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Abstract: Cyberattacks are becoming more frequent and sophisticated, making their detection harder. Probe attacks in Software 

Defined Networking (SDN) not given much attention by the research community, which represents the starting phase for other 

attacks.  The attacker scans the network to get the necessary details about hosts and services running in network to launch successful 

attacks exploiting vulnerabilities in the system. The issue with probe attacks is that they occur passively and the target system is not 

aware of them. On one hand, additional mechanism is required to check the network traffic continuously by embedding switches with 

independent agents, which is against the OpenFlow standard. On the other hand, using statistics provided by OpenFlow switches to 

the controller, which overloads the controller with the extra task of continuously checking traffic statistics. In this work, a lightweight 

detection mechanism proposed that detects probe attacks in real-time using machine learning. Honeypot integrated into the detection 

mechanism to detect passive probe attacks by luring attackers through proving fake services and serving as a trigger mechanism that 

activates the detection mechanism when necessary. The experimental results show that the proposed mechanism successfully detects 

probe attacks in real-time achieving accuracy (94.73%) with the minimum CPU load. 

 

Keywords: Intrusion Detection System (IDS), Software Defined Networking (SDN), Probe, Reconnaissance, Honeypot, Machine 

learning (ML).  

1. INTRODUCTION 

Probe attacks are often considered a preliminary step 
in various cyberattacks, particularly in the context of 
network reconnaissance. Network reconnaissance is the 
first phase of the cyber kill chain, which involves 
gathering information about a target system or network to 
identify vulnerabilities and potential entry points for 
further exploitation [1]. Probe attacks involve port 
scanning, ping sweeps, network mapping, etc. to discover 
active hosts, open ports, services, the type of operating 
system of the target host, etc. Since such information 
could be useful during attack planning to exploit 
vulnerabilities associated with a specific OS or understand 
how different systems are connected. After obtaining the 
necessary information, attackers may perform 
vulnerability scanning to find specific weaknesses or 
vulnerabilities in the target systems and identify potential 
entry points and weaknesses in the target's network. After 
the initial reconnaissance phase is complete, attackers 
may proceed with more targeted and specific attacks 

based on the information gathered, such as denial of 
service (DoS), man-in-the-middle (MitM), brute force, 
etc. 

The issue with probe attacks is that they operate in 
passive mode and are very hard to detect. Several methods 
are used by the research community to detect probe 
attacks, such as deploying Snort Intrusion Detection 
System (IDS), which continuously monitors the network 
traffic to detect malicious traffic. However, Snort is not 
effective to deal with today’s attacks because they are 
signature-based, and any simple deviation in the attack 
signature could easily be bypassed by the attacker [2][3]. 
Moreover, embedding an OpenFlow switch with 
additional duties is against the OpenFlow protocol since it 
clearly states that the switch must be as simple as possible 
and perform only packet forwarding.  

SDN’s features, such as having full control and view 
over the whole network as well as programmability, open 
the door for the deployment of various security 
applications through the existing open API. Some 
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researchers exploit the power of SDN controllers to 
deploy artificial intelligence (AI)-based IDS to detect 
various types of attacks. AI-based IDS methods require 
features extraction from networks to check current flows, 
whether they are malicious or normal. The OpenFlow 
protocol provides a method to gather various statistics 
details from switches through OpenFlow statistics 
message requests and replies. The controller initiates the 
request message to all switches, and the switches provide 
the required details for the controller. AI-based IDS take 
advantage of those details for feature extraction to detect 
malicious flow. However, periodic inquiries about those 
features and corresponding replies lead to huge problems 
for the controller.  

This work is extended from a survey [4], where a deep 

investigation was conducted on the works performed by 

other researchers regarding the deployment of AI-based 

IDS in SDN environments; some open issues and 

challenges were highlighted. The survey shows that, due 

to the difficulty of traffic feature extractions and mapping 

them to the features in the dataset they used, almost all 

previous studies on deploying IDS neglected real-time 

attack detection in SDN. They have primarily 

concentrated on obtaining high accuracy through the 

utilization of novel machine learning (ML) and deep 

learning algorithms (DL), or by employing feature 

selection methods during offline training. There was no 

clear implementation of real-time detection work, and the 

accuracy of the literature did not reflect reality, as it did 

not run in real-time. In addition, the survey showed that 

most of the current work only paid attention to DDoS 

attacks, neglecting other attacks since the nature of the 

centralized controller of SDN makes them an attractive 

target for DDoS attacks. Moreover, majority of works 

deployed IDS, checks the network for malicious traffic on 

a fixed time interval. A longer time interval may make it 

more difficult to identify the attack in the early stages and 

may even give the attacker more time to cause more 

serious damage to the network [2]. While if interval is 

very short, it has many consequences, such as increasing 

the controller’s CPU load, especially in large-scale 

networks [5]. 
In this work, we aim to solve the mentioned open 

issues, and we propose a lightweight machine learning 
mechanism to detect passive attacks such as probe attacks 
in an SDN environment using features provided by 
OpenFlow switches. The mechanism comprises of a 
triggering module based on honeypots and detection and 
mitigation modules. The following is a summary of this 
work's primary contributions: 

• Early detection and prevention of attacks since we 
consider probe attacks, which regarded as the initial 
stage of nearly all other kinds of attacks, including 
DDoS, botnet, MitM, , etc. In other words, we break 

the first phase of the attack kill chain before gaining 
control of the target system. 

• To identify passive attacks, we proposed a 
lightweight mechanism by exploiting the honeypot’s 
capability, which acts as a trap by luring attackers by 
providing fake services. 

• We used the honeypot as an alerting mechanism to 
minimize the CPU overhead of the SDN controller in 
a large-scale network by triggering the detection 
module when needed instead of continuously 
checking the traffic. Moreover, the honeypot 
contributes to filtering the flow of traffic by 
providing additional useful details about the attacker. 

• We conducted a simulation scenario to verify the 

proposed mechanism in real-time, considering attack 

detection in its early stage as well as attack 

mitigation. 

 

2. RELATED WORK 

The novel SDN architecture allows the research 
community to take advantage of its features of 
programmability, flexibility, and ease of deployment. 
Implementing a security application, which resides in the 
controller, exploits the power of ML and DL to detect 
malicious traffic in a network. This section briefly 
introduces some recent and popular approaches that have 
been suggested for attack detection in an SDN 
environment using AI capabilities. 

The Grey Wolf Optimization (GWO) algorithm for 
feature selection was implemented in [6]  to improve the 
performance of IDS to detect probe attacks more 
accurately. They discussed the benefit of feature selection 
to the overall detection model. They highlighted that 
feature selection is essential to minimize the computation 
time, which will make the classifier have high accuracy 
with optimal features selected as well as decrease the 
dataset size for testing and training. Moreover, for real-
time detection, it is easier to extract fewer features, thus 
decreasing the detection time. They showed that by 
selecting a subset of 8 features from the InSDN dataset 
using the Light Gradient Boosting Machine (LightGBM) 
classifier, accuracy increased to 99.8%, while using all 
features was 77.3%. However, their topology was the 
same as that of the creator of the dataset, and they did not 
perform real-time detection. 

In another direction, some studies have developed 
hybrid IDS that merge flow-based IDS with signature-
based IDS to provide a more robust detection mechanism. 
The author in [7] implemented two approaches for 
detecting DDoS attacks in SDN. First, they use signature-
based Snort IDS alongside with SDN to analyze the 
network for checking malicious traffic. Second, 
implementing a machine learning Support Vector 
Machine (SVM) model trained with the NLS_KDD 
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dataset to detect unknown attacks. The motive behind 
using both methods is that the unknown attacks are 
detectable by machine learning, and their signatures will 
be stored in the Snort database to make Snort able to 
detect them next time they occur again. The drawback of 
this method is that they implemented Snort as an 
independent hardware module connected to a switch, 
which requires additional resources and whose 
performance degrades when the network is larger.  

In the same context, the author in [8] used Snort IDS, 
which connects to an Open vSwitch and monitors the 
network through port mirroring. They also provide flow-
based IDS in controller to overcome the shortcoming of 
Snort being unable to detect novel attacks. The OpenFlow 
statistics message was used to extract features for machine 
learning over a certain time interval. They selected seven 
features that can be easily obtained by SDN nature. 
However, using a combination of both Snort and machine 
learning leads to issues in large networks and creates a 
load.   

The detection of DDoS attacks in SDN environments 
has been covered in [9]. The author proposed two lines of 
security. First, they used Snort to detect known attacks in 
signature-based databases. The second defense line was 
using ML and DL to detect anomaly-based attacks. They 
used SVM and Deep Neural Network (DNN) models, 
which trained on the NLS_KDD dataset, and the accuracy 
was 74.3% and 92.3%, respectively. Snort used in this 
work for detecting known attacks in signature databases 
and as a data collector for ML and DL models. However, 
they periodically monitor the network for anomalies, 
which makes their detection mechanism active even when 
there is no traffic overload on the controller. 

In [10], a comparative analysis of different feature 
selection algorithms for detecting DDoS attacks based on 
various machine learning models is presented. The 
experiment was conducted using feature selection 
algorithms such as Information Gain (IG), Correlation 
Coefficient, Chi-square, Forward Feature Selection (FFS), 
Backward Feature Selection (BFS) and Recursive Feature 
Elimination (RFE). Machine learning classifiers such as 
SVM, Decision Tree (DT), Random Forest (RF), Naïve 
Bayes (NB), and K-Nearest Neighbor (KNN) used for 
binary classification. The optimal model was RF with an 
accuracy of 99.97% using a feature subset of 28 selected 
by the RFE. They mentioned that the detection model 
used OpenFlow statistics messages to get 41 features of 
NSL-KDD. However, it is very difficult to get those 
numbers in real time, as highlighted before.  

In [11], an attack detection and mitigation module was 
proposed using a hybrid model of Convolutional Neural 
Network (CNN) and Extreme Learning Machine (CNN-
ELM) to classify DDoS attacks in an SDN environment. 
Their model found DDoS attacks by using information 
taken from the SDN environment. This information came 
from both packet-in messages sent to the controller and 

statistics messages sent to the controller by OpenFlow 
switches. The extracted features from the OpenFlow 
switch were mapped to a subset of 12 features in the 
InSDN dataset. In addition, they constructed four 
additional features, such as average speed flow, average 
duration, average packet size, and ratio asymmetric flow. 
Through the experiments conducted, they showed that 
using a subset of 12 features not only increased accuracy 
but also reduced test time. However, this methodology 
creates overhead in the controller since every packet-in 
message should be checked, which will not be effective 
during a DDoS attack. Moreover, there was no clear 
description of how features would be extracted from 
packet-in, and their methodology was not verified. 
Moreover, the manually created four features were not 
verified either.  

Similarly, the authors in [12] proposed the Deep 
Convolutional Neural Network (DCNN) to detect DDoS 
in SDN. They suggest similar detection and mitigation 
mechanisms to previous work. Except that they used only 
the features provided by the flow table through OpenFlow 
statistics messages, and those messages periodically sent 
to the controller for anomaly detection. They mentioned 
that they only used 12 features of InSDN mapped to 
extracted information from the OpenFlow switch. They 
argue that the existing system suffers from using a large 
number of features for machine learning or deep learning 
and needs more functions to extract them, which creates 
network congestion and latency. While using a small and 
limited number of features does not provide reliable attack 
detection.  However, in practical implementation, they 
used 78 features for training, not only 12. It is difficult to 
map the basic features provided by OpenFlow switches to 
the 78 features of the InSDN dataset. Moreover, their 
methodology, which requires every packet-in message to 
be checked by the controller as well as periodically 
requesting statistics from the switch, creates overhead in 
the controller. Similar to previous work, there was no 
clear description of how features would be extracted from 
packet-in, and they were not verified.  

A work in [13] proposed a lightweight supervised 
learning model to detect DDoS attacks against SDN 
controllers using only one feature of fluctuation of flows, 
which is the count of packet-in messages to the controller 
in a fixed time slice and for many consecutive times to 
avoid the behavior of a normal burst. They created their 
own dataset for the proposed system, but for testing and 
training their model, they used the InSDN dataset. The 
idea behind using only one feature is that it will be easier 
to obtain as well as consume less time and resources for 
training and real time prediction. They used multiple 
machine learning models with seven selected features of 
InSDN, which were flow-ID, protocol, timestamp, flow-
pkt/s, bwd-pkt/s, pkt-len-mean, init-bwd, and win-byts. 
The conducted experiments show Binary Tree (BT) and 
KNN were the best in terms of accuracy, while in terms of 
both accuracy and training time, CPU utilization, and 
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decision time, KNN was the optimal. They tested the 
proposed work using their own dataset and obtained an 
accuracy of 99.4% with BT using one feature. The author 
argues that using many features will lead to either higher 
performance or overfitting for some models. However, 
they did not mention the methodology of feature 
selection, and some of the selected features were 
irrelevant, such as flow-ID and timestamps, which can 
affect the learning process during model training. 
Moreover, continuous checking of the count of packet-in 
created load on the controller as well as the methodology 
of time slice create delay in decision time. Finally, the 
method of considering only one attribute for training the 
intrusion system is not a promising solution. 

In summary, the majority of the existing work in the 
literature targets DDoS attack detection only, neglecting 
other attacks. The focus of the previous works was on the 
analyzing of the proposed models to achieve high 
accuracy or implementing some studies on feature 
selection algorithms, and there was no clear description of 
real-time detection. Moreover, some works monitor 
packet-in messages as well as statistics message to 
construct their features, but none of them considers the 
overload that created on controller when periodically 
checks the network traffic or extract traffic features. In 
this work, we consider probe attack, which considered as 
first step of other attacks and extract limited number of 
features through statistics provided by OpenFlow switches 
to ensure the fast and lightweight detection mechanism. 
We consider the tradeoff between high accuracy and low 
controller overhead by using triggering mechanism for 
checking malicious traffic when needed instead of 
periodically manner. We implemented our own dataset, 
which contains features dimensions that easily obtained 
from OpenFlow switches and evaluated the efficiency of 
dataset using many common supervised learning 
algorithms such as DT, RF, Adaptive Boosting 
(AdaBoost), NB, XGBoost and KNN. 

3. THE PROPOSED DETECTION MECHANISM 

In this section, we describe the methodological stages 
followed to build the proposed probe detection 
mechanism. The SDN features make SDN operation 
easier and offer a number of benefits [14]. This motivates 
the deployment of light, effective, and attack detection in 
real-time. Our proposed SDN defense system distributed 
on two sides, as shown in Figure 1. On the controller side, 
where the detection and mitigation modules reside, as 
well as on the host side, where honeypot resides as a trap 
to lure attackers and notify the controller when possible 
malicious traffic is detected. Honeypot is a deception 
mechanism used to lure attackers by providing fake 
services. Any contact with the honeypot considered as a 
possible attack. This contact will trigger the detection 
module in the controller to start checking the current 
flows in the network instead of continuously checking the 
network periodically. In addition, the honeypot 

programmed to send some useful details to the controller 
with a triggered message about the attacker traffic to filter 
out the possible malicious flows and reduce the load on 
the CPU. 

 

Figure 1.  Defense system modules diagram. 

 
Machine learning techniques have recently dominated 

IDS research because they produce more accurate 
predictions than other techniques [15]. Machine learning 
models can overcome the drawbacks of other methods by 
classifying abnormal traffic as an anomaly with self-
learning capabilities [16]. ML has been deployed in a 
wide area, from medical analysis and image processing to 
data mining. The concept of machine learning is to make 
machines learn automatically from the given training data 
without human intervention [17]. However, machine 
learning required input values to feed to create prediction 
output based on those inputs. These inputs should be 
extracted from the live attributes of traffic flow to 
accurately detect malicious traffic. SDN controllers' 
beneficious features, such as power and storage provided, 
open programmability, global visibility and control, and 
statistics features provided by the OpenFlow switch, make 
them suitable locations for implementing machine 
learning intrusion detection and mitigation applications. 
Due to the availability of those features, in proposed 
work, machine learning models are implemented in the 
controller for classification.  

As shown in Figure 2, the detection and mitigation 
applications are inactive in the controller, waiting to be 
triggered to check traffic flow when necessary. Honeypot 
is actively providing some fake services to lure attackers 
along with real services on the network. The defense 
mechanism can be described in pseudocode in Figure 3. 
When the attacker first initiates a probe attack to check for 
active hosts and services in the network, the honeypot is 
configured to register all events on a dedicated log file for 
every connection attempt to the services they provide. In 

Defense System

Host Side

Honeypot System

Triggering 
Mechanism

Controller Side

Detection Module

Flow statistic 
Collection

Traffic 
Classification 

Mitigation 
Module

Blocking 
mechanism

4



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        5 

 

 
http://journals.uob.edu.bh 

 

general, the log file used for analyzing the attacker's 
movements and steps during the attack.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The framework of the proposed mechanism. 

 

 

Figure 3. Defense System Pseudocode 

However, in this work, we utilize the honeypot to be 
exploited as a triggering mechanism to alert for possible 
attacks. Once the log file registers an event, a special 
Python script monitors the log file and extracts the IP of 
the attacker, the protocol of flow, and the port used by the 
attacker. Later, the mechanism constructs a special 
packet-in  message  to be sent by the OpenFlow switch to 
the controller with a special ethertype field code ‘0x88FF’ 
to be recognized by the controller as a trigger message. In 
the next step, once the controller receives the trigger 
message, it will forward it to the detection and mitigation 
application. The application creates a flow statistics 
request message to be forwarded to the switch, which is 
connected directly to the host where honeypot exists 

through the switch ID provided by the packet-in trigger 
message. After receiving the reply messages from the 
switch, which contain flow entry statistics, they are 
filtered by other details provided by Honeypot, such as IP, 
port, and protocol. Then the necessary features extracted 
from the filtered flows and fed to the ML module for 
testing. Once the malicious flow detected, the attacker 
domain located and controller initiated packet-out 
message to block the attacker's source port.  

A. Dataset Preparation 

Using a high-quality dataset for training AI-based IDS 
has a great impact on the accuracy of the predictions made 
by the model. Comparing to other domains, such as 
computer vision, there are limited datasets for intrusion 
detection in general and for probe attacks specifically due 
to privacy and legal issues [18] [2]. In the past few 
decades, academics have used a number of well-known 
public datasets, including the KDD Cup, NSL KDD, 
UNSW-NB15, and CICIDS2017 databases.  Since SDN is 
a new paradigm, comparing to traditional networks, there 
are less research studies that address the intrusion 
detection problem in SDN. According to the authors of 
[15][19][20], most published research work deals with the 
intrusion detection in SDN similar to that of a 
conventional network.   

Scholars employed classical network datasets, like 
KDD Cup and NSL-KDD, as training datasets for 
anomaly detection in SDN contexts. Training the SDN-
based IDSs using old datasets can cause significant issues, 
as they only detect attacks, which have similar behavior in 
both SDN and traditional networks. Because intrusion 
attack tactics are always evolving, they are getting more 
complex and difficult to spot [19]. However, these 
datasets are either unreliable and outdated since they were 
released a long time ago [15] [21], or they suffer from 
compatibility issues since they were collected during the 
traditional networks and the SDN architecture are 
different. Therefore, they are not efficient to use for real-
time detection [21]. 

The InSDN dataset [22] published as an SDN specific 
dataset in 2020 for the purpose of assessing and training 
IDS within SDN environments.  The work in [4] 
conducted regarding this dataset reveals that applying this 
dataset for IDS deployment in SDN research work has 
mostly focused on achieving high accuracy by using new 
ML and DL algorithms or by using feature selection 
techniques in offline training.  There was no clear 
implementation of real-time detection work, and the 
accuracy of the literature did not reflect reality, as it did 
not run in real-time. The reason behind that is the 
difficulty in obtaining the required features from the 
traffic flow to map to the features of the dataset. 

In this work, we focus on a binary classification for 
detecting probe attacks and do not delve further into 
classifying the various types of attacks. In this work, we 
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created our own dataset specific for training and 
evaluating the proposed IDS for detecting probe attacks in 
the SDN context. The dataset contains 282128 instances 
in total, with sample sizes of 126685 (45%) for the normal 
class and 155443 (55%) for the probe class, respectively. . 
The probe traffic collected by initiating a live host scan, 
port scan, version scan, service scan, OS detection, etc. 
For normal traffic, we replicated the proper random inter-
departure time and packet size by creating traffic at the 
packet level as well as multiple sessions of parallel, 
sequential, and bidirectional streams. Numerous widely 
used application services, including HTTPS, HTTP, FTP, 
SFTP, Telnet, DNS, VoIP, and others, represented in the 
normal traffic.  All hosts connected to the internet and 
ordinary daily tasks executed by executing several 
applications, such as browsing different websites, 
watching YouTube videos, opening and sending emails, 
to mimic real Internet traffic. 

 

B. Feature extraction 

Deploying AI-based IDS requires features from real-
time traffic to feed the classifier model for decision 
making in real-time. The first task of the IDS is to collect 
traffic statistics and related information about flows. 
Many studies have implemented ML and DL models in 
SDN, but the source of data to provide features to perform 
real-time detection is not a straightforward process. Either 
they had to use methods used in traditional networks by 
using dedicated tools in the forwarding plane acting as 
sensors like Snort and sFlow agent, which degrade 
performance, or using features provided by SDN. 
Nowadays, networks are faster due to the requirements of 
applications and advances in technology. The intrusion 
detection mechanisms need to consider their performance 
in terms of detection time. The demand for lightweight 
IDS is a hot topic in academia nowadays. The trade-off 
between model accuracy and execution must be addressed 
carefully. Choosing the best features is essential to 
improving SDN-based IDS efficiency. 

Having a large dataset with a huge number of features 
will delay training, testing, and model detection. In 
addition, using a high-dimensional dataset may not 
necessarily lead to higher accuracy due to overfitting and 
redundant features [23]. Reducing the number of features 
or selecting relevant features in general will lead to a 
decrease in model training, testing, and detection time, as 
well as model complexity, since real-time feature 
extraction is not an easy process [2] [23]. Moreover, 
feature selection reducing high dimensionality reduces the 
likelihood of overfitting issues in the model [2]. In order 
to obtain excellent model performance utilizing ML and 
DL, many researchers have turned their attention to the 
removal of noisy, duplicate, and useless features [2] [24] 
[25].  

In the SDN framework, there is some point of feature 
extraction that can be beneficial for feeding the model 
such as: 

1. Controller packet-in messages: Upon receiving the 
initial packet of a particular flow, the OpenFlow 
switch will examine the packet header and determine 
whether any flow rules exist in one of its flow tables 
that correspond with the flow in question [26]. There 
is an action connected to every flow rule. The traffic 
flow will be redirected to the appropriate destination 
if a match is identified. When there is no match and a 
miss table appears, the switch uses the packet-in 
message to convey the packet to the controller, who 
processes it and determines what to do with it. Some 
researchers used packet-in behavior to construct some 
useful features that successfully detect DDoS attacks, 
as in [11] [12] [13] [27]. 

2. OpenFlow statistical messages: Basic information 
about the flows could be obtained by parsing the 
OFP_stats_reply messages of an SDN network [21]. 
These messages were sent to the controller in 
response to OFP_stats_request by the controller. 
Usually, this happens periodically, depending on the 
specific event triggered. This process does not require 
additional effort because it is provided by the 
controller according to the OpenFlow specification. 

3. Using independent agents: using other methods used 
for capturing network traffic, like in [27], which 
combined an OpenFlow switch and sFlow for 
effective anomaly detection in an SDN environment 
[28]. In addition, others in [9]  have used Snort as a 
data collector. 

In our mechanism, we used the OpenFlow statistical 
messages method to obtain the required features since 
they are easily obtained in an SDN environment and do 
not require an additional agent extended to the data plane 
switch following the OpenFlow protocol specification. 
The features extracted are shown in Table 1. 

 

C. Preprocessing stage 

An essential step in preparing the input data for the 
model's training in order to create an accurate detection 
system is data preprocessing. The generated dataset does 
not contain socket information such as source IP, 
destination IP, flow ID, etc. to avoid the overfitting 
problem [2], where such data can be changed from 
network to network.  In addition, since we aimed to record 
the features related to the behavior of attacker flow, we 
excluded source and destination ports because they are 
often constant values representing network identifier 
attribute which may lead to overfitting. As the dataset 
does not contain a large number of samples, we deployed 
ML mechanisms instead of DL, since the latter proved to 
be effective with large datasets [18]  [19]. As a first step 
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in preprocessing as depicted in Figure 4, the dataset is 
checked to see if it contains empty or null values to 
prevent any significant effect on the model efficiency. 
Moreover, duplicated samples were removed from the 
dataset. Normalization, which involves transforming data 
to a common scale, is an essential preprocessing step in 
machine learning. We used Min-Max scaling to make 
values between “0” and “1”, to ensure that all features 
have the same scale, making it easier to compare their 
importance and contributions to the model. We divided 
the dataset where  80% is used for training and the other 
20% is kept aside for the model test to see how well we 
can predict the data.  

Table 1: Features used in proposed mechanism. 

Feature Description 

flow_duration 
(nsec) 

The duration of flow remaining in the 
switch flow table in nanoseconds 

ip_proto The flow protocol 

srcport Source port 

dstport Destination port 

byte_count Total flow bytes 

packet_count Total flow packets 

byte_s Number of flow bytes per second 

pkt/s Number of flow packets  per second 

 

We performed cross validation with k = 5 to make 
sure there is no bias in performance estimation to prevent 
an imbalanced occurrence where the minority class is 
significantly underrepresented compared to the majority 
class. The fundamental principle of cross-validation is to 
divide the dataset into several folds, or subsets, and train 
and test the model repeatedly on various combinations of 
these folds.  

D. Practical implementation 

The proposed work is implemented using Python 
programming language. Mininet version 2.3.1, beta 4, 
network simulator designated for SDN education and 
research was utilized to implement and evaluate the 
suggested technique. . Mininet was installed on a virtual 
machine, Ubuntu 20.04, with 12 GB of RAM and 4 CPU 
cores. The Ryu controller is used as the SDN controller in 
testbed for managing compliant switches. It operated with 
Layer four (L4) learning capabilities to forward flow 
traffic based on matching of MAC, IP, protocol, and 
service’s port. Scikit-learn, an open-source library used in 
our work to implement machine learning. On the host 
side, to deceive the attacker, we used Honeyed as a low 
interaction honeypot. During the experiment, we 
generated probe traffic using the NMAP tool and for 
normal traffic generation iperf and D-ITG tools had been 

used. Moreover, we performed some real tasks such as 
browsing the internet, watching YouTube, using emails, 
downloading and uploading files, and SSHing different 
mininet hosts to generate realistic traffic. 

 

 

Figure 4. Data Preprocessing Steps 

 

4. FINDINGS AND DISCUSSION  

The performance of the suggested mechanism is 
evaluated using the evaluation metrics covered in depth in 
this section, which is then followed by a detailed 
presentation of the findings and outcomes. For evaluation, 
seven popular ML models adopted to determine the best 
model, including DT, RF, NB, AdaBoost, LightGBM, and 
KNN classifiers. By employing this diverse set of models, 
we intended to select the one that best fits the 
characteristics of our data and the requirements of the 
mechanism. The equations in Table 2 show the metrics 
used to evaluate the proposed mechanism in terms of 
accuracy, recall, precision, and F-measure, respectively. 

Table 2: Evaluation Metrics Description 

Accuracy Precision Recall F1 Score 

Percentage of True 

classified flow in relation 

to all classified flows 

Percentage of malicious 

flows identified 

correctly in relation to 

all flows classified as 

attacks 

Percentage of 

correctly classified 

malicious flows 

versus all malicious 

flows presented in the 

dataset 

The harmonic mean 

between Precision and 

Recall 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where TP, FN, TN, and FP stand for true positives, 
false negatives, and false positives, respectively. As 
depicted in [4], the majority of scholar articles used other 
metrics such as F1-score, precision, and recall because the 
average model's performance tends to favor the majority 
classes' performance, it is impossible to fairly assess 
classification performance under the imbalanced dataset 
using only the accuracy rate. A confusion matrix was 

Dataset 

Data Cleaning (Drop Null and duplicate 
values)

Normalize Data (Scale range between 0 
and1)

Feature Selection (Drop  attributes leads 
to overfitting)

Class Imbalance (Prevent model bias to 
ward majority class using Cross 
Validation)
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H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

utilized for each classifier in order to precisely assess the 
suggested mechanism and compute these performance 
indicators; the outcomes are displayed in Table 3. Among 
the ML models used, their results were very good except 
for NB since they are commonly used for text 
classification tasks. The XGBoost model achieves the best 
result in terms of accuracy 94.73% as well as precision, 
recall, and f1-score. 

Table 3: Precision, Recall and F1 Score of Models Evaluation 

Classifier Accuracy Precision Recall F1-score 

DT 0.9390 0.9449 0.9378 0.9397 

RF 0.9400 0.9457 0.9392 0.9410 

NB 0.8449 0.8830 0.8356 0.8374 

AdaBoost 0.9196 0.9260 0.9203 0.9218 

XGBoost 0.9473 0.9544 0.9458 0.9480 

LightGBM 0.9459 0.9532 0.9445 0.9467 

KNN 0.9128 0.9170 0.9126 0.9139 

 
Moreover, the author in [15] highlights the importance 

of the Area Under Curve (AUC) metric for imbalanced 
dataset classification. The AUC of the XGBoost classifier 
obtained good results of about 0.98%, as seen in Figure 5. 
The confusion matrix of the XGBoost classifier in Figure 
6, shows that our detection mechanism successfully 
recognizes probe attacks, but the ratio of normal traffic 
recognized as probe attacks (false positive) needs more 
consideration. 

 

Figure 5: XGBoost AUC ROC Curve. 

We conducted another experiment with a larger 
topology of tree with depth 4 and fanout 2, as shown in 
Figure 7, to support the hypothesis we previously 
highlighted in this article, which states that continuous 
traffic checking through statistics requests and reply 
messages by detection applications will lead to an 

increase in controller workload. This topology aims to 
increase the number of switches and hosts in the network, 
which will increase the number of flow rules in each 
switch. In this stage, normal traffic originated from each 
host to another, creating huge traffic.  

 

 

Figure 6: XGBoost Confusion Matrix  

Four separate scenarios were employed in order to 
assess the controller CPU load, as seen in Figure 8. 
Several traffic checking intervals, such as 1, 5, and 10 
seconds, were chosen for the first three scenarios of 
statistics request message sending. In the final scenario, 
honeypot triggering solutions are employed in place of 
periodic checking when necessary. Only normal traffic 
transmitted for all scenarios, and when controllers check 
the traffic for each second, controller overhead was quite 
high 33%. Controller overhead significantly decreased 
when the interval extended to every 10 seconds, but 
attackers in this case will have plenty of time to 
compromise the network. However, since the detecting 
mechanism is in sleep mode and would activate anytime 
there is an alarm, our idea of applying a triggering 
mechanism successfully lowered CPU demand to 2.1%. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Tree Topology (Depth 4, Fanout 2) 
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Figure 8: Ryu Controller CPU Utilization 

 

5. CONCLUSION 

Due to the growing threat of cyberattacks in SDN 
environments and the lack of built-in security 
mechanisms, this model finds it difficult to replace 
traditional network architecture. One important attack that 
is neglected by the research community is the probe 
attack. Probe attacks are considered the first phase of 
other serious attacks such as DoS, botnets, MitM, Brute 
force, etc. to exploit vulnerabilities in the network. The 
issue with this attack is that it is hard to detect since it 
works passively without being noticed. Machine learning 
and deep learning are widely used in current works for 
detection techniques because of their ability to detect 
novel attacks, contrary to classical methods of using 
independent agents in networks, which depend on fixed 
thresholds or attack signatures. In this work, we propose a 
novel online lightweight detection mechanism empowered 
by machine learning models. Our approach leverages the 
dynamic nature of SDN to embed honeypots within the 
network infrastructure. These honeypots in the network 
host serve a dual purpose: they lure potential attackers by 
presenting fake services, and they act as triggers for our 
detection mechanism in the SDN controller when any 
traffic contacts them. Machine learning models need a 
good dataset to provide accurate detection in real-time. 
Therefore, we collected a new dataset specific to probe 
attacks in SDN environments. Contrary to other datasets, 
which are, either outdated, incompatible with SDN, or 
whose features cannot be easily obtained, our dataset 
features were collected through OpenFlow statistics 
messages that can be easily collected in an SDN 
environment. Through extensive experimentation, we 
have demonstrated the efficacy of our proposed system. 
Notably, our detection mechanism achieves an 
exceptional level of accuracy, while imposing minimal 
stress on the SDN controller's CPU. These results 
underscore the practical viability and effectiveness of our 
approach in strengthening SDN security against evolving 
cyber threats. 
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