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Abstract 

 
This exploratory disquisition delves into the world of Indoor Air Quality( IAQ) monitoring systems, using the solidarity of 

Artificial Intelligence( AI) and Internet of Effects ( IoT) technologies. Its overarching thing is to check the efficacity of these structures 
in regulating IAQ within structures, with a specific focus on mollifying pollutant degrees and their dangerous results on inhabitants. The 
study undertakes a comprehensive review of present literature and exploration trials, which depend upon AI and IoT algorithms for 
border monitoring, records analysis, and contrivance evaluation. also, it delves into the complications of machine armature, deployment 
ways, and functional efficiency. Furthermore, the exploration attracts different instructional budgets, including clever detectors and IoT 
bias stationed within the ambient surroundings. It elucidates the functionality of those instruments to accumulate real-time statistics, 
encompassing variables together with unpredictable natural composites, temperature oscillations, and moisture ranges. A vital aspect of 
this study is the disquisition of AI, contrivance getting to know  Machine Leanring ( ML), and Deep Learning ( DL) algorithms, 
showcasing their prophetic prowess within shadowing fabrics. also, they have a look at delving into the symbiotic dating among those 
algorithms, expounding their function in enhancing machine delicacy and optimizing energy intake. Moreover, the studies trials to 
delineate personalized health tips knitter- made to character inhabitants, decided from the wealth of records accrued through these 
structures. By integrating present-day technologies with empirical perceptivity, this takes a look at trials to pave the manner for better 
IAQ control strategies, fostering more healthy and lesser sustainable lodging surroundings. 
 
Keywords: Sick building, Machine learning, IAQ Monitoring system 
 
1. Introduction 

The conception of Sick Building Syndrome( SBS) dates returned to 1791, characterized by way of a myriad of signs and 
symptoms endured employing people within unique structures, ranging from skin vexations to respiratory issues, which use up upon 
leaving the demesne. This underscores the imperative of administering  IAQ monitoring structures inside enclosed areas. still, traditional 
monitoring widgets have lengthy grappled with challenges conforming to data availability, cost, and complexity[1]. The preface of low-
cost detector generation has revolutionized the geography, easing real-time and figure-important evaluation of air nice. using IoT- 
primarily grounded detectors has further propelled our moxie of Indoor Air Pollution(IAP), challenging real-time manipulation 
mechanisms for fostering healthier inner surroundings[2]. The IoT atmosphere, acting as a conduit for statistics collection and analysis, 
has reshaped multitudinous aspects of mortal cultures, gauging safety, healthcare, consolation, and energy effectiveness[3]. Smart 
domestic structures, employing IoT chops, offer a lamp of want, turning by affordable and movable IAQ monitoring results. These 
systems check inner adulterants, temperature, and moisture degrees, issuing caution in the event of unsafe contaminant attention[4]. 
Integration with AI augments the delicacy and factual-time evaluation capabilities of similar structures, enabling knitter-made fitness 
suggestions primarily grounded on inhabitants' choices. As generation progresses, fortune duplications maintain a pledge for further 
suitable overall performance and flawless integration with AI ways[5][6]. 

While being literature abounds with the exploration of AI and IoT operations in IAQ shadowing, this observes trials to 
emphasize their myriad blessings, design complications, overall performance opinions, and data sources, at the side of their community 
with other AI technology[7]. AI and   ML algorithms come potent gear for refining delicacy and factual-time analysis in IAQ shadowing, 
while IoT-primarily grounded answers offer a price-important means of measuring air adulterants, mollifying longstanding issues with 
conventional observers[8]. Looking beforehand, the paper delineates fortune targets and challenges, supplying a comprehensive 
assessment of current IAQ tracking systems employing clever IoT technology[9]. 
 
2. IAQ Monitoring Systems Design 

2.1. Sensors Selections  

IJCDS 1571014529

1



The selection of sensors significantly influences the efficacity of IAQ monitoring systems, as it necessitates high perceptivity 
and delicacy in detecting colorful adulterants and pollutants present in inner surroundings. Among the array of sensors employed for 
this purpose are MQ3 and MQ135 detectors, designed to measure situations of adulterants affecting mortal health similar as carbon 
dioxide( CO2), dust, bank, alcohol, benzene, and NH3, quantified in corridor per million( PPM). These detectors operate in real-time, 
furnishing precise and dependable data pivotal for air quality analysis and informed decision-making to enhance inner air quality[10]. 

Also, real-time perceptivity can be enhanced by integrating low-cost sensors with AI methodologies similar to ML/DL ways. 
This integration empowers the system to fete patterns and trends in the data, thereby perfecting the perceptivity of analysis and delivering 
more accurate assessments of air quality. For this case, ML algorithms can dissect collected data to identify temporal and spatial patterns 
of air pollution, guiding posterior conduct to effectively and efficiently ameliorate air quality. This holistic approach combining sensors 
with AI enhances the system's capability to exhaustively and efficiently cover and manage air quality[11]. Likewise, the selection of 
sensors constitutes a vital step in the construction of accurate and effective IAQ covering systems. using slice-edge seeing technologies 
and integrating AI and IoT-enabled sensors enables point perceptivity in detecting and prognosticating dangerous adulterants in the air 
while furnishing real-time analytics and responses. This contributes to cultivating a comfortable and healthy inner terrain, constantly 
optimized to guard inhabitants against the mischievous goods of dangerous adulterants[12][13]. also, the presence of ray dust detectors 
graces attention for their capability to measure small patches ranging from 0.3 to 10 micrometers, with a dimension range gauging from 
0 to 1000 micrograms per boxy cadence. Table 1 elucidates the specifications of the ray dust detector for patches within the 0.3 to 10-
micrometer range, showcasing its dimension capabilities[14]. 
 

 Specification Range 
1.  particle size 

Measurement 
0.3 - 10 μm 

2.  Measurement range 0 -1000 μg/m3 
3.  Time to first reading ≤8 s 
4.  Working temperature -10 - 50 Celsius 
5.  Working humidity 0 - 95% RH (non-condensing) 
6.  Signal output UART-TTL, PWM, IIC 

Table 1: Laser dust sensor specifications [13]. 

2.2. Placement of Sensors in Indoor Environments 

Effective data collection is consummate for real-time monitoring and analysis of IAQ, emphasizing the strategic placement of 
sensors. icing spatial content of air quality parameters aids in carrying a comprehensive understanding of inner environmental conditions. 
During the placement of sensors, careful consideration must be given to the types of adulterants being targeted. For case, installations 
of particulate matter and unpredictable organic emulsion sensors may be necessary to give detailed analyses of contaminant situations 
forming from different sources such as hotting systems, manufacturing processes, or kitchen areas. This strategic positioning of sensors 
enhances the efficacity of data collection and analysis, enabling the identification of factors impacting IAQ and easing remedial 
conduct[15] Also, the installation of sensors should align with the operation and layout of inner spaces. For case, locales with high 
mortal residency similar to promenades and gymnasiums may bear smaller specialized sensors for monitoring, recording, and assaying 
air quality oscillations. also, tailwind patterns and dissipation mechanisms told by ventilation systems, doors, and windows can affect 
the rates of cross-ventilation and the rotation of adulterants within structures. thus, it's prudent to consider these dynamics when sticking 
sensors to ensure accurate monitoring of IAQ [16]. Figure 1 illustrates a Scenario of the system Placement of Sensors in Indoor 
Environments [17]. 

likewise, the communication capabilities of sensors are essential considerations when determining their placement. exercising 
wireless communication technologies like Low Power Wide Area Networks( LPWAN) or Wi-Fi enables flexible placement of sensors 
across colorful structures, easing dependable and secure data transmission to central monitoring systems[18]. similar communication 
structure enhances the scalability and rigidity of IAQ monitoring systems, icing flawless integration into different inner surroundings. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Scenario of the system[17]. 
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2.3. Data Collection and Storage Methods for Monitoring Systems 

Effective IAQ systems influence advanced AI and IoT technologies to gather real-time data, employing wireless sensors 
equipped with colorful detectors to cover air quality parameters. These IoT-enabled air quality sensors continuously cover particulate 
matter, unpredictable organic composites, moisture, and temperature, transmitting this data to a central mecca for remote monitoring[19]. 
to manage the large volumes of data generated, ways similar to data contraction, loss minimization, and prioritization are proposed, 
icing the effective running of data aqueducts. 

 
A unified data management service facilitates periodic storehouse and ingestion of detector data into pall-grounded software 

factors. Platforms like knot-RED and InfluxDB support low-law sluice-ground programming, enabling the composition of data 
aqueducts from different sources. InfluxDB, chosen as the time series database platform, efficiently analyzes and captures real-time 
data, relating it with specific temporal patterns. This enables rapid-fire filtering and sorting through automated query processes, indexing 
markers for each record alongside temporal patterns[20]. The integration of AI algorithms and IoT technology offers significant 
advantages, including scalability, real-time environmental monitoring, remote monitoring capabilities, and mobility, contributing to 
prophetic analysis models similar to LSTM structures. These models can directly read environmental parameters with a high degree of 
perfection. Figure 2 illustrates how high-resolution environmental information forms the base of decision-making processes. Collecting 
comprehensive environmental data is essential for robust environmental analysis systems. It's pivotal to separate between sensors 
stationed at specific locales and the monitoring range of videotape displays, as well as to discern whether environmental variations stem 
from natural conditions or artificial sources[21]. 

 
 

 
Figure 2: Environmental monitoring information procedures[22].  

 
 

3. Implementation of IAQ Monitoring Systems 

3.1. Hardware Components and Connectivity Requirements 

Indoor air quality monitoring systems calculate intertwined device connectivity and communication to ensure their 
effectiveness. The selection of sensors plays a pivotal part in directly measuring parameters similar to temperature, unpredictable organic 
composites( VOCs), carbon dioxide( CO2), and humidity situations. A strategic sensor placement strategy is essential for comprehensive 
data collection. Energy consumption is a primary concern for real-time monitoring systems, driving the hunt for energy-effective 
druthers similar to Bluetooth and ZigBee platforms[23]. Low Power Wide Area( LPWA) transmission technology offers a feasible result 
for transmitting limited data loads, enhancing spatial and temporal resolution. Scalability and effective data processing are critical 
considerations, with Software Defined Radio( SDR) technology contributing to achieving these pretensions and ensuring accurate air 
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quality data collection[24]. 
Integration with the pall enables real-time visibility into a structure's IAQ, easing communication with Building Management 

Systems ( BMS) equipped with automatic control mechanisms grounded on IAQ situations[25]. Designing ultramodern Heating, 
ventilation, and Air Conditioning (HVAC) systems grounded on IAQ considerations is essential for creating healthier inner 
surroundings. Careful attention to communication conditions and tackling factors is necessary for the successful perpetration of IAQ 
monitoring systems[26][27]. Table 2 provides detailed specifications of the CO2 seeing module. 

 
 

Operating voltage 4–6 V 

Operating current Mean 50 mA 

Detection accuracy ± 50 ppm 

Detection range 0–5000 ppm 

Operating temperature 0–60 °C 

Service life 5 years 

Size 57 mm × 35 mm ×  15 mm 

Operating humidity 0–90%RH 
Table 2: Detailed specifications of CO 2 sensing module[24] 

 

3.2. Software Development for Real-Time Data Processing 

Advanced computing and communication technologies are seamlessly integrated into IAQ systems to give robust monitoring 
results. using IoT bias, AI algorithms, and ML ways ensures the achievement of real-time monitoring, analysis, and control of air quality. 
When developing software for IAQ monitoring bias, careful consideration of AI ways for data analysis is consummated. With the 
support of IoT bias, AI ways grounded on ML styles empower the identification of pollution situations by assaying vast datasets, landing 
structure structural trends, and relating patterns associated with anomalies[28].ML ways similar to Linear Retrogression(LR), Random 
Forests(RF), Autoregressive Integrated Moving Average (ARIMA), and other models play an effective part in detecting adulterants and 
prognosticating their situations in the air. also, intelligent AI vaticination ways enable the early identification of implicit outfit failures 
before they do[29]. The integration of AI algorithms into monitoring bias enables the provision of substantiated health recommendations 
acclimatized to the preferences of the inhabitants. By assaying sensor data using AI technologies, personalized recommendations can 
be made to enhance the IAQ of structures grounded on the specific requirements and preferences of the inhabitants[30]. 
3.3. Integration with Existing Building Management Systems 

The integration of IoT bias into structure operation systems(OS) has the implicit to revise the assiduity. Smart detectors able 
to measure and assess outfit performance, IAQ, energy consumption, and residency situations in real- time can empower structure 
operation professionals to make informed opinions aimed at enhancing quality and effectiveness. Prophetic conservation, for case, plays 
a pivotal part in relating cost-saving openings by proactively detecting implicit issues before they escalate into major problems. Energy 
operation is also optimized through IoT detectors, leading to reduced costs and environmental impact[31]. 

Monitoring IAQ in structures using IoT bias is necessary for maintaining a healthy terrain for inhabitants. likewise, the 
integration of IoT security systems, residency shadowing for space optimization, perpetration of smart lighting results, waste operation 
through packing position monitoring, and deployment of immediate exigency response systems further enhance the overall functionality 
and safety of structures[32]. IoT platforms grease the collection and analysis of data, enabling the generation of practicable perceptivity 
and reports to support decision-making processes. In summary, the integration of IoT bias into structure operation systems not only 
enhances functional effectiveness and cost savings but also promotes better IAQ and sustainability, thereby perfecting overall structure 
security and efficiency. 

4. Performance Evaluation of IAQ Monitoring Systems 

4.1. Accuracy Assessment of Sensor Readings 
Experimenters have conducted limited studies on the delicacy of detector readings in IAQ control systems for structures, 

particularly those using ML and IoT technologies. Accurate detector readings are pivotal for real-time data processing and prophetic 
analysis. Some studies have demonstrated emotional discovery and vaticination rates for IAQ. For case, results from developed models 
have shown remarkable delicacy in classifying air quality in apartments, particularly with the use of neural networks(NN). also, LSTM 
networks have displayed significant success in prognosticating air contaminant attention. Accordingly, AI systems for IAQ monitoring 
offer superior capabilities in furnishing dependable and accurate real-time data for analysis[33]. 
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Despite the advancements in IAQ monitoring exercising sensors and ML ways, there remains a critical need for further 

exploration concentrated on assessing and homogenizing sensor performance evaluation. A scientific review stressed the inadequate 
substantiation supporting the validity of low-cost sensors for IAQ monitoring in structures. It's essential to estimate the cost-effectiveness 
of enforcing these systems and emphasize the significance of homogenizing sensor performance evaluation to ensure accurate and 
dependable readings. Addressing these issues will enhance the robustness of IAQ monitoring systems and ameliorate the quality of data 
used in decision-making processes[34]. 

In conclusion, achieving accurate detector readings is essential for the successful perpetration of smart technology-grounded 
IAQ covering systems. While recent studies have shown promising results with ML ways and IoT sensors, there's a critical need for 
further exploration concentrated on assessing and homogenizing sensor performance. Emphasizing the refinement of detector delicacy 
will enhance the effectiveness of these systems and inseminate confidence in the data used for decision-making in the field of IAQ  
operation[35]. 
 
4.2. Comparison of Different AI Algorithms for Data Analysis 

Within IAQ systems, data collected from different detectors suffer critical analysis and exploration using AI technologies. The 
effective application of both ML and DL ways has led to bettered structure performance and fortified environmental quality. For 
illustration, the AI- AI-grounded multiple Linear Retrogression algorithm is considerably employed in prognosticating periodic heating 
and cooling energy conditions. Retrogression ways, artificial neural networks(ANNs), decision trees, and residency styles have also 
been necessary for soothsaying thermal loads and civic electric power demand, as well as creating thermal comfort models. These ways 
grease comprehensive data analysis, enabling informed opinions to enhance IAQ and overall structure performance[36]. Figure 3: 
provides a neural network with three layers: the input layer, the hidden layer, and the output layer. 

 

 

 

 

 

 

Figure 3: neural network with three layers [37]. 

IoT detectors play a pivotal part in studying real-time data for IAQ monitoring systems, as emphasized by recent studies and 
exploration. ML styles, similar to Linear Retrogression, are generally used for assaying IAQ data. Integrating particular health 
information with air quality data allows for the assessment of implicit goods of the inner terrain on health, enabling applicable conduct 
to be taken consequently[38]. The combination of IoT detectors and ML capabilities for real-time IAQ monitoring and vaticination is a 
notable point stressed in important exploration. ML ways like LSTM infrastructures and NN algorithms have demonstrated high delicacy 
in detecting adulterants and prognosticating their attention[39]. Figure 4 There are three cell gates of the LSTM architecture: the forget 
gate, the input gate, and the output gate. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: The structure of an LSTM [40] 
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4.3. User Feedback and Satisfaction Surveys 

Stoner feedback and occupant satisfaction checks play a pivotal part in assessing the effectiveness of IAQ monitoring systems. 
These perceptivity are essential for perfecting the air quality of structures by furnishing precious information about the performance and 
usability of covering outfits [41]. In a recent study, an IAQ monitoring system was enforced, and a questionnaire was distributed among 
scholars to estimate their thermal comfort and air quality satisfaction. The results indicated advanced satisfaction situations among 
druggies, pressing the effectiveness of the enforced classroom monitoring systems in enhancing air quality[42]. 

Numerous companies prioritize investing in significant coffers to ameliorate the air quality for their workers, particularly in 
areas with known air pollution pitfalls[43]. workers themselves are decreasingly apprehensive of the significance of air quality detectors 
in colorful settings similar to medical conventions, services, and seminaries. Understanding the specific requirements and preferences 
of workers regarding IAQ detectors is pivotal for acclimatizing effective results[44].In conclusion, gathering stoner feedback will be 
essential for the continued development and improvement of IAQ monitoring systems to ensure their effectiveness in perfecting the 
structure of IAQ[45]. 
5. Data Sources for IAQ Monitoring Systems 

5.1. External Data Sources (e.g., Weather, Pollution Levels) 

Likewise, integrating external data sources is essential for directly assessing the effectiveness of structure IAQ systems. 
Research has demonstrated the mischievous health goods of civic air pollution, including disinclinations, neurological diseases, 
respiratory conditions, and cardiovascular conditions. Particularly by low-and low-middle-income countries, being environmental 
monitoring systems may not be as robust as demanded. To enhance IAQ, associations can integrate out-of-door air quality monitoring 
networks and public rainfall data into their IAQ covering systems. By using these fresh data sources, associations can track how out-of-
door pollution infiltrates inner spaces and take visionary measures to address IAQ issues and promote plant health[46].still, the high 
cost associated with approved air quality monitoring systems limits their vacuity, especially in resource-constrained areas. thus, 
integrating different data sources into IAQ monitoring systems is pivotal to gaining a comprehensive understanding of inner air 
conditions. Real-time data on temperature and moisture can illuminate the impact of out-of-door environmental factors on IAQ[47]. 

A comprehensive evaluation of inner environmental air quality relies on the integration of external data sources with monitoring 
systems grounded on AI algorithms and IoT bias. These external data sources generally correspond to real-time data that can be 
seamlessly integrated into IAQ covering systems for nonstop monitoring and analysis of air quality. using AI technology within IAQ 
monitoring systems enables the provision of substantiated health recommendations acclimatized to both the terrain and inhabitants. This 
mode of communication is anticipated to establish a more robust communication channel with governmental authorities, informing them 
about implicit adulterants and enhancing their environmental monitoring capabilities in the future[48]. 

5.2. Internal Data Sources  

The significance of inner data sources in assessing the IAQ of structures lies in their vital part in perfecting air quality and the 
overall inner terrain. Inner sources, along with mortal conditioning and HVAC systems, are primary contributors to state quality 
improvement. The World Health Organization(WHO) identifies several dangerous adulterants, including sulfur dioxide, carbon 
monoxide, particulate matter, ozone, and nitrogen dioxide, which radiate from colorful inner sources similar to energy combustion, 
primitive cuisine ranges, and precious presence[49].thus, using IoT detectors to collect data on parameters like temperature, moisture, 
and air movement in real-time, while covering heating, ventilation, and air exertion HVAC systems, is pivotal. This information is 
essential for relating implicit problem areas and assessing inner air quality situations. also, mortal conditioning and the presence of faves 
can complicate inner pollution situations, further impacting IAQ. Monitoring these conditions using IoT detectors provides precious 
perceptivity into the overall state of IAQ [50]. likewise, recycling this internal data using AI technologies helps identify patterns and 
trends that, when employed in prophetic analytics, can significantly impact air quality operations. AI algorithms can effectively gauge 
IAQ situations, prognosticate unborn patterns, and cast trends grounded on data from HVAC systems juxtaposed with inhabitant 
conditioning. The integration of AI algorithms and IoT technologies grounded on internal data sources facilitates ongoing assessment 
and monitoring of IAQ[51]. 

6. Integration of AI Techniques in Monitoring Systems 

6.1. Machine Learning Algorithms  

Machine Learning styles are necessary for prognosticating internal quality control systems, particularly in relating air quality trends and 
patterns that are pivotal, especially for individuals with respiratory issues[52]. using ML and IoT detectors enables largely accurate 
dimension and vaticination of air adulterants and inner contaminant attention. Models similar to NN and LSTM networks have 
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demonstrated remarkable delicacy in classifying and prognosticating IAQ parameters. mongrel models, created by combining ML 
algorithms, have shown superior soothsaying performance compared to individual models. likewise, ML ways can prop in diagnosing 
respiratory ails stemming from air pollution[53]. 

By assaying real-time IAQ data from multiple sources using ML algorithms and IoT detectors, issues can be instantly linked, 
and necessary preventives can be communicated effectively. Wearable detectors enable druggies to conduct prophetic data analysis, 
easing informed opinions to ameliorate IAQ. ML technologies and IoT detectors are vital in enhancing the real-time logical delicacy of 
IAQ monitoring systems in structures. also, these technologies offer substantiated health and medical recommendations acclimatized to 
individualities' requirements and preferences, representing a significant advancement in air quality monitoring capabilities[54]. Table 3 
provides a summary of exploration findings where ML models were employed. 

 

No. Dataset Approach Evaluation 
Criteria 

Results Year  

1 Energy load 
dataset 

SVM RMSE, MRE The SVM achieved a better 
accuracy and generalization in compared 

with the evaluated 
neural network techniques. 

2010 [55] 

2 Historical 
data 

Fuzzy C-mean 
clustering 
algorithm 

MAPE, RMSE The clustering technique used to  
decrease the number 

of data required for training purposes 
and to avoid noisy data. 

2010 [56] 

3 Central 
Pollution 
Control 
Board 

(CPCB)/ 
India 

ANNs, SVM Accuracy The results show improvement in the 
prediction accuracy 

2019 [57] 

4 Simulation Support vector 
regression 

(SVR), 
Ensemble, 

General linear 
regression, 

Classification 
and regression 

tree, ANN 

R2, MSE, 
RMSE, MAE, 

MAPE 

The results show that (SVR +ANN) and 
SVR are the best models for heating and 

cooling load prediction purposes. 

2019 [58] 

5 Experiment Nonlinear ML 
algorithms, SVR 
with nonlinear 

radial basis 
function (RBF) 

kernel, and 
neural networks 

MAE, R2, 
Time 

The result indicates that the nonlinear 
models have better performance than the 

linear models. However, the neural 
network(NN) had significantly recorded 

the best performance. 

2018 [59] 

6 Simulation Multivariate 
regression model 

R2, Fisher’s 
criterion 

The result shows that the high accuracy 
predictions are provided with R2 of 

0.981 model 
 

2018 [60] 

7 Simulation Combined ANN 
with an ensemble 

approach 

R2 The ANN combined with an ensemble 
approach model significantly improved 

the prediction accuracy. 

2018 [61] 

8 Experiment Ensemble 
method 

R2, RMSE, 
MAE, r 

The proposed model results show better 
performance than ANN and SVM. 

2018 [62] 
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9 Experiment Decision Tree RMSE The results indicate that the decision tree 
model was able to estimate the 

occupancy situation. 

2016 [63] 

10 Malaysia Air 
Pollution 
dataset 

(MLP), and 
Random Forest 

Accuracy 
Precision 

recall 

According to the results, Random Forest 
performed better than MLP with 97% 

and 92% accuracy, respectively. 

2021 [64] 

11 Simulation K-Means 
algorithm 

CV, STDV The result shows that the k-means 
algorithm helped optimize the HVAC 
system to reduce energy consumption. 

 

2018 [65] 

12 Energy load 
dataset 

Random Forest 
Regressor, k-

nearest 
Neighbour 

Regressor, and 
Linear Regressor 

MAPE The results illustrate that the Random 
Forest Regressor provides better short-
term load prediction, while the KNN 
provides much better long-term load 

prediction. 

2019 [66] 

13 the data 
collected 

through real-
time 

measuremen
ts of indoor 

CO2, 
number of 
occupants, 

area per 
person, 
outdoor 

temperature, 
outer wind 

speed, 
relative 

humidity, 
and air 

quality index 

ANN, SVM, DT, 
GPR, LR, EL, 

optimized GPR, 
optimized EL, 
optimized DT, 
and optimized 

SVM 

R, RMSE, 
MAE, NS 

The mentioned ML models have been 
used to predict the intensity of CO2 

inside the buildings. 

2023 [67] 

14 Simulation Random Forest R2, RMSE Compared to SVM, the Random Forest 
model reduced the energy consumption 

in the buildings. 

2021 [68] 

15 Energy and 
Occupancy 

dataset 

K-means for 
building energy 

prediction. 
ANN for end-

user group 
prediction. 

CV-RMSE The prediction accuracy is improved 
while dealing with diverse occupancy 

and their correlation with energy 
consumption by using K-means for 

building energy prediction and ANN for 
end-user group prediction. 

2017 [69] 

16 Experiment ANN Correlation 
coefficient and 
mean square 

error were used 
to validate the 

model. 

Geographical data in the ANN module 
was trained using the Leverberg 

Marquardt (LM) Algorithm. 

2019 [70] 

17 Experiment K-nearest 
neighbor 

Accuracy The K nearest neighbor-based thermal 
comfort model can achieve an accuracy 
of 88.31% using 1000 sets of training 

2021 [71] 
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data. 

18 Experiment Decision Tree Confusion 
matrix 

The results indicate that the ratio of Sick 
Building Syndrome (SBS) symptoms 
was 74.4% among women and 68.5% 

among men. 

2021 [72] 

19 Simulation Random Forest R2, RMSE Compared with SVM, the Random 
Forest model shows significant 

advantages in constructing energy 
consumption forecasting. 

2022 [73] 

 
Table 3:  Summary of research papers 

 

 

 

 

 
 
 

Figure 5: Machine Learning Algorithms 

 

 

 

 

 
 
Figure 6: Evaluation Criteria in Machine Learning 

6.2. Deep Learning Algorithms 

Indoor air quality monitoring systems equipped with erected-in DL algorithms have the capability to describe patterns and cast 
air quality situations. These systems can reuse vast quantities of data collected from multiple detectors, enabling the discovery of 
anomalies, patterns, and trends in real-time. This real-time discovery allows for nippy action to maintain IAQ in optimal situations. also, 
DL algorithms aren't limited to prognosticating current conditions but can also read unborn scripts related to air quality, including 
relating outfit malfunctions, anticipating the need for repairs, and optimizing energy operation[74].In a recent study, a model was 
developed to exhaustively cover, describe, and prognosticate air pollution situations across different civic areas. The model LSTM with 
Convolutional Neural Networks(CNN) and Deep Neural Network(DNN) models to measure air adulterants. Both univariate and 
multivariate models were employed, incorporating data on individual adulterants as well as fresh environmental factors similar to 
downfall compliances. The study employed expansive datasets collected from metropolises like Istanbul, Kocaeli, and Barcelona[75]. 
The community between AI and IoT technologies facilitates a deeper understanding of environmental conditions and enables prompt 
responses, leading to enhanced artificial effectiveness and bettered stoner gets across colorful sectors. also, DL algorithms can be abused 
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to develop IAQ labeling systems that give accurate assessments of impurity situations and enable real-time monitoring of IAQ- related 
issues. By assaying patterns and changes in IAQ data, DL ways contribute to visionary problem-working and nonstop 
enhancement[76][77]. Table 4 summarizes exploration findings where machine literacy algorithms were employed. 
 
 
 

No. Dataset Approach Evaluation Criteria Results Year Ref. 

1 Kaggle 
website 

GA -LSTM Root Mean Squared 
Error (RMSE) 

Results were accurate with less 
experience and faster than ML and 

LSTM models 

2022 [78] 

2 Experiment three LSTM 
models 

MSE, RMSE, R2, 
MAE 

The CO2 modification level is much 
higher Electronics 2023, 12, 107 4 of 

12 that of PM 

2021 [79] 

3 Electricity dataset CNN-Long 
short-term 
memory 
(LSTM) 

RMSE, MAPE, 
MAE, 
MSE 

In residential houses, The CNN-LSTM 
network estimated the real-time 

consumption of electric energy with a 
stable performance of 0.37 MSE 

2019 [80] 

4 Experiment, 
Video, Simulation 

Faster 
region-based 
convolution

al neural 
network 
(RCNN) 

IoU, Accuracy, 
Precision, Recall, 

F1 score, 
 

RCNN provides customized ventilation 
control data on the dynamic changes of 

occupancy to enhance IAQ. 

2022 [81] 

5 UCI Machine 
Learning 

Repository 

LSTM, 
GRU, 

Bi-LSTM, 
Bi-GRU, 

CNN, CNN-
LSTM, and 
CNN-GRU 

g the mean absolute 
error (MAE), the 

mean 
squared error 

(RMSE), and the 
coefficient of 

determination (R2). 

The presented approach can extract the 
important features of the training data 

using CNN and LSTM, with high 
accuracy and stability. 

2021 [82] 

6 Smart meter 
dataset 

Recurrent 
neural 

network 
(RNN), 

recurrent 
inception 

convolution 
neural 

network 
(RICNN) 

RMSE, MAPE RICNN model outperforms the RNN 
and 1-D CNN 

2020 [83] 

7 Energy 
consumption data 

CNN-LSTM RMSE, MAPE, 
MAE, 
MSE 

The proposed model captured the 
spatiotemporal 

features in constructing energy 
consumption data 

2021 [84] 

8 Electricity dataset Gated RNN, 
CNN 

CV, MAPE, 
Computational 

efficiency 

The results show that the 24-hour gated 
RNN model performed better than 

CNN. 

2019 [85] 

9 The 2018–2021 
hourly data in 

Guilin 

MLP(1D-
CNN) 

RMSE, MAE, and 
SMAPE. 

The predictive performance of the 
presented model was better than 

(MLP), (1D-CNN), 
(GRU), (LSTM) and Transformer, at 

2023 [86] 
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all time steps (1, 4, 8, 24 and 48 h 

10 Building 
operational data 

Recurrent 
neural 

network 
(RNN) 

RMSE, MAE, 
CV-RMSE 

The results indicate that RNN models 
achieved the most accurate predictions 
without increasing computational load. 

2019 [87] 

11 Experiment, 
Video, Simulation 

Faster 
region-based 
convolution

al neural 
network 
(RCNN) 

Accuracy, 
Precision, Recall, 

F1 score, 
 

In comparison to the use of static 
office occupancy profiles, the results 
illustrate that the residents' heat gains 
could be represented more accurately 

using the deep learning algorithms 

2021 [88] 

12 HVAC dataset Deep belief 
network 

Correct rate (CR), 
Hit rate (HR) 

The correct fault diagnosis rate of the 
optimized model was around 97.7%, 

2018 [89] 

13 China Platforms GT-LSTM Accuracy, root 
mean square error 

(RMSE), mean 
absolute error 

(MAE), coefficient 
of determination 

(R2 
), and normalized 
root mean square 

error 
(NRMSE). 

The proposed  model could achieve 
higher accuracy and stability compared 

to the state-of-the-art baselines 

2021 [90] 

14 Human action 
dataset 

Deep neural 
network 

Accuracy Using a multi-stream fusion network 
for activity recognition, the model 

achieved 84% accuracy. 

2019 [91] 

15 Beijing Multi-Site 
Air-Quality Data 

Set 

CNN-LSTM (MAE), (RMSE) 
and coefficient of 
determination (R2) 

The results indicate that the advantages 
of including spatial information on 

many surrounding 
stations, as well as using as much 
historical information as possible. 

2022 [92] 

16 Experiment ANN Pearson’s 
correlation 

coefficient R2 

The result shows that the forecast for 
comfort conditions is excellent, 

2021 [93] 

17 Thermal comfort 
dataset 

CNN-LSTM Accuracy, 
Precision, Recall, 

F1 score, 
MCC 

The proposed model gives accurate 
forecasting and overcomes the 

challenges related to the inadequacy of 
data. 

2021 [94] 

18 Experiment, 
Video, Simulation 

Faster 
region-based 
convolution

al neural 
network 
(RCNN) 

Accuracy, 
Precision, Recall, 

F1 score, 
 

The initial results illustrate the 
method's ability to identify opened 

windows with an average accuracy of 
97.29%. 

2021 [95] 

19 (Pollutant and 
meteorological 

information)colle
cted manually for 

three years in 
Shanghai city 

CNN-LSTM RMSE, correlation 
coefficient 

By improving the performance, CNN-
LSTM can predict future 

concentrations of particulate matter 
(PM2.5)  as a time series. 

2019 [96] 
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20 Video Faster 
region-based 
convolution

al neural 
network 
(RCNN) 

Accuracy, 
Precision, Recall, 

F1 score, 
 

Results showed the 
accurate detection of fire detection 

while smoke detection did not perform 
well. 

2022 [97] 

Table 4:  Summary of research papers 

 

 

 

 

 

 

 

                     Figure 7: Deep Learning Algorithms  
 

 
 
 
 
 

 
 
                Figure 8: Evaluation Criteria in Deep Learning 
 

7. Benefits of AI and IoT Integration in IAQ Monitoring Systems 

7.1. Improved Accuracy and Real-Time Analysis 

The strategic integration of DL patterns with IoT operations has revolutionized the delicacy and real-time analysis of air quality 
data. This integration facilitates the generation of large volumes of data from detectors and cold chain systems, allowing for the 
identification of consumption patterns and the vaticination of unborn trends. This information empowers structure and installation 
directors to make informed opinions regarding consumption optimization. also, AI models have demonstrated remarkable delicacy in 
prognosticating situations of colorful air adulterants, furnishing pivotal perceptivity necessary for addressing public health 
enterprises[98]. The combination of DL and sensitive-specific responses has further enhanced the capabilities of air quality monitoring 
systems. By integrating AI into the structure, a wealth of data collected from sensors is reused and interpreted by AI algorithms, 
furnishing precious perceptivity into consumption patterns. This enables directors to gain a clear understanding of power consumption 
trends, empowering them to make visionary opinions and optimize energy operations. also, AI models play a vital part in prognosticating 
air quality situations and furnishing essential data for addressing public health challenges[99]. 
7.2. Personalized Health Recommendations Based on Occupant Preferences 

Thanks to advancements in technology, detectors, and AI networks, it's now possible to directly measure colorful aspects of 
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structures to ensure a healthy terrain. These systems can dissect air quality pointers similar to temperature, moisture, CO2 situations, 
and unpredictable organic composites, allowing AI algorithms to give customized recommendations for perfecting IAQ. By considering 
individual preferences for heating, ventilation, and air exertion, these systems can suggest applicable treatment results to alleviate air 
adulterants and enhance comfort for residents. also, druggies can pierce structure operation services that incorporate rainfall conditions, 
allowing for dynamic adaptations to erecting criteria grounded on external factors[100]. By integrating data sources to assess the inner 
quality and accommodate specific preferences, AI-driven systems can deliver substantiated health recommendations in real time. This 
capability has the implicit to significantly ameliorate public health issues by using AI and IoT algorithms to optimize air quality operation 
according to individual conditions and preferences[101]. 
8. Conclusion and Future Developments and Challenges in AI-powered IAQ Monitoring 

The integration of AI and IoT technologies in air quality monitoring systems allows for the delivery of substantiated health 
advice acclimatized to individual requirements. These systems calculate on real-time data collected from detectors to give up-to-date 
information on inner air quality. In addition to personalized services, automated recommendations grounded on real-time intelligent 
algorithms play a pivotal part in enhancing overall health and well-being. exercising AI styles during data analysis enables the system 
to offer targeted advice and suggestions to optimize air quality. Incorporating public data sources similar to pollution situations and 
rainfall conditions further enhances the system's capability to deliver applicable health advice. The collaboration between AI and IoT 
facilitates real-time data collection and analysis, furnishing nonstop assessment of IAQ. In the short term, fastening to the near future, 
we propose the design of a smart air monitoring system along with its digital twin. This system would allow for diurnal data updates 
and flawless integration with IoT platforms through the application of data-driven technologies. It should feature stoner-friendly 
controls, be operationally effective, and be cost-effective in addressing air pollution enterprises. By using smart technologies and air 
quality monitoring systems, we can respond more effectively to critical moments and address serious pollution issues. This requires 
combined trouble to prioritize and allocate coffers to these enterprises, icing a visionary approach to perfecting inner air quality and 
securing public health. 
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