to be addressed. Industries need such

predictions with data privacy and accuracy to take care of chronic spare replacements before things

fail.

We were presented with an opportunity to suggest preventive maintenance procedures and make

manufacturing decisions based on (IIoT) Industrial Internet of Things data from multiple sensors

across the enterprise, from multiple similar machines in different shop floors in an industrial setup

across a varied geography.

IIoT sensors chosen, ping the edge device at each location with sensor data at regular intervals.

(MQTT) Message Queuing Telemetry Transport protocol was used [7] and the data reached the edge

in (JSON) Javascript Object Notation format with a timestamp and sensor value. The SBC ensured

low powered operation mode and was adequately cooled with a passive aluminium heat-sink and

fans. This ensured that the edge server could be kept on for long periods of time, consuming only

about an average of 15W of power.

We introduce a unique method of federation, specifically, using HDF5 model file transfer. The

checkpoint file is then synchronized to the central server using timed file transfer scripts at the nodes

achieving simple federation. Preset cron jobs at the clients allow real time federation as a quick

solution using off-the-shelf hardware.

The setup has a central server or alternatively a cloud server for fallback, in the monitoring station.

This was then networked to various edge devices in each shop floor across the industry. The individual

machines and their sensor data were then captured into a named time series database at each edge

device. The learning was done at each edge device and the model was then sent back to the central

server without any actual sensor data for incremental learning. This learning model could be used at

another similar deployment based on similar sensor data.

This is an implementation using Split Federation and Linear, DNN, CNN, RNN models.

Various sensor data was collected by the edge device in each of the industrial floors. We chose to base

our first set of experiments on the time series voltage data relayed, since it was fluctuating at times

from the power grid and had a seasonality pattern. Identifying periods of least fluctuations to run

IJCDS 1571013540

1

sensitive gauging machinery was the first step in forecasting preventive maintenance routines of

sensitive equipment across the enterprise. This even ensured higher accuracy of the said gauging

equipment. (FL) Federated Learning models were used to predict the sensor values and make

decisions. The sensor data was stored and processed at the edge. The (ML) Machine Learning

techniques only operated at the edge. The models were then synchronized to the central cloud server

and back to other edge devices in the network. Results obtained lay a foundation for FL using a split

learning paradigm in the IIoT space with SBCs consuming the least amount of power, for an enterprise

spread across a diverse geography.

Data privacy is upheld and maintained, while at the same time reduced bandwidth requirements

between the edge and the cloud make this a simple and easy first implementation of federation in the

industry.

There are many social implications to this approach as well. The quick and simple approach can help

in a cheaper implementation in public service projects where site data needs to be private. Even the

possibility of power cuts in rural areas will not affect the federation and decision making can happen

even in the harshest of field situations.

This has a lot of impact in decentralized decision making. Failure patterns can be identified and in

general, an accurate model can be generated with limited resources.

The uniqueness in this approach is that the training checkpoints are saved. In case of any interruption,

TensorFlow Keras callback ModelCheckpoint can continuously save the training model while

training the model, and also at the end of the training.

Keywords: Synchronized models, Federated Learning, MQTT, Edge Computing, Single Board

Computers, The Industrial Internet of Things, Split Learning , Split Federation, Predictive

Maintenance, Algorithmic preventive maintenance.

__

1. Introduction

FL is a distributed machine learning technique wherein various devices on the edge, first train an ML

model on their own data. They do not share their individual data with other devices. This method is

particularly relevant for Industry 4.0 and eventually in Industry 5.0, where there is a need to analyze

vast amounts of data generated by various connected devices [1], without compromising on data

privacy and security. In Industry 4.0 and 5.0, Federated Learning will be implemented to train models

on data collected from connected machines and devices, allowing for real-time analysis and improved

decision-making in areas such as predictive maintenance, quality control, and process optimization

[2].

We were motivated to pursue this approach to create a solution that is quick to implement on the field.

We have implemented a split and federated learning approach wherein various participants train their

models on their own data which is local only to themselves. This is then shared with a central

coordinator without including the localized data. All the learning is eventually aggregated and

produces a global ML model [3], [4].

The research had an objective to achieve a simple method of federation at scale using off-the-shelf

and easily available components. It had to also be quick to implement in rural industrial settings where

the possibility of power cuts had to be factored in.

2

Privacy takes precedence when dealing with sensitive sensor data. Related IIoT device data can be

modeled using the same algorithm. Among the sensors, those which generate sensitive data should

be secured well. Different sensor data can be treated with varying levels of secure algorithms as per

the application. Electronic devices generating data securely can be aggregated at the edge using an

encryption layer. Ever increasing data points can be resampled as per the forecast range in question.

Prior to establishing a connection with the edge, the security protocols need to be decided upon.

Requesting or publishing data to the broker can be done with a secure key or password. Along the

data flow paths, a minimum number of hops ensure low latency. Online data flow paths are

recommended to be implemented with a secure transport layer [21].

In Industry 4.0 and 5.0, federated learning can have the impact in improving collaboration and the

sharing of learning among different organizations while maintaining data privacy and security. It can

be used in various applications such as predictive maintenance, predictive quality control, and supply

chain optimization [5]. By training models on decentralized data, federated learning enables

organizations to leverage data from multiple sources and make better use of their own data, ultimately

leading to improved accuracy and performance in Industry 4.0 and 5.0 applications [4].

The original contribution here is the unique approach which can be implemented quickly with

readily available components.

2. Related work

We briefly describe herein, some related work to this paper, in the following literature review.

Christopher Briggs, Zhong Fan and Peter Andras suggest various FL strategies. This is then followed

by a personalization step showing an improvement in model’s performance. They show that FL can

achieve this improvement by reducing the computation load when compared with localized learning.

They provide information about aggregating predictions to be able to build private load forecasting

applications.

Modern distributed machine learning like FL trained load forecasting (LSTM) Long Short-Term

Memory models. At the same time, it preserved the privacy of data in the field of power consumption

at the customer’s locations. It would enable a wider implementation of smart energy meters while

being concerned of privacy at the same time. A comparison among different FL training methods and

other benchmarks from regular training strategies was explored. The effect of the same on the level

of forecasting was studied. Analysis of FL methods was done, comparing it to a variant of FL designed

to perform well to the task of forecasting the loads. They also evaluated numerous efficiency issues

in computation, in the FL system used in forecasting [1].

Mojtaba Vaezi , Amin Azari et al. suggest how the paradigm will shift in the next decade is made.

Integration of new technologies associated with each other, like (AI) Artificial Intelligence and

networks which are not terrestrial, are detailed upon. The potential of implementing deep-learning

methods alongside emerging techniques in FL have been discussed. Their impact in improving

communication in IoT networks has been discussed. Even future research pathways going further

than the current 5G technology in IoT networking are discussed.

Digital transformation which was initiated by IoT have inspired trends across academia as well as the

industry. It was identified that the use of IoT creates real global interconnect. AI controls the IoT

enabled gadgets as well as the decisions taken by these gadgets. The so-called ‘edge’, increases its

proximity to the cloud. And IoT devices have an ever increasing set of security issues.

3

Increase in reliability, along with increasing global spread, coupled with faster 5G networks, the

deployment of the latest in AI methodologies, such as deep neural networks and FL, will be important

in making this trend come true. The authors identified several issues in the privacy matters and

security concerns in these situations. The increase in IoT security issues alongside the rapid global

interconnect, makes IoT security threats and the related issues of data privacy concerning. This will

need innovative and novel ideas to counter the threats in this domain in the near future [2].

Yi Liu, Neeraj Kumar, Zehui Xiong, Wei Yang Bryan Lim et al. had conducted a research where

Convolutional Neural Network (CNN) was used. The authors used the CNN-LSTM model. The finer

subtleties were captured using units of CNN. This method maintains the benefits of LSTM to predict

data from a time series. They used a gradient compression technique to yield results in predicting in

the moment getting good results in detecting anomalies as well. Bandwidth needs were reduced and

it even improved communication efficiency. It was noted that experiments based on datasets from the

real world, had good results in detecting anomalies accurately using the framework proposed by them.

It improved on traditional ways of doing the same reducing overheads in communication. Finally,

they proposed an anomaly detection score. They normalized the time series sensor data collected [3].

IoT data generated from multiple devices used in sensing humidity in a study by Mohamed Amine

Ferrag, Othmane Friha, Djallel Hamouda et al. distances using ultrasonic methods, sensors detecting

the level of water in applications, patient heart rate, flame, acidity level pH and moisture in soil etc.,

were collected. The study analyzed some attacks in the connectivity and communication protocols.

(DoS) Denial of Services in network attacks, man-in-the-middle type of attacks, (DDoS) Distributed

Denial of Services in attacks, gathering of private information were studied. (SQL) Structured Query

Language Injection and other type of malware based attacks were also elaborated upon. Features

extracted from varied sources like alerts, syslogs, resources, network data traffic, were studied and

new features with high inter-relations were discovered. At the end of processing the above mentioned

data set with security fall outs, the authors provided a preliminary exploration and then they analysed

the sensor data. They evaluated different ML strategies in both modes : federated as well as central-

server based learning [4].

Edge Computing (EC) is a scenario where sensors can process the data collected. Even stacked

intermediate elements can process the data. The methods used in edge computing, reduce bandwidth

and communication related costs. Processing speeds increase if the edge device is powerful enough.

In one study, Taimur Hafeez, Lina Xu and Gavin Mcardle explored IIoT methods to carry out (PM)

Predictive Maintenance. They discussed how the collected sensor readings can be processed and

where it can be analyzed. They presented sampling concepts along with techniques to reduce data

communications. The quantity of data that was transmitted to the cloud, was diminished. Accuracy

might be lost when ML algorithms have to deal with reduction in data. Alternative approaches move

ML based algorithms nearer to the source of data and achieve a reduction in transmitted data. These

techniques are categorized broadly into three types: Device & Edge, Edge & Cloud, Device & Cloud.

The authors demonstrated an architecture in which edge computing can be implemented for sensor

data reduction for preventive maintenance of equipment. In instances where the connection between

the sensor node and the central server where the readings are processed, fails, there was a study

which used ML and monitored how the devices performed. These methods were only edge dependent.

The ML gets updated as soon as analytic processes running on the sensor information, locates

anomalies at the edge layer. The edge connects to the cloud to push the update. The method used

techniques like SNN, ANN. Some other methods like CNN, HOG etc. were also tried [5].

Abdul Rehman, Imran Razzak and Guandong Xu researched on an FL based framework that can

aggregate models from contributions from different clients. The data set it used could train models

on an individual basis using DNN (Deep Neural Network). Every client examines the results three

4

times resulting in over 80% accuracy. It found that their framework could detect attack from alternate

channels. They ensured that the system logs were purged of information that would compromise the

privacy of individuals by anonymizing the data prior to training the model [6].

Mahmoud Parto, Christopher Saldana and Thomas Kurfess mentioned a time based architecture for

IoT. It mentioned techniques for ML at scale. The study focused on the processes of manufacture.

They had a general architecture with three layers. They created an edge computing layer with sensors.

Post that, they computed AI tasks in the fog, as they called the intermediate layer, and a central cloud

server was in charge of federating the models. The whole setup was presented as a (FL) Federated

Learning system with prior processing getting done at the edge, and the ML layer trained models

incrementally in what was termed the fog layer. Aggregation of the models happened centrally in the

cloud. High performance was achieved with this scalable architecture using hardware with fewer

resources. Stacks of Raspberry Pi 3B devices were clustered and deployed, balancing minimum

storage and computing power with better performance [7].

Mingqian Liu, Ke Yang, Nan Zhao, Yunfei Chen et al. mentioned in a paper how the reduced the

frequency and pre-treated the signal from the nodes. The representations of the signals were then

trained with fusing the features. FL methods combined with deep learning were used to classify the

signals at each node. The performance of the classification was found to be good when the results at

each sensor were aggregated to the central aggregator [8].

Yung-Lin Hsu and Hung-Yu Wei saved a lot of energy by having the processes execute at the edge

and also reduced loss in performance [9]. Xianyi Cheng et al. used fast performing classifiers that

culminated in accurate results using stage classifiers. Decision trees were developed for each subset

of sensors. The predictions were accurate when used along with state transitions [10]. Mi Wen et al.

used deep learning to detect the theft of power on the grid. (TCN) Temporal Convolutional Networks

were used and a lot of experiments resulted in a very accurate detection rate inspite of lower compute

power. FL frameworks were deployed to quantify the footprint of energy usage and carbon emitted

in a decentralized setting. The authors architected green designs for FL structures [11].

Overall, a lot of new paradigms of learning have evolved in the industrial settings recently. One such

is the continuous learning or (RL) Reinforcement Learning paradigm by Stefano Savazzi et al. where

the model is trained at the edge itself in IIoT devices involving a periodic repetition continuously.

The process repeats as per the varying processes in the industry depending on a timely schedule [12].

Andrew Hard, Kanishka Rao et al. Concluded that the federated algorithm, which facilitates model

training on a more finely tuned and high-quality dataset tailored to this particular application,

surpasses conventional server-based training in terms of predictive precision. The authors execute a

comparative assessment between server-based training employing stochastic gradient descent and

training carried out on individual client devices using the FederatedAveraging algorithm.

The federated learning framework empowers users through enhanced control over their data usage

and streamlines the incorporation of privacy safeguards as an inherent feature through distributed

training and data aggregation across a diverse array of client devices. Their primary aim is to enhance

the predictive text functionality within a smartphone-based virtual keyboard [22].

Karim Gamal, Ahmed Gaber et al. found that The empirical results derived from various model

configurations indicate that, in either uncontaminated or adversarial scenarios, federated learning

achieves similar performance to traditional centralized training when predicting emojis in multiple

languages, even when the data comes from diverse sources with varying distributions.

5

To conduct this research, emoji prediction datasets were gathered from two sources: Twitter and the

SemEval emoji datasets. These datasets served as the basis for training and evaluating different

transformer model settings. Notably, the trained transformer models demonstrate superior

performance compared to alternative techniques when tested on the SemEval emoji dataset.

Furthermore, federated learning retains its inherent privacy and distributed advantages in this context

[23].

Faris F. Gulamali and Girish N. Nadkarni’s results demonstrate that federated models outperformed

their local counterparts, even when assessed on local data within the test dataset. Their performance

was on par with models using pooled data. Federated learning presents a viable alternative to the

conventional single-institution approach while circumventing the challenges associated with data

sharing. Models are generated and updated on-site to achieve specific learning objectives. To illustrate

its effectiveness, the authors provide a practical example involving COVID-19-associated AKI. In

the context of cross-silo federated learning, data remains localized, and the raw data is retained at its

source. Notably, the improvements in performance at individual hospitals showed an inverse

relationship with dataset size, implying that smaller hospitals have substantial room for improvement

with federated learning methodologies [24].

We see from these studies that there has been a rapid shift in paradigms in the industry. IIoT and the

related ML techniques used to analyze data has been slowly moving from the central server to the

edge as time goes by. This means more computation can happen at the edge, and the central server is

relieved of the processing load. This also means more data security and added privacy in the future

for big data analytics of industrial sensors to aid in decision making in the industry.

3. Common techniques

Our Methodology was to attempt a single output forecast initially. Then for multiple sensor data, we

also forecast for multiple outputs. After obtaining single time stepping and later multi time stepping,

we created windows in the data in order for it to be reusable for Linear, DNN, CNN, RNN models.

With the advent of powerful SBC (Single Board Computing) devices in the market, the processing

power available at the edge has grown tremendously in the past couple of years. We suggest various

methods and techniques to use the IIoT sensor data collected over a period, and convert it into

actionable intelligence to aid decision making on the shop floor.

The suggested layers in the IIoT network with high frequency sensor data are the centralized cloud,

and the edge device further connected to the sensors on the machinery. The SBC Edge device uses an

MQTT broker and for some IIoT devices, their Modbus layers to aggregate the sensor data in the IIoT

network. This data is then analysed at the edge [7]. The time-series data collected, is processed at the

edge itself and the central server applies federated learning methods to analyze, forecast, and create

maintenance suggestions, and best time of operation for sensitive machinery in the industry.

Algorithms enable the creation of models that make predictions based on data generated from

multiple sources. This leads to improved efficiency, reliability, and security in industrial processes.

Another approach uses deep-learning modeling, such as (RNN) Recurrent-Neural-Networks. They

also explored (LSTM) long short term memory networks, and processed time series sensor data and

make valid predictions. These models are trained on large amounts of historical sensor data and can

make predictions based on the patterns and trends in the data [20][21].

Some commonly used federated learning algorithms for IIoT include [13] [14]:

6

Federated Averaging (FedAvg): This is a simple federated learning algorithm. The average value of

the model parameters from a multitude of devices is computed. Post that computation, the global

model is accordingly updated [19].

Split Learning: This is an algorithm that preserves data privacy. Data remains on the device and the

computation only, is transferred to the server. We have used a technique in this type of FL which splits

the learnings on various edge devices and transfers the models, aggregating learning across various

edge devices. We used a combination of FedAvg and Split Learning in our experiment.

Differential Privacy: This is a methodology that preserves privacy. It does so by adding a noise layer

to the data. The noise added, serves as a protection layer so that privacy is not compromised, and all

the unique data is modulated with noise, still letting the model be aggregated and to get trained with

data.

Secure Multi Party Computation (MPC): This techniques preserves privacy by enabling different

devices to compute functions in tandem on their data, whilst keeping their data private [18].

Federated Transfer Learning: This involves transfer of knowledge from a pre-trained centralized data

model to that on the edge device. This reduces the quantum of edge data required to be sent to the

centralized cloud server [17].

Multi-Party Computation (MPC): An FL algorithm that enables secure computation of machine

learning models over multiple parties, while preserving data privacy.

Time series sensor data prediction refers to the process of being able to predict the next values in a

set of data generated by sensors over time. This is an important application in Industry 4.0, as it can

help in

forecasting equipment failures, detecting anomalies, and improving operational efficiency.

A few machine learning techniques used to make time-series data predictions are :

(AR) Autoregressive Models: These type of models use the historic values in the series of data and

suggest the next values.

(MA) Moving Average Models: These models use the averages of historic values in the series in order

to suggest the next values.

(ARIMA) Autoregressive Integrated Moving Average Models: Models that combine AR and MA

models to account for both the past values and trends in the sequence of data.

(SARIMA) Seasonal Autoregressive and Integrated Moving Average Models: When seasonality of

data extends the ARIMA model, and supports the direct modeling of the seasonal component of the

series is called SARIMA. Mainly, it takes into consideration the seasonal variant in univariate data.

(RNN) Recurrent Neural Networks: These are deep learning models. They are better suited for time-

series data. They can capture patterns and dependencies over time.

(LSTM) Long Short Term Memory: These are a specific variant of RNN that can handle the long term

co-relations and dependencies amid time series data and are found to be used in time series prediction

tasks fairly often.

5. Experiment

7

The Central Server uses an Intel Xeon processor with 32GB RAM and an Nvidia GTX 1050 Ti GPU.

Various machines at each shop floor are connected wirelessly as well as wired to the network to relay

sensor data. These typically used ESP32 / ESP8266 based implementations in their architecture. Each

one of the sensor relays communicated with an (MQTT) – Message Queue Telemetry Transport

broker running on the edge device at regular intervals, relaying sensor data which was processed only

at the edge. The resulting models were transferred to the cloud, as part of the split and federated

learning process.

Our edge setup consists of multiple SBCs interconnected to form an edge cluster. This setup

performs parallel processing at the edge and runs the code from the central server.

Hardware and connections

We used multiple Raspberry Pi 4 – 8GB boards along with a single Raspberry Pi 3B+ running as a

storage controller, to run the open source software stack in this experiment setup. Each node

relaying the data runs on either an STM32 or an ESP32 micro controller based board with custom

coded embedded software that relays the telemetry data to the MQTT server. The embedded code

was programmed with a telemetry period of 20 seconds to keep the data up-to-date for processing.

Cluster

Our SBC cluster was assembled using the following components as depicted in Fig 1a.

1. Raspberry Pi 4 - 8GB boards – 2 units, Raspberry Pi 3B+ Storage controller – 1 unit.

2. USB SSD boot drives – one for each SBC.

3. Ethernet cables (for connecting the SBCs to the network switch / router).

4. Network switch / router with 8 ports to accommodate the SBCs.

5. Power adapters for the SBCs – capable of delivering 5.1V at 3 Amperes each.

6. Cooling – solid aluminum heat sinks with fans to keep the boards at less than 45 degrees

centigrade.

8

Fig

1a.

SBC cluster connections with two RPi 4 – 8GB and one RPi 3B+ Storage Controller

Open source software stack

We chose commonly available open source software components like the Raspberry Pi OS

alongside a stack consisting of real time databases like InfluxDB. Open source observability

software like Grafana, Message queueing using the Mosquitto MQTT layer, SSH clients like

PuTTY for remote headless access to the SBCs and Ansible – an open source automation tool, were

used to manage the cluster throughout the experiment.

Software flow for the cluster

This was our general work flow that we implemented to get the cluster up and running at the edge.

1. Preparing each of the SBCs in the cluster:

• The latest version of Raspberry Pi OS was downloaded and flashed onto the SSD.

• Software used can be the Raspberry Pi Imager tool or Balena Etcher.

• The USB adapted SSD cards – 500GB was plugged in into the Raspberry Pi boards USB-3

slots as shown in Fig 1b.

9

Fig 1b. USB SSDs ensure quick bootup and optimal edge performance with 300Mb/s throughput

2. Setting up networking in the cluster:

• Each SBC is connected to the network switch / router using Ethernet cables.

• It is ensured that all SBCs and the terminal computer are on the same local network.

3. Powering on the SBCs:

• The power adapters to each SBC is connected and turned on, one by one.

• Each SBC in the cluster takes about 2 minutes to boot up completely.

• Once booted, the cluster is ready for use at the edge.

4. Configuring the SBCs:

• The terminal computer is connected to the same network as the cluster.

• DHCP IP addresses assigned to each SBC is got from the router's configuration.

• An IP scanner tool can be used alternatively or even running nmap over SSH, works well.

• Each SBC can be accessed via SSH using the IP address and the SSH client such as PuTTY.

5. Configuring the cluster:

On each SBC, Ansible is installed by running the following command:

 sudo apt update

 sudo apt install ansible

• An inventory file listing the IP addresses or hostnames of all the SBCs in the cluster is

created. It is then saved for use in scripts later.

• An Ansible playbook was created to define the desired configuration for the cluster, such as

software installations or system settings.

• The Ansible playbook was executed using the following command:

10

 ansible-playbook -i <IP Addresses> <playbook>

6. Testing the cluster:

• Once the above configuration is complete, each cluster can be tested by executing parallel

tasks or distributing workload among the SBCs.

• Parallel commands can be executed across all the SBCs using the Ansible command:

 ansible all -i <IP Addresses> -a "<user commands>"

7. Power consumption:

• We found that the typical power consumption of this edge cluster setup in Fig 1c. was

around 45W at peak processing loads. The board temperatures averaged around 45 degrees

centigrade.

Fig 1c. Edge Cluster power usage is typically around 45W at peak processing demand

Data flow

The C code in the embedded devices creates a JSON formatted message that is relayed to the

MQTT server daemon running in the SBC cluster. The MQTT broker relays data in the JSON

formatted message. This is processed using Telegraf and then is stored into the time series database

InfluxDB.

Data aggregation

The TICK stack we chose is a set of open-source tools for managing and processing time-series

data.

The Telegraf module is a plugin-driven server agent that collects, processes, and delivers metrics

and events from multiple sources like sensors into the chosen database.

11

The InfluxDB database is scalable and is a very high-performance time-series database which is

designed specifically to handle extremely large volumes of time-stamped data. We used this to store

the sensor stream data.

Chronograf is a web-based user interface (UI) provided by the TICK stack that helped us visualize

and explore the data stored in the time-series database. This provides the tools to create dashboards

and helps in managing alerts based on preset conditions as depicted in Fig 1d.

Kapacitor is a processing engine in the stack that

enables real-time streaming along with real-time

data processing. It allowed us to define and

execute tasks on the data which included

aggregations, downsampling of the data, anomaly

detection in the data stream, and also alerted us

based on preset conditions.

To aggregate our sensor stream data using the

TICK stack described above, we followed the

steps as described below:

We first installed and configured Telegraf. We set

up Telegraf on the cluster at the edge where the

sensors are located. Telegraf provides various

input plugins to collect data from different

sources, such as MQTT, SNMP, or our custom

written scripts. We configured Telegraf,

specifically the telegraf.conf file, to collect data

from the sensors over the wi-fi network and then

send it ahead into an InfluxDB bucket via MQTT.

We then installed and configured InfluxDB.

Specific care was taken to configure the InfluxDB

bucket to receive and store the incoming sensor

data sent by Telegraf. We define a bucket with

retention policy to always keep data forever, since we would need it for comparisons later.

To verify data ingestion by the database, we ensured that Telegraf is successfully sending data to

InfluxDB. This was done by checking the InfluxDB bucket using the web interface, to confirm that

the data is being stored correctly.

Next we explored and visualized the data using Chronograf. The Chronograf web user interface was

used to visualize the sensor data stored in InfluxDB. We created dashboards and configured queries

to display the data in meaningful ways using the Flux query language. Since Chronograf provides

various visualization options, such as line graphs, bar charts, and scatter plots, it was easy to get a

real time view of the data of different time slices on the fly.

We could process the data using Kapacitor. Performing real-time calculations or analysis on the

sensor data, we configured Kapacitor by defining tasks in Kapacitor using its Domain Specific

Language (DSL) to perform aggregations, downsampling the data, detecting anomalies, and other

data transformations. We also set up different alerting rules in Kapacitor and generated notifications

based on predefined conditions.

Data analytics

Fig 1d. A dashboard from the data stream

12

The real time stream of the telemetry data from the shop floor is presented in customized

dashboards reflecting the current situation at the factory floor. Similarly, predicted values, after

processing the telemetry data stream are also presented in real time projected-timeline dashboards.

Fig

1e.

Edge

Cluster power usage is typically around 45W at peak processing demand

Data federation

Tensorflow running on the same SBC cluster would have ensured that processing could have

happened on the edge. But since Tensorflow does not yet exist for this particular variant of ARM64

processor, Jupyter Notebook was installed at the edge to run the process. The files were

synchronized using rsync and a cron job managed it on a schedule.

Predictive analysis

The learning process on each SBC cluster transported through rsync. Eventually when Tensorflow

can be installed at the edge SBC cluster on these ARM64 boards, the actual code can run at the edge

without having the rsync. Distributed computing frameworks like Kubernetes or Apache Spark to

utilize the cluster's capabilities for distributed processing or running containerized applications

could be explored in the future.

13

Fig.2 below, shows the general structure of the central server federating data at the edge devices and

their individual sensor relays at the edge. Various time-series data like voltage, current, power,

temperature, vibration, air quality, humidity etc. are relayed to the edge device.

Fig 2. A flow of the Enterprise Server and Edge Devices with IIoT sensor relay

A few sensor nodes were wired to the network using ethernet cables, but most sensor devices relayed

the data and operated over wireless wi-fi connections.

6. Experiment Flow

The edge devices at each location do not relay the sensor data to central cloud. The reading

information collected from the sensors is processed at the edge device itself, thereby maintaining the

data privacy at each location.

The edge has become increasingly powerful, with most analytical processes completed in this layer.

Businesses requiring new solutions on the periphery, combined with a rapid increase of data from

these sensors, have begun migrating to process most computation on the edge. Some edge nodes

collect lots of private data which is modeled at the edge itself.

Software plays an important role in managing the edge data layer with (API) Application

Programming Interface access, locally served dashboards combining integration with automation and

controls, and delivery to alerting systems. All these systems in tandem with the cloud native analytical

software at the head quarters, are used to make real-time business decisions, both at the edge as well

as in the wholistic level. Edge and cloud data, have strict privacy policies at times. There are many

considerations when choosing the edge or cloud for storage and compute. Finally developers want to

ensure these two data layers work together in an efficient way, ensuring privacy and delivering

centralized business insights in near real-time. Federated Learning has an important role to play in

this type of situation.

MQTT

14

Fig.3 MQTT – Publish and Subscribe

In HTTP, the data is transferred between the client and the server. In (MQTT) – Message Queue

Telemetry Transport, the exchange of data is facilitated through publish-subscribe communication

protocols as depicted in Fig.3. This was initially developed by IBM and is now popular in the IIoT

space [17]. MQTT addresses the need for rapid communication in IIoT and stays distributed at the

same time. Another popular protocols for sensor data exchange is Data Distribution Service (DDS).

In addition to that, there exist alternatives like XMPP, RabbitMQ etc. This experiment uses MQTT

and HTTP for the IIoT gateways, sensor devices and edge devices .

(TFF) TensorFlow Federated

Since we are experimenting a research FL simulation, we have not implemented TFF functions as

yet. TFF is not yet primed for installation on Raspberry Pi 4 which is the edge device of our choice

[18].

In the documentation for TensorFlow it has been mentioned that isolated blocks of TensorFlow code,

consisting tf.functions, that capture the logic running at a single location such as our edge device. The

code is always executed and tested eliminating any tff.* reference in the code. This can be used again

without the presence of TFF. Client training loops in FedAvg is deployed as such.

15

Fig 4. The Federated Learning Model

FL is an ideal technology for IoT applications as its efficiency and protection model make it well-

suited to this type of application. Some notable examples of these applications include wearable

devices, self-driving cars, and smart intelligent homes. This turns complex with plenty of data waiting

to be collected at each step in order to operate smoothly. The limited bandwidth availability of FL

makes it difficult for these devices to relay all the data at regular intervals, which can result in slower

response times or decreased performance [19].

Here, we have collected the voltage fluctuations at a location in our IIoT network. The industrial unit

where this was deployed exists in an agricultural zone with unreliable power supply in a rural zone.

The intent is to study the fluctuations over a periodic cycle, and study seasonal variance of power-

cuts and times in the day when maximum fluctuations occur. Sensitive equipment can be prevented

from operating during times prone to unreliable voltage input from the power grid. With the analytic

information, it should be able to suggest best times of operation of sensitive gauging equipment which

can be damaged due to such fluctuation and cuts in supply voltage.

16

Fig 5. The voltage sensor data across 3 days

The voltage data was published to the broker every 20 seconds. The edge device subscribed to the

sensor message queue which contained the sensor readings. This was done over a period of a month.

For this study, the data from three days was used to perform the experiment of creating a model at the

edge and sending it across to the central server. The seasonal daily variations in the grid supply

voltage, the periods of heavy fluctuations and stable supply slots can be studied in this sample. This

model ends up being vital in taking decisions on the best time to run sensitive equipment which are

vulnerable to heavy fluctuations.

Baseline performance for comparison

Prior to building a model to train, it is recommended to have a baseline performance, to compare with

the incremental models we would build in the future. Initially, we have to be able to predict the voltage

an hour ahead, when we have the present values of each feature. We initialize with a model that would

give us the present voltage as a forecast, thereby forecasting no change at all. Since the voltage from

the power grid fluctuates around the 230V mark, and is 0V during power cuts, this can be considered

a fair baseline to start with.

17

Fig 6a. Voltage sensor data normalization

Long tail end data in the figure is the power cut part of the normalization. After the normalization

step, we get voltage sensor data that is now as shown in Fig 6a.

We created windows across the data: The number of time steps, width of the input along with the

windows labels. For the time gap between the windows, voltage is used as inputs along with the

labels.

Methodology

We attempted a single output forecast initially. Then for multiple sensor data, we also forecast

multiple outputs. After obtaining single time stepping and later multi time stepping, we created

windows in the data in order for it to be reusable for Linear, DNN, CNN, RNN models.

TensorFlow data is a bunch of arrays [17]. At the outer index through out all examples, lies the batch.

At the middle, the time or space indices exist as width and height and the indices at the core are called

as features. We took a set of three nine-time step windows, using five features at each step of time.

This then obtains a single time step single featured label.

The label has a single feature since the window got initialized as label_cols=['Voltage']. We built a

model that forecasts labels with a singular output.

18

Fig 6b. Windows in the voltage sensor data

Single stepping model

The initial model we created with data predicts a singular feature value. One step of time (an hour

ahead) using only present conditions of the voltage. The models were built forecasting voltages an

hour ahead. A window object to create these singular-step input and label combinations is as in Fig

6b.

19

Fig 7. Voltage sensor data inputs with forecasting

The blue line depicts voltage for every step of time. All sensor data is received by the model, but the

plot above only maps the voltage. Labels is green dots depict the forecast values of the target. Dots

are plotted at the times of forecast. This causes the label range to shift a single step ahead as compared

to the inputs. The forecast is depicted as orange crosses at each step of time. In case of a perfect

forecast, the crosses would coincide with the labels as in Fig 7.

20

Fig 8. Performance of the Federated Learning Model on the Edge Devices

__

Algorithm: The R edge devices are indexed by r; S is the batch size, η is the learning rate and Ep is

the number of epochs on the edge device as in Fig 8.

__

Server executes this algorithm in the experiment :

Initialize

for each iteration t = 1,2,3,... do

 max ← max (C · R, 1)

 ← (set of max edge devices)

 for each edge device in n ∈ do

: // Execute at edge device r

 S ← (split into sets with size S)

 for each edge epoch k from 1 to Ep do

 for set s ∈ S do

return to central cloud

__

21

Fig 9. Three hours of inputs given, and a single hour of forecast

As a test, we gave 3 hours of input data and tried to predict 1 hour in the future. This method yielded

fairly reasonable predictions for the short-term. Linear and LSTM models were accurate in the

preliminary tests.

Split Federation for Data Privacy - Model file transfer

The model was saved in the HDF5 format. The model files are synchronized to the cloud server using

rsync after every training process as in Fig.10. Then for incremental modeling, it is transferred back

to another edge device. This keeps the data only at the edge, and allows for incremental modeling at

the edge thereby federating the learning across the IIoT network edge. tf.keras was used to build and

to train the models using TensorFlow at the edge.

Fig.10 Trained model at the edge - HDF5 format

The training checkpoints can be saved as depicted in Fig.11. In case the training at the edge is

interrupted, the TensorFlow Keras callback ModelCheckpoint can continuously save the training

model while training the model, and also at the end of the training.

22

Fig.11 Training checkpoints that can resume on interruption

Fig 12. Forecast – Yellow crosses

This Naïve Bayesian Classifier is used for quick learning. As long as B definitely occurs, then the

probability of A occurring is denoted by p(A/B) :

(IGNB) Incremental Gaussian Naïve Bayes Classifier, considers the Naïve Bayes equation and can

be used to calculate the mean deviation incrementally, as opposed to logging all sensor data for the

data-distribution :

23

The Bayes method can be used by slicing the sensor data-sets or by considering their distributions in

the data-set. Deviations from the mean are considered during slicing and resampling sensor data.

We can see that using simple Bayesian classification at the edge device running a power-efficient

SBC can offer reasonable analytics and forecasting abilities at the edge. The aggregated model so

created, can be used on different similar locations, to be able to forecast and take decisions related to

preventive maintenance at different shop floors. Data remains local to each shop floor and only the

learning model migrates around, ensuring privacy.

7. Contribution

We have demonstrated a practical and simple implementation that is quick to get off the ground, based

on open source technologies only. This approach ensures that it is easy to kick-start FL in IIoT in an

industrial setting with a quick turn-around time. This approach emphasizes on being able to get

reasonable results with least resources and with minimum power consumption at the edge, though

resource-heavy processes are running on the edge devices in real-time.

8. Results and Discussion

In the course of our experiment of the split learning FL process, the models we created at the edge

were transferred to the centre and were incrementally trained after being transferred back to another

edge device. Modeling happened at the edge and the results got transferred again to the central server

without transferring the actual data. The aggregated model was formed in the central or the cloud

server. The computations were performed on the Raspberry Pi 4 with lower computational power than

the central server or the cloud server for an industrial setting. FL models were aggregated on the

central server without any data being transferred.

Results confirm that the trained models of the various different shop floors across geographies can be

aggregated with success, at the cloud. Privacy is maintained at all times. Once the model from the

central server was trained, we were able to forecast voltage fluctuations at each site fairly reasonably.

Based on the forecast as shown in Fig.12, simple flows were designed to give recommendations on

the best times to run sensitive machinery without compromising on safety and accuracy. FL

algorithms such as LSTM was proven to establish that such IIoT frameworks can be deployed in an

enterprise, with higher privacy and scalability.

24

Fig 13. Federated Learning models sent back to the central server

The rsync of the model files combined with the use of power efficient SBCs was experimented with,

and eventually was found to be a unique attempt at learning at the edge. The migrating of the model

files between edge devices for incremental learning, was an approach different from that used earlier

by other researchers. The use of cron jobs to sync files distributed the learning model among the edge

devices modeling the same sensor data at different locations, without needing to send data across to

headquarters. This approach can be viewed as an alternative where edge resources needs to be saved

for more important processes.

A few methods we studied and based our current experiment on, are summarized in the table

below :

Research Date Study Ref. IIoT at the Edge ML at the Edge Power Efficiency at the Edge

2020 [7] YES NO NO

2021 [8] YES YES NO

2022 [1] YES YES NO

25

2023 Our work YES YES YES

9. Limitations and future scope

This method of federating is dependent on the energy efficient 28nm FinFet based CPU driven SBCs

being available in the market. Currently, due to the chip shortage in early 2023, at the time of

conducting this experiment, we found that these SBCs are in short supply. There is a wait list over 24

months from original equipment manufacturers and it is found that in the alternative local market,

there is an inconsistent supply and even when available, the SBCs are marked up to almost double

the actual suggested price. We expect the supply to be streamlined by the end of the year (2023). The

future holds tremendous potential for federating at the edge in IIoT and it all depends on the supply

chain stabilizing in the post-pandemic era. Once the fab facilities get their act together and assure a

regular supply at reasonable rates, we are sure that more research in IIoT will be accomplished with

different techniques and different needs.

10. Conclusion

The Federated Learning concept (Fig.13) is best suited for situations where sensor data privacy is

important. Split Learning can be implemented for such scenarios. This study has shown how such a

setup can be conceived and implemented across a wide geography. The recent improvements in SBC

power has enabled intensive processes like TensorFlow to be able to run on the edge device itself. In

edge devices where TensorFlow Federated cannot be run, one can federate learning through the split

learning paradigm. This decreases communication traffic between the headquarters and results in

lower computational load on the cloud server at the cental location. It also reduced bandwidth

requirements between the edge and the cloud. Shared ML models can be created and incremental

learning can take place with the models aggregated with other training elements. FL is best for privacy

where local data is not transferred to the cloud. This can be integrated into IIoT architectures in the

industry as part of Industry 4.0 and 5.0 initiatives to utilize best practices in efficient edge-cloud

implementation for the modern enterprise.

Compliance with Ethical Standards:

* Disclosure of potential conflicts of interest – All authors declare that there are no potentila

conflicts of interest.

* Research involving human participants and/or animals – No human and/or animal partici-

pants.

* Informed consent – All are agree to the consent.

References

[1] Christopher Briggs, Zhong Fan, Senior Member, IEEE, and Peter Andras, Senior Member, IEEE,

Federated Learning for Short-term Residential Load Forecasting DOI

10.1109/OAJPE.2022.3206220

[2] Mojtaba Vaezi , Senior Member, IEEE, Amin Azari , Member, IEEE, Saeed R. Khosravirad ,

Member, IEEE, Mahyar Shirvanimoghaddam , Senior Member, IEEE, M. Mahdi Azari , Member,

IEEE, Danai Chasaki , Senior Member, IEEE, and Petar Popovski , Fellow, IEEE, Cellular, Wide-

Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G, IEEE

Communications Surveys & Tutorials, Vol. 24, No. 2, Second Quarter 2022

26

[3] Yi Liu, Neeraj Kumar, Zehui Xiong, Wei Yang Bryan Lim, Jiawen Kang, Dusit Niyato,

Communication-Efficient Federated Learning for Anomaly Detection in Industrial Internet of Things

DOI: 10.1109/GLOBECOM42002.2020.9348249

[4] Mohamed Amine Ferrag, Othmane Friha, Djallel Hamouda, Leandros Maglaras, Helge Janicke,

Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications

for Centralized and Federated Learning DOI 10.1109/ACCESS.2022.3165809

[5] Taimur Hafeez, Lina Xu, Gavin Mcardle, "Edge Intelligence for Data Handling and Predictive

Maintenance in IIOT," 10.1109/ACCESS.2021.3069137, 2021.

[6] Abdul Rehman, Imran Razzak, Guandong Xu, Federated Learning for Privacy Preservation of

Healthcare Data from Smartphone-based Side-Channel Attacks, Journal Of Biomedical And Health

Informatics, DOI 10.1109/JBHI.2022.3171852

[7] Mahmoud Parto, Christopher Saldana, Thomas Kurfess, “A Novel Three-Layer IoT Architecture

for Shared, Private, Scalable, and Real-time Machine Learning from Ubiquitous Cyber-Physical

Systems,” ScienceDirect, Procedia Manufacturing 48 (2020) 959-967, 2020.

[8] Mingqian Liu, Ke Yang, Nan Zhao, Yunfei Chen, Hao Song, Fengkui Gong, Intelligent Signal

Classification in Industrial Distributed Wireless Sensor Networks Based Industrial Internet of Things,

IEEE Transactions on Industrial Informatics, vol. 17, no. 7, July 2021

[9] Yung-Lin Hsu, Hung-Yu Wei, Optimized Data Sampling and Energy Consumption in IIoT: A

Federated Learning Approach, IEEE Transactions On Communications, Vol. 70, No. 12, December

2022

[10] Xianyi Cheng, Zhenzhong Jia, Ankit Bhatia, Reuben M. Aronson, Matthew T. Mason, Sensor

Selection and Stage & Result Classifications for Automated Miniature Screwdriving, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) Madrid, Spain, October 1-5,

2018

[11] Mi Wen , Member, IEEE, Rong Xie , Kejie Lu , Senior Member, IEEE,

Liangliang Wang , and Kai Zhang, FedDetect: A Novel Privacy-Preserving Federated Learning

Framework for Energy Theft Detection in Smart Grid, IEEE Internet of Things Journal, vol. 9, no. 8,

April 15, 2022

[12] Stefano Savazzi Member, Vittorio Rampa Member, Sanaz Kianoush Member, Mehdi Bennis

Fellow, An Energy and Carbon Footprint Analysis of Distributed and Federated Learning, DOI

10.1109/TGCN.2022.3186439

[13] Satya Prakash Yadav, Bhoopesh Singh Bhati, Dharmendra Prasad Mahato, Sachin Kumar,

Federated Learning for IoT Applications, ISSN 2522-8595 ISSN 2522-8609 (electronic)

EAI/Springer Innovations in Communication and Computing ISBN 978-3-030-85558-1 ISBN 978-

3-030-85559-8 (eBook) https://doi.org/10.1007/978-3-030-85559-8, Springer

[14] Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, Chunyan Miao, Federated

Learning Over Wireless Edge Networks, ISSN 2366-1186 ISSN 2366-1445 (electronic), Wireless

27

https://doi.org/10.1007/978-3-030-85559-8

Networks ISBN 978-3-031-07837-8 ISBN 978-3-031-07838-5 (eBook) https://doi.org/10.1007/978-

3-031-07838-5, Springer

[15] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu, Federated Learning,

ISBN: 9781687336976 paperback, ISBN: 9781687336983 ebook, ISBN: 9781687336990 hardcover,

DOI 10.2200/S00960ED2V01Y201910AIM043, Morgan & Claypool

[16] Wes McKinney, Python for Data Analysis, ISBN: 978-1-449-31979-3, O’Reilly Media, Inc.

[17] MQTT protocol : www.mqtt.org

[18] Tensorflow : www.tensorflow.org

[19] Sudipan Saha and Tahir Ahmad, Federated Transfer Learning: Concept and Applications,

arXiv:2010.15561v3 [cs.LG] 6 Mar 2021

[20] A. P. Singh and S. Chaudhari, ‘‘Embedded machine learning-based data reduction in application-

specific constrained IoT networks,’’ in Proc. 35th Annu. ACM Symp. Appl. Comput., Mar. 2020.

[21] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, ‘‘A systematic survey of industrial Internet

of Things security: Requirements and fog computing opportunities,’’ IEEE Commun. Surveys Tuts.,

vol. 22, no. 4, 4th Quart., 2020.

[22] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays Sean

Augenstein, Hubert Eichner, Chloé Kiddon, Daniel Ramage, “Federated Learning For Mobile

Keyboard Prediction” 1811.03604

[23] Karim Gamal, Ahmed Gaber, Hossam Amer Queen’s University, Microsoft, “Federated Learning

Based Multilingual Emoji Prediction In Clean And Attack Scenarios”, 2304.01005

[24] Faris F. Gulamali Girish N. Nadkarni, “Federated Learning In Risk Prediction: A Primer And

Application To Covid-19- Associated Acute Kidney Injury”

28

https://doi.org/10.1007/978-3-031-07838-5
https://doi.org/10.1007/978-3-031-07838-5
http://www.mqtt.org/
http://www.tensorflow.org/

