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Abstract: In the modern era, experimenting with datasets to derive predictive insights has become both commonplace and highly 

effective. The success of experiments in machine learning and deep learning hinges on the availability of diverse datasets, which are 

important for achieving accurate outcomes across a spectrum of domains. Notably, primary datasets such as time series data often 

yield particularly efficient results. However, within this framework, the existence of NP-hard problems can present a significant 

challenge, potentially resulting in non-convex outputs. Addressing this challenge necessitates the transformation of NP-hard 

problems into P problems to optimize the outcomes. In instances where machine learning or deep learning analyses yield non-convex 

results, non-convex optimization methodologies come into play. These methodologies are designed to identify the global minimum 

amidst multiple local minima. This paper draws attention to datasets where suboptimal outcomes persist, underscoring the difficulty 

in achieving the global minimum in many scenarios. Furthermore, it provides insights into the prevalence of non-convex 

optimization challenges within these datasets, proposing avenues for future research aimed at making them more amenable to convex 

optimization techniques. By addressing these challenges, the field can enhance the efficiency and accuracy of predictive analytics, 

driving advancements in machine learning and deep learning applications. 

Keywords: Non convex, Convex, Optimization, Global minimum, Local minimum. 

 

1. INTRODUCTION  

In today's data-focused research, digging into datasets 
to find useful predictions is not just common but really 
important. How well machine learning and deep learning 
experiments work depends a lot on the different and 
detailed datasets that are in use. These datasets are super 
important because they strongly impact how accurate, 
dependable, and useful the results are in many different 
areas. 

 Some datasets, like ones that track data over time 
or those considered primary sources, have their own built-
in patterns [1]. These patterns helps to get really good and 
fitting results that make sense in different situations. This 
makes these kinds of datasets super important for making 
smart decisions in lots of industries. 

 But in this world of exploring data, there's a 

tough problem—the NP-hard problems. They're really 

tricky and can make things complicated by giving 

solutions that aren't straightforward. Exploring methods to 

transform NP-hard problems into more manageable P 

problems is key when addressing these formidable 

challenges. (Figure 1). 
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Figure 1: Relationship of NP hard and P problems 
 

Non-convex optimization is a fundamental aspect of 

machine learning and deep learning methods, addressing 

intricate problems across diverse datasets [2]. Unlike 

convex optimization, where the objective function has a 

single global minimum, non-convex optimization involves 

functions with multiple local minima, making the 

optimization process significantly challenging the 

visualization is shown in figure 2, figure 3 and figure 4.  

 

 
Figure 2: Convex optimization curve 

 

 

 
Figure 3. Non-Convex optimization curve 

 

 

 

 
 

Fig. 4. minimum/maximum 

 

 

In some scenarios, the learning task's natural objective is 

a non-convex function [3]. This notably occurs in 

training deep neural networks or dealing with tensor 

decomposition problems. While non-convex objectives 

and constraints allow for accurate modeling of learning 

problems, they present a significant challenge to 

algorithm designers. Unlike convex optimization, solving 

non-convex problems lacks a readily available toolkit. 

Many non-convex optimization problems are recognized 

as NP-hard, posing a substantial hurdle. Moreover, 

several of these non-convex problems are not only NP-

hard to solve optimally but also NP-hard to solve 

approximately further complicating the scenario [1]. 

 In the realm of machine learning and deep learning, 

many real-world problems exhibit non-convex 

characteristics due to the presence of complex 

interactions and high-dimensional data [4]. The 

optimization of non-convex functions involves finding 

optimal solutions amidst multiple local optima, saddle 

points, and plateaus. 

Mathematically, a non-convex optimization problem can 

be represented as follows: 

Minimize 𝑓(𝑥), where 𝑥 belongs to a set 𝑋 and 𝑓(𝑥) is a 

non-convex function. The objective is to find 𝑥∗such that 

𝑓(𝑥∗) is minimized.  

 

A. Diverse Data Sets and Challenges 

 
Across various datasets, the non-convex nature of 

optimization poses unique challenges. These challenges 
arise in fields like computer vision, natural language 
processing, and reinforcement learning, among others [1]. 

For instance, in computer vision tasks, training deep 

neural networks involves optimizing non-convex loss 

functions. The presence of multiple local minima can 

impact the convergence and generalization of models. 

Similarly, in natural language processing, optimizing 

complex models like transformers on diverse text corpora 

encounters non-convexity challenges due to the high-

dimensional nature of language representations. 

 

B. Machine Learning and Deep Learning Methods 

 
Various optimization algorithms are employed to 

tackle non-convex optimization challenges. Stochastic 
gradient descent (SGD) and its variants, such as Adam, 
RMSprop, and momentum-based methods, are commonly 
used in training deep neural networks. These algorithms 
navigate through the non-convex landscape by iteratively 
updating model parameters to find promising optima [1]. 

Moreover, techniques like random restarts, 

initialization strategies, and adaptive learning rates are 

employed to mitigate the impact of local minima and 

improve convergence rates. 
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2. LITERATURE SURVEY  

 
A novel approach to identifying intrusions within 

social media networks is presented in [8]. This method 
utilizes soft computing techniques by integrating fuzzy 
clustering, particle swarm optimization (PSO), and a 
multi-layer perceptron (MLP) neural network to address 
non-convex optimization problems. The study 
underscores the practicality of this approach, particularly 
in financial applications. 

In [9], the Water Cycle Optimization (WCO) 
algorithm is introduced as a means to address the 
economic dispatch problem in power systems. WCO, a 
stochastic search algorithm inspired by the natural water 
cycle, combines global and local search characteristics. 
Through simulations on a standard test system, its efficacy 
is demonstrated and compared against existing 
optimization methods. Results show WCO's ability to 
generate high-quality solutions for non-convex economic 
dispatch problems, boasting faster convergence rates and 
superior performance. Furthermore, researchers have 
improved the particle swarm optimization (PSO) 
algorithm to better handle non-convex optimization 
challenges. 

In [10], an extensive review delves into present studies 
concerning distributed learning within non-convex 
optimization problems. It covers scenarios involving 
batch and streaming data, exploring diverse distributed 
optimization algorithms like stochastic gradient descent, 
coordinate descent, and proximal algorithms. Authors 
underscore the importance of handling issues such as 
communication efficiency, fault tolerance, and privacy 
protection within distributed learning. Moreover, they 
identify several unresolved challenges and potential 
research directions for the future. 

In [11], an extensive overview explores the latest 
progress in non-convex optimization methods applied to 
signal processing and machine learning applications. It 
encompasses a range of optimization algorithms like 
gradient descent, alternating direction methods of 
multipliers, and proximal gradient methods. The paper 
also delves into the obstacles related to non-convex 
optimization, such as navigating multiple local optima and 
the challenge of ensuring global convergence. 
Additionally, the authors showcase the effectiveness of 
non-convex optimization methods in diverse signal 
processing and machine learning tasks, including matrix 
factorization, compressed sensing, and deep learning. 

In [12], a novel approach utilizing second-order 
optimization is introduced to address non-convex 
optimization problems within machine learning. Through 
empirical studies across diverse machine learning 
applications like matrix factorization and deep learning, 
the authors assess the efficiency of this method against 
commonly used first-order optimization techniques. 

Results indicate that the proposed approach consistently 
surpasses first-order methods in terms of both 
convergence speed and final accuracy, especially in 
scenarios involving non-convex problems with highly 
complex and non-linear objective functions. 

In [13], a ray-tracing-based approach is introduced for 
determining the subsequent optimal solution in multi-
objective optimization challenges. This algorithm initiates 
by generating a set of random solutions, followed by their 
arrangement via a Pareto-dominance criterion. 
Subsequently, a ray extends from the present solution 
toward the non-dominated solutions, selecting the next 
optimal solution based on the intersection point of the ray 
with the Pareto front. The method's performance is 
assessed across various benchmark problems, revealing its 
superiority over existing techniques concerning solution 
convergence and diversity. The authors propose its 
potential applicability to a wide array of multi-objective 
optimization problems. 

The paper [14] introduces a two-stage algorithm 
designed to address nonlinear non-convex minimum cost 
flow problems by combining a genetic algorithm with a 
local search approach. Initially, the genetic algorithm 
generates an initial population, followed by a refinement 
stage using a quasi-Newton-based local search algorithm. 
The algorithm's efficacy is assessed across benchmark 
problems and benchmarked against several state-of-the-art 
methods. The findings illustrate the superiority of this 
proposed algorithm in terms of solution quality and 
computational efficiency compared to other approaches. 
Consequently, the authors propose this method as a 
promising solution for analogous nonlinear non-convex 
optimization problems. 

In their work [15], the authors address the 
complexities of optimizing wellbore trajectories and 
propose the utilization of Particle Swarm Optimization 
(PSO) to tackle this non-convex optimization challenge. 
They meticulously explain the PSO algorithm and its 
diverse adaptations, encompassing hybrid PSO 
methodologies. The authors delve into the strengths and 
constraints of employing PSO specifically in wellbore 
trajectory optimization, offering insights and suggestions 
for future investigations in this domain. Their article 
serves as a significant resource for researchers and 
industry professionals seeking to leverage PSO for 
solving non-convex optimization issues within petroleum 
engineering. 

The paper in [16] introduces a novel method for 
anomaly detection in cyber-physical production systems 
(CPPS) by constructing a non-convex hull that captures 
the underlying geometric structure of the data. Tackling 
the complexities posed by high-dimensional data and 
intricate distributions in CPPS, the authors devise an 
iterative optimization algorithm to obtain this hull. The 
proposed method's evaluation on both simulated and real-
world data demonstrates its superior performance in 
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accuracy and computational efficiency compared to 
existing techniques. The authors anticipate its potential 
application in detecting anomalous events across various 
industrial processes, offering utility for researchers and 
practitioners in this domain. 

In [17], the focus lies on non-convex optimization 
within control systems. Specifically addressing scenarios 
where a non-convex objective function faces inequality 
constraints, the authors propose a gradient-based method. 
This method involves projecting the gradient onto the 
feasible set, leading to non-smoothness and non-
differentiability of the objective function. Conditions for 
the differentiability of the projected trajectory are 
provided, demonstrating the method's robust convergence 
to a stationary point under certain assumptions, elucidated 
through numerical examples. 

Another paper, [18], presents a new method for 
addressing sparse multiple instance learning (MIL) 
problems using a non-convex penalty function. 
Employing the alternating direction method of multipliers 
(ADMM) algorithm, the authors optimize this non-convex 
penalty function, showcasing its superior performance in 
sparse MIL problems through experiments on various 
benchmark datasets, excelling in both classification 
accuracy and sparsity compared to existing methods. 

The work in [19] proposes a real-time algorithm 
tailored for powered descent guidance capable of handling 
non-convex problems. Designed to navigate spacecraft to 
safe landing sites using limited computational resources 
and onboard sensors, the paper introduces a modified 
branch-and-bound algorithm. Extensive numerical 
simulations demonstrate the algorithm's success in 
guiding spacecraft to safe landing sites with high accuracy 
and efficiency, highlighting its potential for real-world 
missions in spacecraft guidance and control. 

Additionally, [20] presents a deterministic algorithmic 
framework addressing the non-convex phase retrieval 
problem. Ensuring solution uniqueness, the authors 
introduce a sequence of non-convex optimization 
problems with convex constraints, guaranteeing exact 
signal recovery with high probability and requiring fewer 
measurements compared to existing methods, validated 
through numerical simulations. 

The authors in [21] propose a novel method for 

detecting and segmenting salient image regions using 

non-convex non-local reactive flows. Providing a 

comprehensive overview of the approach, including 

mathematical formulations and implementation details, 

the paper demonstrates superior performance in accuracy 

and computational efficiency compared to existing 

methods. Through compelling case studies, it offers 

evidence of the proposed approach's effectiveness in 

saliency detection and segmentation, outlining the 

challenges and limitations of current methodologies. 

 

 
Table 1: Summary of the review 

 

Algorithm  Implementation Research Focus 

Hybrid 

Genetic 

Algorithm 

[22] 

GA operators such 

as selection, 

crossover, and 

mutation can lead to 

convergence on a 

set of solutions. 

Achieving the 

global optimum 

within the optimal 

timeframe is 

unattainable. 

Non-Convex 

Gradient 

Descent [23] 

It proves beneficial 

in discovering 

optimal solutions 

for non-convex 

problems 

characterized by a 

best-fit structure 

within a feasible 

time frame. 

A rapid learning 

pace may lead the 

system to overlook 

the global optimum, 

whereas a slower 

pace could prolong 

the journey towards 

reaching it. 

Alternating 

Minimization 

Principal [24] 

When tackling an 

optimization 

problem involving 

numerous sets of 

variables 

Its practical 

application 

primarily emerges 

in cases where the 

marginal 

optimization 

problem is 

straightforward. 

EM 

Algorithm 

[25] 

Its core function lies 

in complementing 

datasets lacking 

specific 

information. Within 

clustering, it forms 

the bedrock for 

unsupervised 

learning processes. 

Attaining 

convergence solely 

to a local optimum 

is feasible, 

necessitating the 

utilization of both 

forward and 

backward 

probabilities. 

Gradient 

Descent and 

Langevin 

Dynamics 

[26] 

The strategy that 

appears most 

effective when 

employed together 

is replica exchange. 

The most optimal 

method to exchange 

replicas depends on 

the specifics of the 

particular physical 

system under 

consideration. 

Stochastic 

Optimization 

Techniques 

[27] 

An invaluable 

approach for 

tackling the non-

convex optimization 

challenges arising 

from diverse 

applications like 

deep learning, 

neural networks, top 

modeling, etc. It 

stands out as the 

preferred method 

for addressing 

uncertainties and 

ambiguities. 

In high-dimensional 

scenarios, the 

presence of saddle 

points can be 

circumvented when 

the objective 

function is 

differentiable. 
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3. DATA FOR ANALYSIS 

The utilization of three datasets aims to demonstrate 
the existence of non-optimal solutions and underscores 
the necessity for employing optimal methods to address 
the problem effectively. 

Dataset 1 [24]: The "Kinematic Insights" dataset offers 
a comprehensive collection of velocity and position 
attributes pertaining to various entities in motion. It 
encompasses a broad range of scenarios, from vehicle 
movements to object trajectories, aiming to provide 
researchers and analysts with a detailed understanding of 
motion dynamics. This dataset serves as a valuable 
resource for studying patterns, developing predictive 
models, and testing algorithms across fields such as 
transportation, robotics, sports analytics, biomechanics, 
and physics simulations. With structured data formats and 
accompanying documentation, it facilitates analysis and 
exploration while offering insights into motion behavior 
across different environments and conditions. 

Dataset 2 [25]: The "Polynomial Dataset: Exploring 
Curves and Trends" provides a collection of data points 
generated from polynomial functions, allowing 
researchers and analysts to explore various curves and 
trends. This dataset offers valuable insights into the 
behavior of polynomial equations across different degrees 
and coefficients, enabling the study of curve fitting, 
interpolation, and extrapolation techniques. With 
structured data formats and accompanying documentation, 
it facilitates the analysis of polynomial relationships and 
the development of mathematical models for predictive 
purposes. Researchers can utilize this dataset to gain a 
deeper understanding of polynomial functions and their 
applications in fields such as mathematics, statistics, 
engineering, and data science. 

Dataset 3 [26]: The MNIST dataset is renowned in 

machine learning for its collection of 70,000 grayscale 

images, each measuring 28x28 pixels, depicting 

handwritten digits from 0 to 9, accompanied by 

corresponding labels. It stands as a cornerstone for 

evaluating machine learning algorithms, particularly in 

image classification. Researchers and practitioners rely on 

MNIST to develop and assess models for tasks such as 

digit and pattern recognition, as well as handwriting 

analysis. Its widespread use stems from its accessibility, 

straightforwardness, and clear labeling, making it 

invaluable for both newcomers and seasoned 

professionals in the field of machine learning, providing a 

standardized benchmark for evaluating algorithmic 

performance across various methodologies and 

techniques. 

 

 

 

 

4. METHODOLOGY 

Figure 4 illustrates the utilization of various datasets 

that were modeled to assess the attainment of local 

minimum results. The unsupervised dataset was subjected 

to k-means clustering, while the supervised dataset 

underwent optimization via Particle Swarm Optimization 

(PSO) in alignment with machine learning principles. 

Additionally, deep learning concepts were employed to 

further investigate and validate the absence of 

optimization results. The dataset and algorithm selection 

are summarized in Table 2. 

 

 

 
Fig. 5. Block diagram for Analysis 

 

 
Table 2: Dataset Summary 

 

 

A. Kmeans 

 

K-means clustering is a popular unsupervised machine 

learning algorithm used for partitioning a dataset into K 

distinct, non-overlapping clusters. The algorithm begins 

by randomly initializing K cluster centroids, typically 

chosen from the dataset itself. Subsequently, it iteratively 

assigns each data point to the nearest centroid based on a 

distance metric, often Euclidean distance.  

 

 

 

Sl. No. Dataset name Algorithm 

1 Kinematic Insights K-means 

2 Polynomial Dataset: 

Exploring Curves and 

Trends 

PSO 

3 MNIST dataset Deep learning 
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   Algorithm 1:  Kmeans 

 
1. Initialization 

● Choose the number of clusters, K. 

● Randomly initialize K cluster centroids, 

μ₁, μ₂, ..., μₖ 

2. Assign Data Points to Nearest Centroids: 

● For each data point, xᵢ, calculate its 

distance to each centroid using 

Euclidean distance:  

𝑑𝑖𝑠𝑡(𝑥ᵢ, 𝐵ⱼ) =  √∑(𝑥ᵢᵢ −  𝐵ⱼⱼ)2 

● Assign the data point, xᵢ, to the cluster 

with the nearest centroid: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑗𝑑𝑖𝑠𝑡(𝑥ᵢ, 𝐵ⱼ) =  𝐶ᵢ 

where cᵢ represents the cluster 

assignment of data point xᵢ.  

3. Update Centroids: 

● Recalculate the centroids of the clusters 

by taking the mean of all data points 

assigned to each cluster: 

𝐵ⱼ =  (
1

|𝐶ⱼ|
) ∑(𝑥ᵢ ∈  𝐶ⱼ)𝑥ᵢ 

where |Cⱼ| represents the number of 

data points assigned to cluster j. 

 

4. Convergence Check: 

● Check if the centroids have changed 

significantly. 

● If centroids have changed, repeat steps 

2 and 3. 

● If centroids have not changed 

significantly, the algorithm has 

converged. 

5. Output: 

● Final cluster assignments. 

● Centroid coordinates. 

 

 

After the data points have been assigned, the centroids 

are recalculated by taking the mean of all the data points 

assigned to each cluster. This process of reassigning data 

points and updating centroids continues until a 

convergence criterion is met, such as when the centroids 

no longer change significantly or when a maximum 

number of iterations is reached. K-means aims to 

minimize the within-cluster variance, resulting in compact 

and well-separated clusters. However, the algorithm's 

effectiveness can be influenced by the initial placement of 

centroids and the choice of K, requiring careful 

consideration and sometimes multiple runs with different 

initializations. Despite its simplicity, K-means is widely 

used in various applications, including image 

segmentation, customer segmentation, and anomaly 

detection, due to its efficiency and scalability (Algorithm 

1). 

 

B. PSO 

 

 

Algorithm 2:  PSO 

 

1. Initialization 

● Initialize population of particles with 

random positions pi   and velocities vi 

2. Evaluation: 

● Evaluate fitness for each particle using the 

objective function 𝑓(𝑝𝑖) 

3. Update Personal Best: 

● Update personal best position (pbest) for 

each particle 

𝑝𝑏𝑒𝑠𝑡𝑖 =  { 𝑝𝑖 , 𝑖𝑓 𝑓(𝑝𝑖)  <  𝑓(𝑝𝑏𝑒𝑠𝑡𝑖) 
          {𝑝𝑏𝑒𝑠𝑡𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. 

4. Update Global Best: 

● Update global best position (gbest) based on 

the personal best positions of all particles 

𝑔𝑏𝑒𝑠𝑡𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑖(𝑓(𝑝𝑏𝑒𝑠𝑡𝑖)) 
 

5. Update Velocity and Position: 

● Update velocity for each particle 

                  𝑣𝑖  =  𝑤𝑣𝑖 +  𝑐1 𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 −  𝑝𝑖) +
                                 𝑐2 𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖  −  𝑝𝑖) 

● Update position for each particle: 

𝑝𝑖 = 𝑝𝑖  + 𝑣𝑖  
       where: 

o w is the inertia weight. 

o 𝑐1  and 𝑐2 are acceleration coefficients. 

o 𝑟1 and 𝑟2 are random numbers between 0 and 1. 

6. Convergence Check: 

● Repeat steps 2 to 5 until a termination condition 

is met. 

7. Output: 

● Best solution found represents the optimal 

solution. 

 

Particle Swarm Optimization (PSO) is an optimization 

algorithm inspired by the social behavior of organisms 

like birds and fish. In PSO, a population of particles 

navigates through a search space to find the optimal 

solution to a given problem. Each particle represents a 
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potential solution and adjusts its position based on its own 

experience (personal best) and the collective knowledge 

of the swarm (global best). By iteratively updating their 

positions and velocities, particles explore the search space 

in search of the optimal solution. PSO is favored for its 

simplicity and ability to efficiently explore high-

dimensional search spaces, making it widely applicable in 

various optimization tasks (Algorithm 2). 

 

C. Deep Learning 

 

Deep learning is a subset of machine learning that 

focuses on the development and training of artificial 

neural networks with multiple layers (hence the term 

"deep"). These neural networks are designed to learn and 

extract hierarchical representations of data, enabling them 

to automatically discover intricate patterns and features 

from raw input data. Deep learning has revolutionized 

various fields such as computer vision, natural language 

processing, speech recognition, and more, by achieving 

state-of-the-art performance in tasks like image 

classification, object detection, language translation, and 

speech synthesis. Key components of deep learning 

include convolutional neural networks (CNNs) for 

processing visual data, recurrent neural networks (RNNs) 

for sequential data, and transformers for processing 

sequential data in parallel. Deep learning techniques are 

often used in conjunction with large datasets and powerful 

computing resources to train complex models with 

millions or even billions of parameters. Algorithm 3 

explains the step by step procedure applying CNN on 

MNIST dataset. Principal Component Analysis (PCA) is 

applied to visualize the multiple local minimum.  

 

 
Algorithm 3 : Visualizing Loss Landscape with CNN 

 

1. Load MNIST dataset and normalize pixel values. 

 

2. Define a CNN model architecture. 

 

3. Train the CNN model multiple times, collecting 

loss   values. 

 

4. Plot loss curves for each training run. 

 

5. Apply PCA to reduce loss values to 2 dimensions. 

 

6. Visualize the 2D PCA projection of the loss 

landscape. 

 

 

The algorithm 4 explains detail how the PCA 

projection is applied to view the loss projection on 

MNIST.  

 
Algorithm 4: Principal Component Analysis (PCA) 

 

Input: Dataset X 

Output: Reduced dimensionality representation of X 

1. Standardize X by subtracting mean and dividing 

by standard deviation. 

 

2. Compute the covariance matrix of standardized 

X. 

 

3. Perform eigendecomposition on the covariance 

matrix. 

 

4. Select the top k eigenvectors corresponding to the 

largest eigenvalues. 

 

5. Project the standardized dataset onto the new 

subspace formed by selected eigenvectors. 

 

6. Output the reduced dimensionality representation 

of the dataset. 

 

 

5. RESULTS 

The results are divided into three parts, each focusing 

on different datasets. Part I examines an unsupervised 

dataset using K-means clustering, Part II explores a 

supervised dataset using Particle Swarm Optimization 

(PSO), and Part III employs deep learning techniques. The 

findings reveal the presence of non-optimized data points 

within the dataset. These results underscore the need for 

developing new methods to achieve optimal solutions. 

 

A. Part 1: K-means on Kinematic Insights 

 

At first, we start with a goal in mind: achieving a 

certain level of accuracy using regression analysis. To 

reach this goal, we employ two different models: K-

means and quantile regression. These models help us 

work towards the desired accuracy. 

 

Now, when it comes to unsupervised machine 

learning, where data points are not given label to train on, 

systems often face challenges in finding the best solution. 

The two mathematical equations are used to prove that the 

dataset provides a non-optimal solution. 
The following are the terms used in the result, 
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 ACC_GLR: Establishes the target accuracy 
level. 

 ACC_SLR_Kmeans: Evaluates the accuracy 
of a supervised learning regression model 
using K-means clustering for comparison. 

 ACC_SLR_Quantile: Evaluates the accuracy 

of a supervised learning regression model 

using quantile regression for comparison. 

 

Both K-means and quantile regression fail to yield the 

anticipated outcomes, exhibiting numerous valleys in the 

graph, indicating persistent challenges with local minima 

in machine learning (Figure 6).  

 

 
 

Fig. 6. Kmeans and Quantile regression on Kinematic 

Insights 

 

B. Part 2: PSO on Polynomial Dataset: Exploring 

Curves and Trends 

Particle Swarm Optimization (PSO) is a heuristic 

optimization algorithm inspired by the social behavior of 

bird flocks and fish schools. In the context of polynomial 

data fitting, PSO aims to find the coefficients of the 

polynomial that minimize the error between the 

polynomial and the actual data points. However, due to its 

stochastic nature and reliance on local information 

exchange among particles, PSO may struggle to escape 

from local minima in the search space. Each particle in the 

swarm explores the solution space by adjusting its 

position based on its own experience and the best 

positions found by neighboring particles. While this 

collaborative approach facilitates rapid exploration, it also 

increases the likelihood of particles converging towards 

local minima instead of the global minimum, particularly 

in complex and rugged search spaces. Consequently, PSO 

may provide non-optimal solutions for polynomial data 

fitting tasks when trapped in local minima, hindering its 

ability to identify the best-fitting polynomial coefficients 

across the entire search space. 

 

 

 

 

 

 

 
Fig. 7. PSO on Polynomial Dataset: Exploring Curves and 

Trends 

 

C. Part 3: Deep learning on MNIST 

 
Deep learning techniques were employed on the 

MNIST dataset to assess suboptimal solutions. Utilizing a 
sequential model architecture, three layers were 
introduced, as summarized in Table 3 Activation 
functions were employed to address the complexities 
inherent in non-linear data. Particularly, softmax 
activation was utilized for multi-class classification, 
ensuring that output values represent probabilities that 
collectively sum to 1, thereby indicating the likelihood of 
each class. 

The model was compiled using the Adam optimizer, a 
widely-used optimization algorithm in neural network 
training. Adam dynamically adjusts the learning rate 
during training, facilitating efficient convergence. The 
loss function employed was 
sparse_categorical_crossentropy, tailored for multi-class 
classification tasks wherein labels are integers rather than 
one-hot encoded. This loss function effectively guides the 
model's training process by quantifying prediction errors. 

Evaluation of model performance during training was 
conducted based on accuracy metrics. Accuracy measures 
the proportion of correctly classified images, providing 
insight into the model's effectiveness in classifying unseen 
data samples. 
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Table 3: Deep learning layers with Adam optimizer 

 

Layer  Layer 

Name 

Activation 

function 

Mathematical 

derivation 

1 Flatten  Input 

Layer 

                      - 

2 Dense Relu 𝑓(𝑥) = (0, 𝑥)  
3 Dense Softmax 𝑦𝑖  =  𝑒𝑧𝑖 / 𝛴 𝑒𝑧𝑗  

Adam optimizer 

 

 

 

 
Fig. 8. Loss function MNIST using Adam optimizer 

 

 
Fig. 9. PCA components to visualize a local minimum using 

Adam Optimizer 

The loss graph depicted in Figure 8 illustrates the 

absence of local minimum points, attributed to the high 

dimensionality of the problem. However, upon conducting 

dimensionality reduction using PCA, the loss graph in 

Figure 9 reveals the presence of multiple local minima. 

Consequently, the primary challenge lies in distinguishing 

the global minimum to optimize the transition from non-

convex results to a convex solution. The loss function is 

calculated using the formula (1) 

 
Fig. 10. Loss function MNIST using SGD optimizer 

 

 
Fig. 11. PCA components to visualize a local minimum  using 

SGD Optimizer 

 

 

𝐿(𝑧, ŷ)  =  −1/𝑀 ∗  𝛴(𝑙𝑜𝑔 𝑙𝑜𝑔 (ŷ𝑖
𝑧𝑖) ) --------------- (1) 

 

where 

𝐿(𝑧, ŷ) is a loss function 

M is a number of samples 

𝑧𝑖 is the true class label for sample i 

ŷ𝑖    is the predicted probability distribution for sample i. 

ŷ𝑖
𝑧𝑖  is the predicted probability assigned to the true class 

label 𝑧𝑖 for sample i. 

Table 4 provides a summary of the deep learning 

layers applied to the MNIST dataset using the SGD 

optimizer. Additionally, Figures 10 and 11 illustrate the 

loss curve and the local minimum points obtained through 

PCA application. 
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Table 4: Deep learning layers with SGD optimizer 

Layer  Layer 

Name 

Activation 

function 

Mathematical 

derivation 

1 Flatten  Input Layer                       - 

2 Dense Relu 𝑓(𝑥) = (0, 𝑥)  
3 Dense Softmax 𝑦𝑖  =  𝑒𝑧𝑖  / 𝛴 𝑒𝑧𝑗  

SGD optimizer 

 

Table 5 provides a summary of the deep learning 

layers applied to the MNIST dataset using the Adadelta 

optimizer. Additionally, Figures 12 and 13 illustrate the 

loss curve and the local minimum points obtained through 

PCA application. 

 
Table 5: Deep learning layers with Adadelta optimizer 

 

Layer  Layer 

Name 

Activation 

function 

Mathematical 

derivation 

1 Flatten  Input Layer                       - 

2 Dense Relu 𝑓(𝑥) = (0, 𝑥)  
3 Dense Softmax 𝑦𝑖  =  𝑒𝑧𝑖  / 𝛴 𝑒𝑧𝑗  

Adadelta optimizer 

 

 

 

 

 
Fig. 12. Loss function MNIST using  Adadelta optimizer 

 

 

 
Fig.13. PCA components to visualize a local minimum  using 

Adadelta Optimizer 
 

 

 

6. CONCLUSION 

Real-time data sets are integral to numerous 
applications, offering valuable insights and solutions to 
complex problems. However, they often pose non-convex 
optimization challenges, characterized by the presence of 
multiple local minima necessitating the selection of a 
global minimum for optimal results. This paper 
undertakes the task of substantiating the existence of non-
convex solution spaces within real-time datasets. To 
achieve this, a diverse range of datasets from 
unsupervised, supervised, and deep learning domains is 
examined, collectively illustrating the pervasive nature of 
non-convexity across various data types and learning 
scenarios. 

Identifying these non-convex solutions presents a 
formidable challenge, particularly given the limitations of 
traditional optimization techniques. Even renowned 
optimizers like ADAM struggle to effectively navigate the 
complexities associated with local minima, underscoring 
the inadequacies of conventional methods in addressing 
real-time dataset optimization. Consequently, specialized 
methodologies tailored to handle non-convex landscapes 
are deemed necessary to optimize real-time datasets 
effectively. 

In conclusion, we have to find the way to minimize 

the loss function and get the global minimum. The 

optimization of any method gives the best solution to the 

problem, and it depends upon the dataset and the hyper 

parameter of the optimizers.  
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