
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Exploring Honeypot as a Deception and Trigger Mechanism

for Real-Time Attack Detection in Software-Defined

Networking

Harman Yousif Khalid 1, Najla Badie Aldabagh 2

1Department of Computer Science, College of Science, University of Duhok, Duhok, Iraq

2Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

E-mail address: Harman.khalid@uod.ac, Najlabadie@uomosul.edu.iq

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Cyberattacks are becoming more frequent and sophisticated, making their detection harder. Probe attacks in Software

Defined Networking (SDN) not given much attention by the research community, which represents the starting phase for other

attacks. The attacker scans the network to get the necessary details about hosts and services running in network to launch successful

attacks exploiting vulnerabilities in the system. The issue with probe attacks is that they occur passively and the target system is not

aware of them. On one hand, additional mechanism is required to check the network traffic continuously by embedding switches with

independent agents, which is against the OpenFlow standard. On the other hand, using statistics provided by OpenFlow switches to

the controller, which overloads the controller with the extra task of continuously checking traffic statistics. In this work, a lightweight

detection mechanism proposed that detects probe attacks in real-time using machine learning. Honeypot integrated into the detection

mechanism to detect passive probe attacks by luring attackers through proving fake services and serving as a trigger mechanism that

activates the detection mechanism when necessary. The experimental results show that the proposed mechanism successfully detects

probe attacks in real-time achieving accuracy (94.73%) with the minimum CPU load.

Keywords: Intrusion Detection System (IDS), Software Defined Networking (SDN), Probe, Reconnaissance, Honeypot, Machine

learning (ML).

1. INTRODUCTION

Probe attacks are often considered a preliminary step
in various cyberattacks, particularly in the context of
network reconnaissance. Network reconnaissance is the
first phase of the cyber kill chain, which involves
gathering information about a target system or network to
identify vulnerabilities and potential entry points for
further exploitation [1]. Probe attacks involve port
scanning, ping sweeps, network mapping, etc. to discover
active hosts, open ports, services, the type of operating
system of the target host, etc. Since such information
could be useful during attack planning to exploit
vulnerabilities associated with a specific OS or understand
how different systems are connected. After obtaining the
necessary information, attackers may perform
vulnerability scanning to find specific weaknesses or
vulnerabilities in the target systems and identify potential
entry points and weaknesses in the target's network. After
the initial reconnaissance phase is complete, attackers
may proceed with more targeted and specific attacks

based on the information gathered, such as denial of
service (DoS), man-in-the-middle (MitM), brute force,
etc.

The issue with probe attacks is that they operate in
passive mode and are very hard to detect. Several methods
are used by the research community to detect probe
attacks, such as deploying Snort Intrusion Detection
System (IDS), which continuously monitors the network
traffic to detect malicious traffic. However, Snort is not
effective to deal with today’s attacks because they are
signature-based, and any simple deviation in the attack
signature could easily be bypassed by the attacker [2][3].
Moreover, embedding an OpenFlow switch with
additional duties is against the OpenFlow protocol since it
clearly states that the switch must be as simple as possible
and perform only packet forwarding.

SDN’s features, such as having full control and view
over the whole network as well as programmability, open
the door for the deployment of various security
applications through the existing open API. Some

IJCDS 1571014497

1

2 Author Name: Paper Title …

http://journals.uob.edu.bh

researchers exploit the power of SDN controllers to
deploy artificial intelligence (AI)-based IDS to detect
various types of attacks. AI-based IDS methods require
features extraction from networks to check current flows,
whether they are malicious or normal. The OpenFlow
protocol provides a method to gather various statistics
details from switches through OpenFlow statistics
message requests and replies. The controller initiates the
request message to all switches, and the switches provide
the required details for the controller. AI-based IDS take
advantage of those details for feature extraction to detect
malicious flow. However, periodic inquiries about those
features and corresponding replies lead to huge problems
for the controller.

This work is extended from a survey [4], where a deep

investigation was conducted on the works performed by

other researchers regarding the deployment of AI-based

IDS in SDN environments; some open issues and

challenges were highlighted. The survey shows that, due

to the difficulty of traffic feature extractions and mapping

them to the features in the dataset they used, almost all

previous studies on deploying IDS neglected real-time

attack detection in SDN. They have primarily

concentrated on obtaining high accuracy through the

utilization of novel machine learning (ML) and deep

learning algorithms (DL), or by employing feature

selection methods during offline training. There was no

clear implementation of real-time detection work, and the

accuracy of the literature did not reflect reality, as it did

not run in real-time. In addition, the survey showed that

most of the current work only paid attention to DDoS

attacks, neglecting other attacks since the nature of the

centralized controller of SDN makes them an attractive

target for DDoS attacks. Moreover, majority of works

deployed IDS, checks the network for malicious traffic on

a fixed time interval. A longer time interval may make it

more difficult to identify the attack in the early stages and

may even give the attacker more time to cause more

serious damage to the network [2]. While if interval is

very short, it has many consequences, such as increasing

the controller’s CPU load, especially in large-scale

networks [5].
In this work, we aim to solve the mentioned open

issues, and we propose a lightweight machine learning
mechanism to detect passive attacks such as probe attacks
in an SDN environment using features provided by
OpenFlow switches. The mechanism comprises of a
triggering module based on honeypots and detection and
mitigation modules. The following is a summary of this
work's primary contributions:

• Early detection and prevention of attacks since we
consider probe attacks, which regarded as the initial
stage of nearly all other kinds of attacks, including
DDoS, botnet, MitM, , etc. In other words, we break

the first phase of the attack kill chain before gaining
control of the target system.

• To identify passive attacks, we proposed a
lightweight mechanism by exploiting the honeypot’s
capability, which acts as a trap by luring attackers by
providing fake services.

• We used the honeypot as an alerting mechanism to
minimize the CPU overhead of the SDN controller in
a large-scale network by triggering the detection
module when needed instead of continuously
checking the traffic. Moreover, the honeypot
contributes to filtering the flow of traffic by
providing additional useful details about the attacker.

• We conducted a simulation scenario to verify the

proposed mechanism in real-time, considering attack

detection in its early stage as well as attack

mitigation.

2. RELATED WORK

The novel SDN architecture allows the research
community to take advantage of its features of
programmability, flexibility, and ease of deployment.
Implementing a security application, which resides in the
controller, exploits the power of ML and DL to detect
malicious traffic in a network. This section briefly
introduces some recent and popular approaches that have
been suggested for attack detection in an SDN
environment using AI capabilities.

The Grey Wolf Optimization (GWO) algorithm for
feature selection was implemented in [6] to improve the
performance of IDS to detect probe attacks more
accurately. They discussed the benefit of feature selection
to the overall detection model. They highlighted that
feature selection is essential to minimize the computation
time, which will make the classifier have high accuracy
with optimal features selected as well as decrease the
dataset size for testing and training. Moreover, for real-
time detection, it is easier to extract fewer features, thus
decreasing the detection time. They showed that by
selecting a subset of 8 features from the InSDN dataset
using the Light Gradient Boosting Machine (LightGBM)
classifier, accuracy increased to 99.8%, while using all
features was 77.3%. However, their topology was the
same as that of the creator of the dataset, and they did not
perform real-time detection.

In another direction, some studies have developed
hybrid IDS that merge flow-based IDS with signature-
based IDS to provide a more robust detection mechanism.
The author in [7] implemented two approaches for
detecting DDoS attacks in SDN. First, they use signature-
based Snort IDS alongside with SDN to analyze the
network for checking malicious traffic. Second,
implementing a machine learning Support Vector
Machine (SVM) model trained with the NLS_KDD

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

dataset to detect unknown attacks. The motive behind
using both methods is that the unknown attacks are
detectable by machine learning, and their signatures will
be stored in the Snort database to make Snort able to
detect them next time they occur again. The drawback of
this method is that they implemented Snort as an
independent hardware module connected to a switch,
which requires additional resources and whose
performance degrades when the network is larger.

In the same context, the author in [8] used Snort IDS,
which connects to an Open vSwitch and monitors the
network through port mirroring. They also provide flow-
based IDS in controller to overcome the shortcoming of
Snort being unable to detect novel attacks. The OpenFlow
statistics message was used to extract features for machine
learning over a certain time interval. They selected seven
features that can be easily obtained by SDN nature.
However, using a combination of both Snort and machine
learning leads to issues in large networks and creates a
load.

The detection of DDoS attacks in SDN environments
has been covered in [9]. The author proposed two lines of
security. First, they used Snort to detect known attacks in
signature-based databases. The second defense line was
using ML and DL to detect anomaly-based attacks. They
used SVM and Deep Neural Network (DNN) models,
which trained on the NLS_KDD dataset, and the accuracy
was 74.3% and 92.3%, respectively. Snort used in this
work for detecting known attacks in signature databases
and as a data collector for ML and DL models. However,
they periodically monitor the network for anomalies,
which makes their detection mechanism active even when
there is no traffic overload on the controller.

In [10], a comparative analysis of different feature
selection algorithms for detecting DDoS attacks based on
various machine learning models is presented. The
experiment was conducted using feature selection
algorithms such as Information Gain (IG), Correlation
Coefficient, Chi-square, Forward Feature Selection (FFS),
Backward Feature Selection (BFS) and Recursive Feature
Elimination (RFE). Machine learning classifiers such as
SVM, Decision Tree (DT), Random Forest (RF), Naïve
Bayes (NB), and K-Nearest Neighbor (KNN) used for
binary classification. The optimal model was RF with an
accuracy of 99.97% using a feature subset of 28 selected
by the RFE. They mentioned that the detection model
used OpenFlow statistics messages to get 41 features of
NSL-KDD. However, it is very difficult to get those
numbers in real time, as highlighted before.

In [11], an attack detection and mitigation module was
proposed using a hybrid model of Convolutional Neural
Network (CNN) and Extreme Learning Machine (CNN-
ELM) to classify DDoS attacks in an SDN environment.
Their model found DDoS attacks by using information
taken from the SDN environment. This information came
from both packet-in messages sent to the controller and

statistics messages sent to the controller by OpenFlow
switches. The extracted features from the OpenFlow
switch were mapped to a subset of 12 features in the
InSDN dataset. In addition, they constructed four
additional features, such as average speed flow, average
duration, average packet size, and ratio asymmetric flow.
Through the experiments conducted, they showed that
using a subset of 12 features not only increased accuracy
but also reduced test time. However, this methodology
creates overhead in the controller since every packet-in
message should be checked, which will not be effective
during a DDoS attack. Moreover, there was no clear
description of how features would be extracted from
packet-in, and their methodology was not verified.
Moreover, the manually created four features were not
verified either.

Similarly, the authors in [12] proposed the Deep
Convolutional Neural Network (DCNN) to detect DDoS
in SDN. They suggest similar detection and mitigation
mechanisms to previous work. Except that they used only
the features provided by the flow table through OpenFlow
statistics messages, and those messages periodically sent
to the controller for anomaly detection. They mentioned
that they only used 12 features of InSDN mapped to
extracted information from the OpenFlow switch. They
argue that the existing system suffers from using a large
number of features for machine learning or deep learning
and needs more functions to extract them, which creates
network congestion and latency. While using a small and
limited number of features does not provide reliable attack
detection. However, in practical implementation, they
used 78 features for training, not only 12. It is difficult to
map the basic features provided by OpenFlow switches to
the 78 features of the InSDN dataset. Moreover, their
methodology, which requires every packet-in message to
be checked by the controller as well as periodically
requesting statistics from the switch, creates overhead in
the controller. Similar to previous work, there was no
clear description of how features would be extracted from
packet-in, and they were not verified.

A work in [13] proposed a lightweight supervised
learning model to detect DDoS attacks against SDN
controllers using only one feature of fluctuation of flows,
which is the count of packet-in messages to the controller
in a fixed time slice and for many consecutive times to
avoid the behavior of a normal burst. They created their
own dataset for the proposed system, but for testing and
training their model, they used the InSDN dataset. The
idea behind using only one feature is that it will be easier
to obtain as well as consume less time and resources for
training and real time prediction. They used multiple
machine learning models with seven selected features of
InSDN, which were flow-ID, protocol, timestamp, flow-
pkt/s, bwd-pkt/s, pkt-len-mean, init-bwd, and win-byts.
The conducted experiments show Binary Tree (BT) and
KNN were the best in terms of accuracy, while in terms of
both accuracy and training time, CPU utilization, and

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

decision time, KNN was the optimal. They tested the
proposed work using their own dataset and obtained an
accuracy of 99.4% with BT using one feature. The author
argues that using many features will lead to either higher
performance or overfitting for some models. However,
they did not mention the methodology of feature
selection, and some of the selected features were
irrelevant, such as flow-ID and timestamps, which can
affect the learning process during model training.
Moreover, continuous checking of the count of packet-in
created load on the controller as well as the methodology
of time slice create delay in decision time. Finally, the
method of considering only one attribute for training the
intrusion system is not a promising solution.

In summary, the majority of the existing work in the
literature targets DDoS attack detection only, neglecting
other attacks. The focus of the previous works was on the
analyzing of the proposed models to achieve high
accuracy or implementing some studies on feature
selection algorithms, and there was no clear description of
real-time detection. Moreover, some works monitor
packet-in messages as well as statistics message to
construct their features, but none of them considers the
overload that created on controller when periodically
checks the network traffic or extract traffic features. In
this work, we consider probe attack, which considered as
first step of other attacks and extract limited number of
features through statistics provided by OpenFlow switches
to ensure the fast and lightweight detection mechanism.
We consider the tradeoff between high accuracy and low
controller overhead by using triggering mechanism for
checking malicious traffic when needed instead of
periodically manner. We implemented our own dataset,
which contains features dimensions that easily obtained
from OpenFlow switches and evaluated the efficiency of
dataset using many common supervised learning
algorithms such as DT, RF, Adaptive Boosting
(AdaBoost), NB, XGBoost and KNN.

3. THE PROPOSED DETECTION MECHANISM

In this section, we describe the methodological stages
followed to build the proposed probe detection
mechanism. The SDN features make SDN operation
easier and offer a number of benefits [14]. This motivates
the deployment of light, effective, and attack detection in
real-time. Our proposed SDN defense system distributed
on two sides, as shown in Figure 1. On the controller side,
where the detection and mitigation modules reside, as
well as on the host side, where honeypot resides as a trap
to lure attackers and notify the controller when possible
malicious traffic is detected. Honeypot is a deception
mechanism used to lure attackers by providing fake
services. Any contact with the honeypot considered as a
possible attack. This contact will trigger the detection
module in the controller to start checking the current
flows in the network instead of continuously checking the
network periodically. In addition, the honeypot

programmed to send some useful details to the controller
with a triggered message about the attacker traffic to filter
out the possible malicious flows and reduce the load on
the CPU.

Figure 1. Defense system modules diagram.

Machine learning techniques have recently dominated

IDS research because they produce more accurate
predictions than other techniques [15]. Machine learning
models can overcome the drawbacks of other methods by
classifying abnormal traffic as an anomaly with self-
learning capabilities [16]. ML has been deployed in a
wide area, from medical analysis and image processing to
data mining. The concept of machine learning is to make
machines learn automatically from the given training data
without human intervention [17]. However, machine
learning required input values to feed to create prediction
output based on those inputs. These inputs should be
extracted from the live attributes of traffic flow to
accurately detect malicious traffic. SDN controllers'
beneficious features, such as power and storage provided,
open programmability, global visibility and control, and
statistics features provided by the OpenFlow switch, make
them suitable locations for implementing machine
learning intrusion detection and mitigation applications.
Due to the availability of those features, in proposed
work, machine learning models are implemented in the
controller for classification.

As shown in Figure 2, the detection and mitigation
applications are inactive in the controller, waiting to be
triggered to check traffic flow when necessary. Honeypot
is actively providing some fake services to lure attackers
along with real services on the network. The defense
mechanism can be described in pseudocode in Figure 3.
When the attacker first initiates a probe attack to check for
active hosts and services in the network, the honeypot is
configured to register all events on a dedicated log file for
every connection attempt to the services they provide. In

Defense System

Host Side

Honeypot System

Triggering
Mechanism

Controller Side

Detection Module

Flow statistic
Collection

Traffic
Classification

Mitigation
Module

Blocking
mechanism

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

general, the log file used for analyzing the attacker's
movements and steps during the attack.

Figure 2. The framework of the proposed mechanism.

Figure 3. Defense System Pseudocode

However, in this work, we utilize the honeypot to be
exploited as a triggering mechanism to alert for possible
attacks. Once the log file registers an event, a special
Python script monitors the log file and extracts the IP of
the attacker, the protocol of flow, and the port used by the
attacker. Later, the mechanism constructs a special
packet-in message to be sent by the OpenFlow switch to
the controller with a special ethertype field code ‘0x88FF’
to be recognized by the controller as a trigger message. In
the next step, once the controller receives the trigger
message, it will forward it to the detection and mitigation
application. The application creates a flow statistics
request message to be forwarded to the switch, which is
connected directly to the host where honeypot exists

through the switch ID provided by the packet-in trigger
message. After receiving the reply messages from the
switch, which contain flow entry statistics, they are
filtered by other details provided by Honeypot, such as IP,
port, and protocol. Then the necessary features extracted
from the filtered flows and fed to the ML module for
testing. Once the malicious flow detected, the attacker
domain located and controller initiated packet-out
message to block the attacker's source port.

A. Dataset Preparation

Using a high-quality dataset for training AI-based IDS
has a great impact on the accuracy of the predictions made
by the model. Comparing to other domains, such as
computer vision, there are limited datasets for intrusion
detection in general and for probe attacks specifically due
to privacy and legal issues [18] [2]. In the past few
decades, academics have used a number of well-known
public datasets, including the KDD Cup, NSL KDD,
UNSW-NB15, and CICIDS2017 databases. Since SDN is
a new paradigm, comparing to traditional networks, there
are less research studies that address the intrusion
detection problem in SDN. According to the authors of
[15][19][20], most published research work deals with the
intrusion detection in SDN similar to that of a
conventional network.

Scholars employed classical network datasets, like
KDD Cup and NSL-KDD, as training datasets for
anomaly detection in SDN contexts. Training the SDN-
based IDSs using old datasets can cause significant issues,
as they only detect attacks, which have similar behavior in
both SDN and traditional networks. Because intrusion
attack tactics are always evolving, they are getting more
complex and difficult to spot [19]. However, these
datasets are either unreliable and outdated since they were
released a long time ago [15] [21], or they suffer from
compatibility issues since they were collected during the
traditional networks and the SDN architecture are
different. Therefore, they are not efficient to use for real-
time detection [21].

The InSDN dataset [22] published as an SDN specific
dataset in 2020 for the purpose of assessing and training
IDS within SDN environments. The work in [4]
conducted regarding this dataset reveals that applying this
dataset for IDS deployment in SDN research work has
mostly focused on achieving high accuracy by using new
ML and DL algorithms or by using feature selection
techniques in offline training. There was no clear
implementation of real-time detection work, and the
accuracy of the literature did not reflect reality, as it did
not run in real-time. The reason behind that is the
difficulty in obtaining the required features from the
traffic flow to map to the features of the dataset.

In this work, we focus on a binary classification for
detecting probe attacks and do not delve further into
classifying the various types of attacks. In this work, we

1: If packet_in message, then

2: If Ethertype = ‘0x88FF’

3: Craft OFP stats request to switch(ID)

4: if OFP stats reply message

5: Filter according to (IP, port, protocol)

6: Extract features from filtered flow

7: Result= ML_Model (Extracted features)

8: If Result ==0 then

9: Take no action

10: Else: Result ==1 then

11: Block the attacker port

........

OFSwitch

OFSwitch

Attacker

OFSwitch

........

Server

Honeypot:

Fake Services

Control Plane

Detection & Prevention Module

SDN

Controller

Flow

Request

Flow

Reply

Received

Feature

Extraction

ML

Model

Prediction Mitigate

If

Malicious

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

created our own dataset specific for training and
evaluating the proposed IDS for detecting probe attacks in
the SDN context. The dataset contains 282128 instances
in total, with sample sizes of 126685 (45%) for the normal
class and 155443 (55%) for the probe class, respectively. .
The probe traffic collected by initiating a live host scan,
port scan, version scan, service scan, OS detection, etc.
For normal traffic, we replicated the proper random inter-
departure time and packet size by creating traffic at the
packet level as well as multiple sessions of parallel,
sequential, and bidirectional streams. Numerous widely
used application services, including HTTPS, HTTP, FTP,
SFTP, Telnet, DNS, VoIP, and others, represented in the
normal traffic. All hosts connected to the internet and
ordinary daily tasks executed by executing several
applications, such as browsing different websites,
watching YouTube videos, opening and sending emails,
to mimic real Internet traffic.

B. Feature extraction

Deploying AI-based IDS requires features from real-
time traffic to feed the classifier model for decision
making in real-time. The first task of the IDS is to collect
traffic statistics and related information about flows.
Many studies have implemented ML and DL models in
SDN, but the source of data to provide features to perform
real-time detection is not a straightforward process. Either
they had to use methods used in traditional networks by
using dedicated tools in the forwarding plane acting as
sensors like Snort and sFlow agent, which degrade
performance, or using features provided by SDN.
Nowadays, networks are faster due to the requirements of
applications and advances in technology. The intrusion
detection mechanisms need to consider their performance
in terms of detection time. The demand for lightweight
IDS is a hot topic in academia nowadays. The trade-off
between model accuracy and execution must be addressed
carefully. Choosing the best features is essential to
improving SDN-based IDS efficiency.

Having a large dataset with a huge number of features
will delay training, testing, and model detection. In
addition, using a high-dimensional dataset may not
necessarily lead to higher accuracy due to overfitting and
redundant features [23]. Reducing the number of features
or selecting relevant features in general will lead to a
decrease in model training, testing, and detection time, as
well as model complexity, since real-time feature
extraction is not an easy process [2] [23]. Moreover,
feature selection reducing high dimensionality reduces the
likelihood of overfitting issues in the model [2]. In order
to obtain excellent model performance utilizing ML and
DL, many researchers have turned their attention to the
removal of noisy, duplicate, and useless features [2] [24]
[25].

In the SDN framework, there is some point of feature
extraction that can be beneficial for feeding the model
such as:

1. Controller packet-in messages: Upon receiving the
initial packet of a particular flow, the OpenFlow
switch will examine the packet header and determine
whether any flow rules exist in one of its flow tables
that correspond with the flow in question [26]. There
is an action connected to every flow rule. The traffic
flow will be redirected to the appropriate destination
if a match is identified. When there is no match and a
miss table appears, the switch uses the packet-in
message to convey the packet to the controller, who
processes it and determines what to do with it. Some
researchers used packet-in behavior to construct some
useful features that successfully detect DDoS attacks,
as in [11] [12] [13] [27].

2. OpenFlow statistical messages: Basic information
about the flows could be obtained by parsing the
OFP_stats_reply messages of an SDN network [21].
These messages were sent to the controller in
response to OFP_stats_request by the controller.
Usually, this happens periodically, depending on the
specific event triggered. This process does not require
additional effort because it is provided by the
controller according to the OpenFlow specification.

3. Using independent agents: using other methods used
for capturing network traffic, like in [27], which
combined an OpenFlow switch and sFlow for
effective anomaly detection in an SDN environment
[28]. In addition, others in [9] have used Snort as a
data collector.

In our mechanism, we used the OpenFlow statistical
messages method to obtain the required features since
they are easily obtained in an SDN environment and do
not require an additional agent extended to the data plane
switch following the OpenFlow protocol specification.
The features extracted are shown in Table 1.

C. Preprocessing stage

An essential step in preparing the input data for the
model's training in order to create an accurate detection
system is data preprocessing. The generated dataset does
not contain socket information such as source IP,
destination IP, flow ID, etc. to avoid the overfitting
problem [2], where such data can be changed from
network to network. In addition, since we aimed to record
the features related to the behavior of attacker flow, we
excluded source and destination ports because they are
often constant values representing network identifier
attribute which may lead to overfitting. As the dataset
does not contain a large number of samples, we deployed
ML mechanisms instead of DL, since the latter proved to
be effective with large datasets [18] [19]. As a first step

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

in preprocessing as depicted in Figure 4, the dataset is
checked to see if it contains empty or null values to
prevent any significant effect on the model efficiency.
Moreover, duplicated samples were removed from the
dataset. Normalization, which involves transforming data
to a common scale, is an essential preprocessing step in
machine learning. We used Min-Max scaling to make
values between “0” and “1”, to ensure that all features
have the same scale, making it easier to compare their
importance and contributions to the model. We divided
the dataset where 80% is used for training and the other
20% is kept aside for the model test to see how well we
can predict the data.

Table 1: Features used in proposed mechanism.

Feature Description

flow_duration
(nsec)

The duration of flow remaining in the
switch flow table in nanoseconds

ip_proto The flow protocol

srcport Source port

dstport Destination port

byte_count Total flow bytes

packet_count Total flow packets

byte_s Number of flow bytes per second

pkt/s Number of flow packets per second

We performed cross validation with k = 5 to make
sure there is no bias in performance estimation to prevent
an imbalanced occurrence where the minority class is
significantly underrepresented compared to the majority
class. The fundamental principle of cross-validation is to
divide the dataset into several folds, or subsets, and train
and test the model repeatedly on various combinations of
these folds.

D. Practical implementation

The proposed work is implemented using Python
programming language. Mininet version 2.3.1, beta 4,
network simulator designated for SDN education and
research was utilized to implement and evaluate the
suggested technique. . Mininet was installed on a virtual
machine, Ubuntu 20.04, with 12 GB of RAM and 4 CPU
cores. The Ryu controller is used as the SDN controller in
testbed for managing compliant switches. It operated with
Layer four (L4) learning capabilities to forward flow
traffic based on matching of MAC, IP, protocol, and
service’s port. Scikit-learn, an open-source library used in
our work to implement machine learning. On the host
side, to deceive the attacker, we used Honeyed as a low
interaction honeypot. During the experiment, we
generated probe traffic using the NMAP tool and for
normal traffic generation iperf and D-ITG tools had been

used. Moreover, we performed some real tasks such as
browsing the internet, watching YouTube, using emails,
downloading and uploading files, and SSHing different
mininet hosts to generate realistic traffic.

Figure 4. Data Preprocessing Steps

4. FINDINGS AND DISCUSSION

The performance of the suggested mechanism is
evaluated using the evaluation metrics covered in depth in
this section, which is then followed by a detailed
presentation of the findings and outcomes. For evaluation,
seven popular ML models adopted to determine the best
model, including DT, RF, NB, AdaBoost, LightGBM, and
KNN classifiers. By employing this diverse set of models,
we intended to select the one that best fits the
characteristics of our data and the requirements of the
mechanism. The equations in Table 2 show the metrics
used to evaluate the proposed mechanism in terms of
accuracy, recall, precision, and F-measure, respectively.

Table 2: Evaluation Metrics Description

Accuracy Precision Recall F1 Score

Percentage of True

classified flow in relation

to all classified flows

Percentage of malicious

flows identified

correctly in relation to

all flows classified as

attacks

Percentage of

correctly classified

malicious flows

versus all malicious

flows presented in the

dataset

The harmonic mean

between Precision and

Recall

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where TP, FN, TN, and FP stand for true positives,
false negatives, and false positives, respectively. As
depicted in [4], the majority of scholar articles used other
metrics such as F1-score, precision, and recall because the
average model's performance tends to favor the majority
classes' performance, it is impossible to fairly assess
classification performance under the imbalanced dataset
using only the accuracy rate. A confusion matrix was

Dataset

Data Cleaning (Drop Null and duplicate
values)

Normalize Data (Scale range between 0
and1)

Feature Selection (Drop attributes leads
to overfitting)

Class Imbalance (Prevent model bias to
ward majority class using Cross
Validation)

7

8 Author Name: Paper Title …

http://journals.uob.edu.bh

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

utilized for each classifier in order to precisely assess the
suggested mechanism and compute these performance
indicators; the outcomes are displayed in Table 3. Among
the ML models used, their results were very good except
for NB since they are commonly used for text
classification tasks. The XGBoost model achieves the best
result in terms of accuracy 94.73% as well as precision,
recall, and f1-score.

Table 3: Precision, Recall and F1 Score of Models Evaluation

Classifier Accuracy Precision Recall F1-score

DT 0.9390 0.9449 0.9378 0.9397

RF 0.9400 0.9457 0.9392 0.9410

NB 0.8449 0.8830 0.8356 0.8374

AdaBoost 0.9196 0.9260 0.9203 0.9218

XGBoost 0.9473 0.9544 0.9458 0.9480

LightGBM 0.9459 0.9532 0.9445 0.9467

KNN 0.9128 0.9170 0.9126 0.9139

Moreover, the author in [15] highlights the importance

of the Area Under Curve (AUC) metric for imbalanced
dataset classification. The AUC of the XGBoost classifier
obtained good results of about 0.98%, as seen in Figure 5.
The confusion matrix of the XGBoost classifier in Figure
6, shows that our detection mechanism successfully
recognizes probe attacks, but the ratio of normal traffic
recognized as probe attacks (false positive) needs more
consideration.

Figure 5: XGBoost AUC ROC Curve.

We conducted another experiment with a larger
topology of tree with depth 4 and fanout 2, as shown in
Figure 7, to support the hypothesis we previously
highlighted in this article, which states that continuous
traffic checking through statistics requests and reply
messages by detection applications will lead to an

increase in controller workload. This topology aims to
increase the number of switches and hosts in the network,
which will increase the number of flow rules in each
switch. In this stage, normal traffic originated from each
host to another, creating huge traffic.

Figure 6: XGBoost Confusion Matrix

Four separate scenarios were employed in order to
assess the controller CPU load, as seen in Figure 8.
Several traffic checking intervals, such as 1, 5, and 10
seconds, were chosen for the first three scenarios of
statistics request message sending. In the final scenario,
honeypot triggering solutions are employed in place of
periodic checking when necessary. Only normal traffic
transmitted for all scenarios, and when controllers check
the traffic for each second, controller overhead was quite
high 33%. Controller overhead significantly decreased
when the interval extended to every 10 seconds, but
attackers in this case will have plenty of time to
compromise the network. However, since the detecting
mechanism is in sleep mode and would activate anytime
there is an alarm, our idea of applying a triggering
mechanism successfully lowered CPU demand to 2.1%.

Figure 7: Tree Topology (Depth 4, Fanout 2)

S1

S2

S10 S3 S6

S4 S5 S7 S8 S11 S12 S14 S15

S13

S9

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

Figure 8: Ryu Controller CPU Utilization

5. CONCLUSION

Due to the growing threat of cyberattacks in SDN
environments and the lack of built-in security
mechanisms, this model finds it difficult to replace
traditional network architecture. One important attack that
is neglected by the research community is the probe
attack. Probe attacks are considered the first phase of
other serious attacks such as DoS, botnets, MitM, Brute
force, etc. to exploit vulnerabilities in the network. The
issue with this attack is that it is hard to detect since it
works passively without being noticed. Machine learning
and deep learning are widely used in current works for
detection techniques because of their ability to detect
novel attacks, contrary to classical methods of using
independent agents in networks, which depend on fixed
thresholds or attack signatures. In this work, we propose a
novel online lightweight detection mechanism empowered
by machine learning models. Our approach leverages the
dynamic nature of SDN to embed honeypots within the
network infrastructure. These honeypots in the network
host serve a dual purpose: they lure potential attackers by
presenting fake services, and they act as triggers for our
detection mechanism in the SDN controller when any
traffic contacts them. Machine learning models need a
good dataset to provide accurate detection in real-time.
Therefore, we collected a new dataset specific to probe
attacks in SDN environments. Contrary to other datasets,
which are, either outdated, incompatible with SDN, or
whose features cannot be easily obtained, our dataset
features were collected through OpenFlow statistics
messages that can be easily collected in an SDN
environment. Through extensive experimentation, we
have demonstrated the efficacy of our proposed system.
Notably, our detection mechanism achieves an
exceptional level of accuracy, while imposing minimal
stress on the SDN controller's CPU. These results
underscore the practical viability and effectiveness of our
approach in strengthening SDN security against evolving
cyber threats.

REFERENCES

[1] A. Alshamrani, “Reconnaissance Attack in SDN based
Environments,” Institute of Electrical and Electronics Engineers

(IEEE), Oct. 2020, pp. 1–5. doi: 10.1109/ict49546.2020.9239510.

[2] M. S. El Sayed, N. A. Le-Khac, M. A. Azer, and A. D. Jurcut, “A
Flow-Based Anomaly Detection Approach With Feature Selection

Method Against DDoS Attacks in SDNs,” IEEE Trans Cogn

Commun Netw, vol. 8, no. 4, pp. 1862–1880, Dec. 2022, doi:
10.1109/TCCN.2022.3186331.

[3] A. S. Alshra’A, A. Farhat, and J. Seitz, “Deep Learning

Algorithms for Detecting Denial of Service Attacks in Software-
Defined Networks,” in Procedia Computer Science, Elsevier B.V.,

2021, pp. 254–263. doi: 10.1016/j.procs.2021.07.032.
[4] H. Yousif, I. Khalid, N. Badie, and I. Aldabagh, “A Survey on the

Latest Intrusion Detection Datasets for Software Defined

Networking Environments,” Technology & Applied Science
Research, vol. 14, no. 2, pp. 13190–13200, 2024, doi:

10.48084/etasr.6756.

[5] M. S. Towhid and N. Shahriar, “Early Detection of Intrusion in
SDN,” in Proceedings of IEEE/IFIP Network Operations and

Management Symposium 2023, NOMS 2023, Institute of Electrical

and Electronics Engineers Inc., 2023. doi:
10.1109/NOMS56928.2023.10154272.

[6] A. Almazyad, L. Halman, and A. Alsaeed, “Probe Attack

Detection Using an Improved Intrusion Detection System,”
Computers, Materials and Continua, vol. 74, no. 3, pp. 479–4784,

2023, doi: 10.32604/cmc.2023.033382.

[7] A. Althobiti, R. Almohayawi, and O. Bamsag, “Machine learning
approach to secure software defined network: Machine learning

and artificial intelligence,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Nov.
2020. doi: 10.1145/3440749.3442597.

[8] A. Abubakar and B. Pranggono, “Machine learning based

intrusion detection system for software defined networks,” in
2017 Seventh International Conference on Emerging Security

Technologies (EST), 2017, pp. 138–143. doi:

10.1109/EST.2017.8090413.
[9] K. B. V., N. D. G., and P. S. Hiremath, “Detection of DDoS

Attacks in Software Defined Networks,” in 2018 3rd International

Conference on Computational Systems and Information
Technology for Sustainable Solutions (CSITSS), 2018, pp. 265–

270. doi: 10.1109/CSITSS.2018.8768551.

[10] M. W. Nadeem, H. G. Goh, V. Ponnusamy, and Y. Aun, “Ddos
detection in sdn usingmachine learning techniques,” Computers,

Materials and Continua, vol. 71, no. 1, pp. 771–789, 2022, doi:

10.32604/cmc.2022.021669.
[11] J. Wang and L. Wang, “SDN-Defend: A Lightweight Online

Attack Detection and Mitigation System for DDoS Attacks in

SDN,” Sensors, vol. 22, no. 21, Nov. 2022, doi:
10.3390/s22218287.

[12] V. Hnamte and J. Hussain, “An efficient DDoS attack detection

mechanism in SDN environment,” International Journal of
Information Technology (Singapore), vol. 15, no. 5, pp. 2623–

2636, Jun. 2023, doi: 10.1007/s41870-023-01332-5.

[13] S. Wang et al., “Detecting flooding DDoS attacks in software
defined networks using supervised learning techniques,”

Engineering Science and Technology, an International Journal,

vol. 35, Nov. 2022, doi: 10.1016/j.jestch.2022.101176.
[14] H. Y. Ibrahim, P. M. Ismael, A. A. Albabawat, and A. B. Al-

Khalil, “A Secure Mechanism to Prevent ARP Spoofing and ARP

Broadcasting in SDN,” in 2020 International Conference on
Computer Science and Software Engineering (CSASE), 2020, pp.

13–19. doi: 10.1109/CSASE48920.2020.9142092.
[15] Q.-V. Dang, “Intrusion Detection in Software-Defined Networks,”

in Future Data and Security Engineering, J. and C. T. M. and T.

M. Dang Tran Khanh and Küng, Ed., Cham: Springer
International Publishing, 2021, pp. 356–371.

33.35

9.12

4.93
2.15

0

5

10

15

20

25

30

35

40

Every 1

second

Every 5

seconds

Every 10

seconds

Depend on

Honeyd

Trigger

C
P

U
 %

Flow Statistics Collection Interval

9

10 Author Name: Paper Title …

http://journals.uob.edu.bh

[16] A. Mzibri, R. Benaini, and M. Ben Mamoun, “Case Study

on the Performance of ML-Based Network Intrusion Detection

Systems in SDN,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Springer Science and Business

Media Deutschland GmbH, 2023, pp. 90–95. doi: 10.1007/978-3-
031-37765-5_7.

[17] N. Mazhar, R. Salleh, M. A. Hossain, and M. Zeeshan, “SDN

based Intrusion Detection and Prevention Systems using
Manufacturer Usage Description: A Survey,” 2020. [Online].

Available: www.ijacsa.thesai.org

[18] M. Said Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut,
“Network Anomaly Detection Using LSTM Based Autoencoder,”

in Q2SWinet 2020 - Proceedings of the 16th ACM Symposium on

QoS and Security for Wireless and Mobile Networks, Association
for Computing Machinery, Inc, Nov. 2020, pp. 37–45. doi:

10.1145/3416013.3426457.

[19] M. S. ElSayed, N. A. Le-Khac, M. A. Albahar, and A. Jurcut, “A
novel hybrid model for intrusion detection systems in SDNs based

on CNN and a new regularization technique,” Journal of Network

and Computer Applications, vol. 191, Oct. 2021, doi:
10.1016/j.jnca.2021.103160.

[20] H. M. Chuang, F. Liu, and C. H. Tsai, “Early Detection of

Abnormal Attacks in Software-Defined Networking Using
Machine Learning Approaches,” Symmetry (Basel), vol. 14, no. 6,

Jun. 2022, doi: 10.3390/sym14061178.

[21] E. M. Zeleke, H. M. Melaku, and F. G. Mengistu, “Efficient
Intrusion Detection System for SDN Orchestrated Internet of

Things,” Journal of Computer Networks and Communications,

vol. 2021, 2021, doi: 10.1155/2021/5593214.
[22] M. S. Elsayed, N. A. Le-Khac, and A. D. Jurcut, “InSDN: A novel

SDN intrusion dataset,” IEEE Access, vol. 8, pp. 165263–165284,

2020, doi: 10.1109/ACCESS.2020.3022633.

[23] N. Abbas, Y. Nasser, M. Shehab, and S. Sharafeddine, “Attack-

Specific Feature Selection for Anomaly Detection in Software-

Defined Networks,” in 2021 3rd IEEE Middle East and North
Africa COMMunications Conference, MENACOMM 2021,

Institute of Electrical and Electronics Engineers Inc., 2021, pp.
142–146. doi: 10.1109/MENACOMM50742.2021.9678279.

[24] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M.

Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature
Analysis With Information Gain for Anomaly Detection,” IEEE

Access, vol. 8, pp. 132911–132921, 2020, doi:

10.1109/ACCESS.2020.3009843.
[25] D. Kreutz, F. M. V Ramos, P. E. Veríssimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, “Software-Defined Networking: A

Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no.
1, pp. 14–76, 2015, doi: 10.1109/JPROC.2014.2371999.

[26] H. KHALID, P. ISMAEL, and A. AL-KHALIL, “EFFICIENT

MECHANISM FOR SECURING SOFTWARE DEFINED

NETWORK AGAINST ARP SPOOFING ATTACK,” The

Journal of the University of Duhok, vol. 22, no. 1, pp. 124–131,

Nov. 2019, doi: 10.26682/sjuod.2019.22.1.14.
[27] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and M.

Ghogho, “Intrusion detection in sdn-based networks: Deep

recurrent neural network approach,” in Advanced Sciences and
Technologies for Security Applications, Springer, 2019, pp. 175–

195. doi: 10.1007/978-3-030-13057-2_8.

[28] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.
Ghogho, “Deep learning approach for Network Intrusion

Detection in Software Defined Networking,” in 2016

International Conference on Wireless Networks and Mobile
Communications (WINCOM), 2016, pp. 258–263. doi:

10.1109/WINCOM.2016.7777224.

10

