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Abstract 

Networks consist of interconnected nodes and edges that depict entities and their relationships. In social network clustering, nodes are 

grouped into clusters based on their connectivity, to identify communities. However, community detection methods have not yet 

leveraged the Weight-based Fish School Search algorithm, which is one of the promising approaches to finding community structure. 

In this paper, we aim to apply a specific class of FSS-Based algorithm, which is weighted FSS, to network clustering. We have 

developed a unique hierarchical network clustering method that leverages the Weight-based Fish School Search algorithm (WFSSC). 

This methodology focuses on maximizing weights to enhance the modularity function, leading to the identification of community 

structures in unipartite, undirected, and weighted networks. The process involves iterative network splitting and the construction of a 

dendrogram, with the optimal community structure determined by selecting the cut that maximizes modularity. Our method employs 

the modularity function for an objective assessment of the community structure, aiding in optimal network division. We evaluated our 

methodology on known and unknown network structures, including a network generated using the LFR model to assess its adaptability 

to different community structures. The performance was measured using metrics such as NMI, ARI, and FMI. The results demonstrated 

that our methodology exhibits robust performance in identifying community structures, highlighting its effectiveness in capturing 

cohesive communities and accurately pinpointing actual community structures. 
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1. Introduction 

Network theory involves nodes connected by edges, 

representing entities and their interactions. For example, 

in biological networks  [1], nodes represent species, and 

edges depict predator-prey relationships, aiding in 

understanding ecosystems. Communication networks [2] 

use nodes to symbolize devices like telephones, and edges 

represent communication links, optimizing network 

design. Supply chain networks  [3] utilize nodes for 

locations and edges for supply routes, optimizing logistics. 

In citation networks [4], nodes represent scientific papers, 

and edges represent citations, aiding in understanding 

scientific fields. The network is represented as a graph G 

(V, E), with V as nodes/vertices and E as edges/links [5]. 

In social network clustering  [6], nodes are grouped based 

on their connectivity patterns, determined by the links or 

edges that connect them. Clusters form from nodes with 

stronger connections, while nodes with weaker 

connections are placed separately [7]. Clustering 

techniques help discover groups revealing social 

substructures like cliques [8], subgroups, or communities, 

providing insights into social interactions and identifying 

influential individuals or groups [9]. In molecular biology 

[10], clustering methods identify protein communities, 

aiding in functional group discovery. In transportation 

networks[11], clustering identifies highly interconnected 

nodes for efficient traffic planning. Methods like 

Modularity-based [12], Spectral [13], and Hierarchical 

clustering [14] [15] can be used for effective network 

structuring. 

Maximizing modularity is complex due to its 

computational intractability, often requiring heuristic 

algorithms [16]. Modularity maximization aims to 

increase interconnectedness within communities while 

minimizing it between different communities, revealing 

network structures [17]. Our work enhances modularity 

through the Weight-based Fish School Search algorithm   

[18]. This algorithm segments networks iteratively, 

maximizing the modularity function. Our methodology, 

employing the Weight-based Fish School Search 

algorithm (WFSSC), offers an innovative strategy for 

identifying community structures within networks. The 

modularity function acts as the objective function during 

clustering, evaluating clustering solutions. 

The paper is logically structured, with the second section 

covering background and related works, the third 

highlighting the contribution (WFSSC), the fourth 

detailing our experiment and results, and the fifth 

concluding and discussing future work. 

 

2. Background and Related Works  

2.1  Community Detection 

In complex networks, communities are groups of nodes 

tightly interconnected with each other, holding shared 

characteristics or functions [19]. Detecting these 

communities is crucial for various applications, with 

modularity optimization being a widely used method. This 

approach maximizes the density of links within 

communities compared to connections between them, thus 

enhancing partition quality [20]. 

Hierarchical clustering is another popular method for 

community detection [21]. It constructs a partition 

hierarchy by merging or splitting communities based on 

similarity measures, revealing both macro and micro-level 

patterns within the network [22]. This technique allows 
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flexible exploration of community structure at different 

levels of granularity, even identifying nested communities 

[23]. 

Hierarchical clustering offers a systematic framework for 

uncovering hidden structures within complex networks, 

facilitating a deeper understanding of network 

organization and efficiency [24]. Its applications span 

various fields, including social network analysis, biology, 

neuroscience, information retrieval, recommendation 

systems, and anomaly detection [25]. 

Despite advancements, challenges like overlapping 

communities, weighted networks, and noisy data persist  

[23]. Addressing these challenges will further enhance 

community detection methods and their practical 

applications. 

Our method, WFSSC, utilizes modularity to identify 

communities in structured networks. It maximizes 

modularity, indicating the most natural division of the 

network into communities with stronger internal 

connections than external ones. 

2.2 Modularity 

In [26], Newman and Girvan introduced modularity as a 

crucial metric for assessing graph partitioning into 

communities. Initially designed for undirected graphs, 

subsequent research [27]extended its applicability to 

directed and weighted graphs. Modularity transcends 

disciplinary boundaries, serving as a fundamental tool for 

understanding complex systems, especially in community 

detection within diverse network contexts [28]. 

 

Community detection in networks often involves 

modularity maximization, where modularity measures 

how a network deviates from a random network with the 

same degree distribution concerning intra-community 

edges. The objective is to group nodes into communities 

with the highest modularity score [29] [20]. This entails 

identifying clusters of nodes with stronger internal 

connections than external ones. Modularity maximization 

algorithms iteratively move nodes between communities, 

optimizing modularity until the best division of the 

network into communities is achieved. 

Modularity maximization offers several advantages for 

community detection. It is a versatile method adaptable to 

networks of various sizes and types. Additionally, it can 

determine the optimal number and size of communities 

without prior information, facilitating an unbiased 

exploration of the community structure [30]. 

The adjacency matrix presents the network, with ‘0’ 

denoting the absence of an edge and ‘1’ denoting its 

presence. A membership variable’ indicates whether a 

node belongs to community 1 or 2. The modularity 

function is calculated as  𝑄 = 𝑐𝑖𝑒(𝑐𝑖) − 𝑎(𝑐𝑖)
2  where 

𝑒(𝑐𝑖) is the observed fraction of edges inside communities 

and 𝑎(𝑐𝑖)  is the expected ratio       

  𝑄 =
1

(2𝑚)
∑ [𝐴𝑖𝑗 −

𝐾𝑖 𝐾𝑗

(2𝑚)
] 𝛿(𝐶𝑖 , 𝐶𝑗) = ∑ (𝑒𝑖𝑖 − 𝑎𝑖

2)𝑐
𝑖=1𝑣𝑤             (1) 

where 

𝛿(𝑐𝑖 , 𝑐𝑗) = {
1            𝑖𝑓 𝑐𝑖 = 𝑐𝑗
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

the graph's adjacency matrix has 𝐴𝑖𝑗 as the entry in the 𝑖 

row and 𝑗  column, it is determined if there is an edge 

between vertex 𝑖 and vertex 𝑗 the degrees of the vertices 𝑖  

and 𝑗 are 𝑘𝑖 and 𝑘𝑗 respectively,  𝑒𝑖𝑖 Observed fraction of 

edges within community and 𝑎𝑖  representing intra-

community connections the graph has a total of 𝑚 edges, 

and each group is divided into 𝑘 groups (𝑐1 . . …… . , 𝑘) 

2.3 Weight-based Fish School Search Algorithm  

The Weight-based Fish School Search algorithm (WFSS) 

is a metaheuristic optimization technique that draws 

inspiration from the collective behavior of fish school 

search (FSS) [31]. It was developed as a novel approach to 

tackle complex optimization problems, offering an 

alternative to traditional optimization algorithms. By 

emulating the behavior of fish schools, WFSS aims to 
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efficiently explore the search space and find optimal 

solutions. 

In WFSS, a population of fish called a "school," is used to 

explore the search area and uncover the optimal solution. 

Each fish in the school has a potential solution to the issue. 

The position of a fish corresponds to a candidate solution, 

and the fitness of a fish represents the quality of that 

solution [32]. 

The main idea behind WFSS is to mimic the collective 

behavior of fish schools, where individual fish adjust their 

positions based on the positions of their neighbors. This 

collective behavior helps the school to explore the search 

space efficiently and converge toward the optimal 

solution. 

The key concept in WFSS is the weight factor, which 

determines the influence of each fish on the movement of 

its neighbors. The fitness of each fish is used to calculate 

the weight factor, with fitter fish having a higher weight. 

This allows the fitter fish to have a stronger influence on 

the movement of the school.   WFSS uses a number of 

operators to simulate the behavior of fish schools, 

including: 

1. Individual components of the movement  

Within the Fish School Search (FSS), the individual 

movement operator plays a pivotal role. This operator 

enables each fish to navigate independently within the 

search space, following a positive gradient. The movement 

involves updating each fish's position through a formula 

that incorporates a random displacement. Notably, the new 

position is accepted only if it leads to an enhancement in 

the fish's fitness. This fitness is determined by evaluating 

the objective function specific to the optimization problem 

at hand. Otherwise, the fish remains in its current position. 

This individual movement stage is repeated iteratively for 

each fish in the school, allowing them to explore the search 

space and potentially improve their positions and fitness 

[33]. using the formula   

   𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑(−1,1)𝑠𝑡𝑒𝑝𝑖𝑛𝑑                                            (2) 

Where 𝑥𝑖(𝑡)  and  𝑥𝑖(𝑡 + 1)  The fish's status was both 

before and after the individual movement operator. in that 

order. 𝑟𝑎𝑛𝑑(−1,1)  is a number that is randomly 

distributed and uniform, with a range from -1 up to 1 

and 𝑠𝑡𝑒𝑝𝑖𝑛𝑑  parameter that sets the highest distance for 

this movement. The updated location, denoted as 𝑥𝑖(𝑡 +

1), is adopted by the fish exclusively if it results in an 

improvement in the fish's fitness. In cases where this 

condition is not met, the fish maintains a similar position 

and does not change. 

  𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡)                                                           (3) 

2.  Feeding Operator 

The feeding operator is a critical element in the Fish 

School Search, it models how fish increase or decrease 

their weight depending on the quality of their food source, 

which is determined by the objective function value [34]. 

The feeding operator updates the weight of each fish 

according to the following formula:                           

     𝑊𝑖(𝑡 + 1) = 𝑊𝑖(𝑡) +
∆𝑓𝑖

𝑚𝑎𝑥(|∆𝑓𝑖|)
                                                     (4) 

where 𝑊𝑖(𝑡) is the weight of the fish at iteration t, ∆𝑓𝑖  The 

difference in objective function values between the current 

and previous ones, and 𝑚𝑎𝑥(|∆𝑓𝑖|)  The absolute value 

that is the highest of  ∆𝑓𝑖  among all fish. 

The feeding operator ensures that fish with better objective 

function values will have higher weights, and vice versa. 

This affects the individual and collective movements of 

the fish, as well as the termination criterion of the 

algorithm [35]. 

3. Link Formation Rule 

The Link Formation Rule in the Fish School Search plays 

a crucial role in connecting fish within the school. Fish that 

successfully improve their fitness through individual 
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movement are more likely to establish links. Additionally, 

fish with higher weights, indicating better food source 

quality, also tend to form connections. These links 

facilitate information sharing among the fish, enabling 

them to collectively explore and adapt to the evolving 

search space [36]. 

 Link Formation Rule dictating how fish establish 

connections based on their movements and food source 

quality. This fosters collaboration within the school, 

enhancing the search for optimal solutions. 

4. Collective Instinctive Movement 

The Collective Instinctive Movement is a fundamental 

aspect of the Fish School Search, shaping the behavior of 

fish within the school. Drawing inspiration from the 

collective behavior of fish schools, this movement 

involves calculating the average of individual movements. 

The resulting vector represents the weighted average of the 

displacements observed by each fish. As a result, fishes 

that have experienced greater improvements act as 

attractors, drawing other fishes towards their position. 

Following the vector computation, every fish is motivated 

to move by this collective instinct, fostering collaboration 

and coordinated exploration within the school [37]. 

The search space can have a balance between exploration 

and exploitation thanks to this mechanism, as it 

encourages fish to move towards areas where other fish 

have found success, while still maintaining some degree 

of randomness and individuality in their movements1. 

This can lead to more efficient and effective search 

processes, as it leverages both individual successes and 

collective knowledge within the school [38]. 

  𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝛼 (
∆𝑥𝑖𝑗∆𝑓(𝑥𝑙

→ )𝐿∆𝑥𝑖𝑗∆𝑓(𝑥𝑙
→ )

∆𝑓(
𝑥𝑙
→ )+𝐿∆𝑓(

𝑥𝑙
→ )

)                                (5) 

 

 

 

 

 

5. The Collective Volitive Movement 

The Collective Volitive Movement is an operator that 

regulates the exploration and exploitation search process 

and is influenced by the school's ability.  

The algorithm calculates the barycenter of the fish school, 

influencing exploration and exploitation. If the total 

weight increases, fishes move towards the barycenter, 

focusing on promising areas and improving solution 

quality [39]. 

The search space can have a balance between exploration 

and exploitation through this mechanism. It encourages 

fish to move towards areas where other fish have found 

success, while still maintaining some degree of 

randomness and individuality in their movements1. This 

can lead to more efficient and effective search processes, 

as it leverages both individual successes and collective 

knowledge within the school [40]. 

 

                                     𝐵𝑖(𝑡)

=
𝑥𝑖𝑗𝑊𝑖(𝑡) + 𝐿𝑥𝑙𝑗𝑊𝑖(𝑡)

𝑊𝑖(𝑡) + 𝐿𝑊𝑙(𝑡)
                                                                    (6) 

    

 

\ 

 

 

 

 

 

 

 

 
a. Initial Distribution    b. Group Formation     c. Final Grouping 

 

Fig1. The three stages of the Weighted Fish School Search 

(WFSS) algorithm are: a. Initial Distribution: Fish are 

randomly distributed, moving independently towards the 

positive gradient in the search space. Their weights are 

adjusted based on the quality of their food source. b. Group 

Formation: Over time, similar fish form small groups 

guided by the Link Formation Rule and Collective 

Instinctive Movement, moving towards areas where other 
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fish have found success. c. Final Grouping: The final 

grouping is based on fish weights. All fish will move 

towards the barycenter if the school's total weight 

increases, leading to a final grouping based on high 

weight. 

Algorithm 1: WFSS Algorithm 

1. // Initialization 

2. InitializePopulation() 

3. EvaluateFitness() 

4. InitializeWeights() 

5. // Iterative Process 

6. while TerminationCriterionNotMet() do: 

7.  // Individual Movement 

8. for each fish in the school: 

9. newPosition = CalculateNewPosition(fish) 

10. if FitnessImproves(newPosition): 

11. UpdatePosition(fish, newPosition) 

12. // Feeding Operator 

13. UpdateWeights() 

14. // Link Formation Rule 

15. FormLinks() 

16. // Collective Instinctive Movement 

17. CalculateWeightedAverage() 

18. UpdatePositions() 

19. // Collective Volitive Movement 

20. CalculateBarycenter() 

21. MoveTowardsBarycenter() 

22. // Termination 

23. TerminateAlgorithm() 

2.4 Related Works 

In this review, we will discuss key contributions that 

highlight the use of modularity and artificial intelligence 

(AI) algorithms in community detection. Community 

detection is an evolving field that focuses on identifying 

and analyzing structures in complex networks. 

The first study [41] employs a statistical model-based 

approach to cluster diverse networks, using a hierarchical 

agglomerative algorithm and automated model selection. 

Challenges like the label-switching problem are 

addressed, with effectiveness demonstrated on synthetic 

and ecological networks. The secondary, method [42] 

employs a weighted clustering ensemble for adaptive 

partitioning of multilayer brain networks, achieving 

optimal module detection and promising insights into 

Alzheimer’s disease connectomes. Also, the study  [43] 

introduces a hierarchical method using the Tabu Search 

algorithm to detect community structures in networks by 

splitting the network into subgraphs until each node is a 

community, Finally, the study [44] introduces a new 

network-based community detection algorithm using 

cosine similarity for edge weights, employing a bottom-up 

approach with modularity-based merging, and evaluates 

its performance against other algorithms using various 

metrics. Our proposed WFSSC approach extends the 

paradigm of hierarchical community detection introduced 

in the related work. While previous studies have explored 

hierarchical methods such as those based on Tabu Search 

and cosine similarity, our approach introduces the Weight-

based Fish School Search algorithm to enhance the 

efficiency and accuracy of community detection. By 

combining insights from existing methodologies with 

innovative AI-driven techniques, the WFSSC approach 

represents a promising advancement in the field of 

community detection in complex networks. 

3. The Proposed WFSSC Approach (Weight-based 

Fish School Search Algorithm Clustering) 

Our methodology is primarily intended for networks that 

are unipartite, undirected, and weighted. Nevertheless, it 

possesses the potential to be expanded to identify 

community structures in other network types, such as 

unweighted or directed networks. 

We've developed an innovative network clustering 

technique that leverages the power of artificial intelligence 
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through the Weight-based Fish School Search algorithm, 

with a primary emphasis on hierarchy. 

Community detection methods that are hierarchical, either 

divisive or agglomerative, work by splitting or merging 

clusters. Divisive methods, such as Edge Density [45] and 

Topological measures [46], eliminate edges based on 

criteria like density, centrality, or clustering coefficient to 

uncover subgraphs that are densely connected as 

communities and improve community separation. 

 our methodology takes a different route. We employ a 

network-splitting strategy that hinges on maximizing 

weights to improve the modularity function. This 

distinctive approach enables us to pinpoint community 

structures that achieve maximum modularity. What sets us 

apart is our reliance on Weight-based Fish School Search 

algorithm to execute this splitting process. 

In our methodology, we employ a division hierarchical 

technique Beginning with a network, we divide it into two 

separate networks that have high modularity. after that 

splitting process is repeated iteratively until each cluster 

contains one vertex. Subsequently, we construct a 

dendrogram to visualize the hierarchical relationships 

within the network.  In our approach to community 

structure detection, we employ the modularity function to 

guide us in choosing the optimal dendrogram cut. WSSC 

stops the process of splitting when the graph 𝐺 has been 

disconnected, which implies that each node of 𝐺 represents 

a community. Subsequently, a dendrogram is constructed, 

and the most optimal community structure 𝜋 = {𝑐1, …, 

𝑐𝑘} is determined such that ⋃𝑘 𝑖=1 = 𝑉 and 𝑐𝑖 ≠ ∅, 𝑐𝑖 ∩ 

𝑐𝑗 = ∅ (for 𝑖, 𝑗 = 1 ∶ 𝑘). 

 

 

 

 

 

 

Algorithm 2: WFSSC Method 

1. Input: G = (V, E) - The input graph with vertices V  

and edges E. 

2. Result cluster - The resulting cluster (dendrogram, π) 

3. Cluster ← G; 

4. π ← cluster; 

5.  repeat 

6.  Set_cluster ← π 

7.       for each cluster in set _cluster do 

8.             π' ← Weigh Fish School Search(cluster); 

9.             π' splits the cluster into subsets; 

10.                 cluster = cluster1 +cluster2; 

11.             Update π'; 

13.             Adjust the matrix for the final dendrogram. 

14.       end for 

15.    until |π| ≥ |V| 

16.  return cluster that maximizes Q; 

17.      Return the final dendrogram; 

4. Performance measure 

We tested WFSSC on known and unknown network 

topologies. In our analysis, we compare our method with 

many other established methodologies, such as DS-LPA 

[47], SCD [48], ERGM [49], OSLOM [50], Infomap [51], 

Label propagation(LPA) [52], Louvain [53], and  

Fastgreedy method [54], Our approach successfully 

identified communities that exhibited superior clarity and 

cohesiveness compared to those discovered by the other 

methods. We assessed the performance and effectiveness 

of our method using four measures: the Modularity(Q), 

normalized mutual information, adjusted rand index 

(ARI), and Fowlkes-mallows index (FMI). 

4.1 Normalized Mutual Information (NMI) 

the normalized Mutual Information (NMI) [55] metric was 

proposed for the comparative assessment of community-

based screening techniques. NMI is a widely used measure 

of community quality and is a good predictor of human-
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annotated ground-truth communities. You'll need a 

confusion matrix 𝑁 , with rows representing the actual 

communities and columns representing the identified 

communities. Each component 𝑁𝑖𝑗  in the matrix 

represents the count of nodes belonging to the actual 

community I that are present in the discovered community 

j. This confusion matrix allows us to quantify the overlap 

and agreement between the two sets of communities. The 

NMI measure employs information theory principles to 

evaluate the similarity between the partitions. It calculates 

the mutual information between the real and found 

communities, taking into account the distribution of nodes 

across the communities. The NMI measure captures the 

shared information and dependence between the partitions 

by considering the probabilities of nodes belonging to 

specific communities.                        

𝐼(𝐴, 𝐵)  
−2∑ ∑ 𝑁𝑖𝑗 𝑙𝑜𝑔(𝑁𝑖𝑗𝑁/𝑁𝑖.𝑁.𝑗)

𝑐𝐵
𝑗=1

𝑐𝐴
𝑖=1

∑ 𝑁𝑖 𝑙𝑜𝑔(𝑁𝑖/𝑁)
𝑐𝐵
𝑖=1

+∑ 𝑁.𝑗 𝑙𝑜𝑔(𝑁.𝑗/𝑁)
𝑐𝐵
𝑗=1

                 (7)                                                  (7)                                                   

In this context, 𝐶𝐴 represents the actual community count, 

while 𝐶𝐵  indicates the identified community count. 𝑁𝑖 

signifies the sum of elements in the ith row vector of 𝑁𝑖𝑗 

matrix, and 𝑁. 𝑗 identifies the sum for column j. When our 

method aligns perfectly with the actual community 

structure, I (A, B) attains its highest value of 1, indicating 

a perfect match. Conversely, if the discovered 

communities are unrelated to the actual ones, the NMI 

value drops to 0, signifying no similarity. When the 

identified community structure is somewhat similar but 

not identical to the actual structure, the NMI value falls 

between 0 and 1, indicating partial agreement. 

4.2 Adjusted Rand Index (ARI) 

When it comes to evaluating the similarity between two 

data clustering, the adjusted rand index (ARI) [56] is a 

valuable tool. The ARI formula enhances the rand index 

by incorporating chance into the evaluation. It thoroughly 

scrutinizes how pairs of data points are assigned, taking 

into account their similarity or dissimilarity in both the 

predicted and true clustering. 

  𝐴𝑅𝐼
(𝑅𝐼−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝐼)

(𝑚𝑎𝑥(𝑅𝐼)−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼)
                                                  (8) 

The ARI score is designed to approach 0.0 for random 

labeling, reach exactly 1.0 when the clustering is a perfect 

match, and potentially drop as low as -0.5 for completely 

discordant clustering. 

The ARI exhibits symmetry, implying that swapping the 

input clustering has no impact on the score. It falls within 

the range of -1 to 1, where 1 signifies complete 

concordance, 0 represents a chance-level agreement, and -

1 denotes absolute discord. 

. Professionals in machine learning, data mining, and 

pattern recognition frequently turn to the ARI as a 

fundamental tool for appraising the performance of 

clustering algorithms. 

4.3 Fowlkes-Mallows Index (FMI) 

The Fowlkes-Mallows Index (FMI) [57] is a statistical 

metric frequently utilized in clustering analysis to assess 

the quality of clustering outcomes or the effectiveness of 

clustering algorithms.  It quantifies the similarity between 

two different clustering or partitions of a dataset, taking 

into account both precision and recall, two important 

metrics in information retrieval and classification.  The 

FMI is computed using the formula: 

    𝐹𝑀𝐼 = 𝑇𝑃 ⁄ √(((𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)))                                                         (9) 

In this context, TP is employed to indicate true positives, 

FP is utilized for false positives, and FN is designated for 

false negatives. The Fowlkes-Mallows Index (FMI) has a 

scale from 0 to 1, with values approaching 1 indicating a 

stronger agreement between the clustering. It is especially 

useful when comparing different clustering algorithms or 

assessing the quality of a clustering algorithm's output. 

Overall, the FMI provides a balanced measure for 

evaluating clustering performance. 
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4.4 Computer-generated networks 

To assess the effectiveness of our method, we put it 

through rigorous testing using computer-generated grids. 

These synthetic networks come with predefined 

community structures, making them an ideal testbed for 

evaluating the precision and robustness of community 

detection algorithms, specifically WFSSC. We harnessed 

the Lancichinetti–Fortunato–Radicchi (LFR) benchmark 

model, as suggested by [58], to generate networks tailored 

to our desired community structures. This comprehensive 

evaluation allows us to gauge WFSSC's proficiency in 

accurately uncovering and delineating community 

structures. 

The LFR model stands as a widely recognized framework 

for fashioning networks with diverse attributes, including 

power-law degree distributions, community structures, 

and even overlapping communities. Within our study, we 

employed the LFR model to construct a network 

comprising 128 nodes. The degree exponent distribution 

was set at 2, governing the node-to-link ratio, while the 

community size distribution exponent was fixed at 3, 

dictating community sizes. With an average degree of 16, 

we quantified the actual connections in relation to 

potential ones within the network. This network featured 

three distinct communities, with the mixing parameter 

varying from 0.1 to 0.9, exerting an impact on 

interconnectivity among these communities. In our 

methodology, we defined the fitness function as the 

modularity function and established 1000 food sources, 

accompanied by a maximum iteration limit of 5000 for 

optimizing WFSSC. 

5. Experiment and results 

In this section, we delve into diverse social networks to 

evaluate our method's effectiveness, providing detailed 

descriptions below. These networks offer valuable insights 

into varied social dynamics and structures on the following 

networks: The Zachary club network  [59], American 

College football  [60], The Dolphin Social Network [61], 

The Book about US Politics Network [62], Amazon [63], 

Les Miserable Network  [64], The Jazz Collaboration 

Network [65], The HIV network [66], The Contiguous 

USA [67] network. Table 1 summarizes the fundamental 

characteristics of real benchmark networks, including the 

number of nodes (|V|), the number of edges (|E|), the 

average degree (〈k〉), and community structure (CS) is 

known or unknown 

 

Table 1: Shows a complete picture of networks 

   

Table 2. Presents the results related to the network's performance. 

 

 

 

Networks CS |V| |E| 〈k〉 Main Focus 

Zachary Known 34 78 4.58 Karate club conflict analysis. 

Football Known 115 613 10.66 College football network analysis. 

Dolphin Known 62 159 5.12 Dolphin social dynamics analysis. 

Book Known 105 441 8.4 2004 US election book themes. 

Miserable Unknown 77 245 6.36 Victor Hugo's character network. 

Jazz Unknown 198 2742 27.69 Jazz collaboration dynamics 

HIV Unknown 40 41 2.05 Early HIV spread in USA contacts. 

USA Unknown 48 107 4.45 Geographical connectivity analysis. 

Amazon Unknown 334863 925872 5.52 network for co-purchasing products. 

 

Methods 

Karate Football Books Dolphins Amazon  
|C| NMI |C| NMI |C| NMI |C|                                            NMI |C|                                            NMI 

DS-LPA 
4 0.53 20 0.64 4 0.48 3 0.52 259 0.09 

SCD 
3 0.55 10 0.84 2 0.50 5 0.59 1362 0.63 

ERGM 
3 0.22 14 0.17 4 0.21 2 0.07 120 0.03 

OSLOM 
2 0.1 22 0.54 12 0.39 7 0.35 80 0.39 

Infomap 
2 0.59 12 0.92 6 0.49 5 0.53 17296 - 

Louvain 
4 0.50 9 0.85 5 0.50 4 0.49 5813 0.01 

LPA 
2 0.1 10 0.83 3 0.48 4 0.47 22496 6.35 

Fastgreedy 
3 0.69 5 0.65 3 0.53 3 0.41 220 0.06 

WFSSC 
2 0.87 12 0.94 3 0.57 8 0.60 170 0.54 
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Table 3 displays the modularity values for networks exhibiting 

community structures. 

 

Table 4. Presents the ARI and FMI metrics for assessing the 

network's performance. 

 

Table 2 and Table 3 provide a comprehensive comparison 

of community detection methods across four diverse 

networks, utilizing key metrics like the number of clusters 

(|C|), modularity (Q), normalized mutual information 

(NMI), adjusted Rand Index (ARI) and Fowlkes-Mallows 

Index (FMI) to assess method effectiveness. The WFSSC 

method demonstrated significant performance across 

various networks. It achieved a reasonable level of 

agreement with the ground truth on the Karate network 

and high accuracy on the Football network. Although it 

performed moderately on the Books network, it excelled 

on the Dolphins network, outperforming other methods. 

These results underscore WFSSC’s robustness and 

versatility in community detection across diverse 

networks. 

 

 

 

 

 

 

 

 

 

 

          Fig .2 WFSSC identifies 2 clusters in the Zachary club network structure.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3 WFSSC identifies 3 clusters in the structure of the Books about US politics. 

 

WFSSC effectively discerned significant communities in 

the karate network (Fig 2) and identified three distinct 

clusters in the US politics book network (Fig 3). The high 

modularity and NMI values highlight its robust 

performance in community detection, offering insights 

into social dynamics and thematic clustering. 

 

 

 

 

 

Methods 

Karate Football Books Dolphins                               Amazon 

Q Q Q Q Q 

DS-LPA 0.37 0.41 0.47 0.42 0.79 

SCD 0.39 0.58 0.45 0.40 0.88 

ERGM 0.06 0.03 0.02 0.01 0.60 

OSLOM 0.37 0.18 0.09 0.14 0.68 

Infomap 0.37 0.60 0.52 0.52 0.82 

Louvain 0.41 0.60 0.52 0.52 0.92 

LPA 0.37 0.57 0.47 0.51 0.78 

Fastgreedy 0.38 0.54 0.50 0.49 0.81 

WFSSC 0.40 0.60 0.50 0.53 0.93 

 
Methods 

Karate Football Books Dolphins 

 

Amazon 

ARI FMI ARI FMI ARI FMI ARI FMI ARI FMI 

DS-LPA 

0.38 0.60 0.74 0.76 0.55 0.64 0.53 0.52 0.53 0.52 

SCD 

0.54 073 0.80 0.82 0.53 0.72 0.54 0.55 0.54 0.55 

ERGM 

0.16 0.22 0.06 0.09 0.02 -0.03 -0.11 0.04 -0.11 0.04 

OSLOM 

0.1 0.1 0.48 0.52 0.44 0.59 0.38 0.42 0.38 0.42 

Infomap 

0.35 0.71 0.89 0.90 0.53 0.69 - - -0.04 0.01 

LPA 

0.1 0.1 0.69 0.73 0.65 0.79 - - - 0.05 

Louvain 

0.22 0.59 0.70 0.74 0.64 0.77 - - 0.01 0.07 

Fastgreedy 

0.54 0.77 0.42 0.54 0.63 0.77 - - - 0.02 

WFSSC 

0.69 0.80 0.82 0.84 0.91 0.94 0.62 0.84 0.62 0.84 
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Fig. 4 The dendrogram of the Dolphins network created by WFSSC. 

 

Fig. 5 The dendrogram of the football network created by WFSSC. 

WFSSC's performance in clustering two networks, 

Dolphin and football, was exceptional. The Dolphin 

network (Figure 4) formed eight meaningful communities, 

revealing hierarchical clustering patterns via a 

dendrogram. In the football network (Figure 5), WFSSC 

partitioned it into 12 clusters with impressive accuracy. 

These results underscore WFSSC's effectiveness in 

accurately detecting communities within complex 

networks, offering valuable insights into their structural 

organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Compares WFSSC with different unknown networks: (a) Les 

Miserable Network, (b) Jazz Network, (c) HIV Network, (D) USA 

Network, and (E) Amazon Network. 

depicted in Fig 6, the WFSSC method was subjected to 

testing across various networks, consistently exhibiting 

superior performance in many instances. However, 

comparing WFSSC with methods like ERGM, LPA, and 

OSLOM proves complex due to the absence of a known 

community structure. While these methods may excel on 

certain networks, their performance varies on others, 

underscoring the challenge of identifying the most 

effective community detection approach. Furthermore, In 

this paper, we evaluate different algorithms in large 

network settings using the Amazon dataset (Fig E). The 

WFSSC algorithm emerges as a standout performer in the 

Amazon network, consistently achieving Q values above 

0.90, surpassing other algorithms. However, the complex 
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time complexity of these algorithms poses a significant 

challenge to their efficient operation in the Amazon 

network. 

 

Fig. 7 The dendrogram of the USA network created by WFSSC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 WFSSC detects computer-generated networks at μ = 0.1 

 

In Figure 7, WFSSC effectively partitioned an unknown 

USA network into six clusters with a high modularity 

score of 0.60, aided by a revealing dendrogram. In Figure 

8, WFSSC accurately detected three clusters in computer-

generated networks using μ = 0.1. These results highlight 

WFSSC's adaptability and precision in identifying 

meaningful communities across varied network scenarios, 

affirming its utility as a versatile tool for network analysis 

and community detection.   

Fig.9 Modularity changes with the degree of inter-community mixing.          

 

Fig.10 NMI changes with the degree of inter-community mixing.     
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Fig.11 ARI changes with the degree of inter-community mixing.           

 

Fig.12 FMI changes with the degree of inter-community mixing.    

The WFSSC method revealed a robust community 

structure in network analysis, according to [54], a 

network’s community structure is significant when its 

modularity exceeds 0.3. This high modularity signifies 

densely connected communities. Figure 9 visually 

supports this, showcasing WFSSC's proficiency in 

unveiling cohesive communities. These findings validate 

WFSSC's effectiveness in detecting meaningful network 

communities, highlighting its value in network analysis 

and community detection compared with some methods 

such as ERGM, OSLOM, Informap, and LPA that give 

modularity values low or zero. Figure 10 provides a 

focused performance analysis of the WFSSC method 

concerning inter-community mixing. Initially, WFSSC 

achieved a perfect NMI of 1.0 with mixing parameters 

between 0.1 to 0.4, demonstrating precise community 

identification. On the contrary, some methods, such as DS-

LPA, ERGM, and Fastgreedy, may not accurately identify 

the true community structure, particularly when μ is less 

than or equal to 0.4. When μ is greater than or equal to 0.5, 

detecting the true community structure becomes a 

challenge for all methods. However, the WFSSC method 

continues to outperform others in terms of accuracy, even 

under these conditions.  

In Figure 11, we evaluate the performance of the WFSSC 

method for community detection under different levels of 

inter-community mixing, using the Adjusted Rand Index 

(ARI) as a measure. The WFSSC method shows excellent 

performance with a perfect ARI score of 1.0 for mixing 

parameters ranging from 0.1 to 0.4, indicating accurate 

community detection. For mixing parameters in the range 

of 0.5 to 0.6, WFSSC still maintains a robust ARI above 

0.80. However, some methods like DS-LPA, ERGM, and 

Infomap yield an ARI value of zero or negative when the 

mixing parameters exceed 0.5, indicating their limitations 

in these scenarios. 

In Figure 12, The WFSSC method demonstrates to 

outperform other methods, achieving a high Fowlkes-

Mallows Index (FMI). This suggests that it excels in 

accurately detecting communities, especially when the 

network's mixing parameter is relatively high (μ less than 

0.7) underscoring WFSSC's adaptability and strong 

performance in community detection across different 

network scenarios. In contrast, other methods such as 
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OSLOM, Infomap, and LPA may struggle or even fail to 

effectively detect communities under similar conditions. 

6. Conclusion and future work 

The methodology's core purpose revolves around its 

applicability to networks that share the traits of being 

unipartite, weighted, and undirected, but it can be 

expanded to other network types. It uses the Weight-based 

Fish School Search algorithm to identify community 

structures. Unlike other methods, it focuses on 

maximizing weights to improve the modularity function. 

The methodology employs a division hierarchical 

technique, dividing the network into separate networks 

iteratively until each cluster contains only one node. A 

dendrogram is then constructed to visualize the 

hierarchical relationships, and the cut in the dendrogram 

that maximizes the modularity function is chosen to 

identify the community structure. The WFSSC method has 

shown significant performance in various networks, 

achieving high accuracy and modularity values. It 

effectively detects communities within complex networks 

and offers valuable insights into their structural 

organization. The method has also demonstrated 

adaptability and precision in identifying meaningful 

communities across different network scenarios. Through 

comprehensive comparisons with alternative community 

detection approaches, the WFSSC method has consistently 

displayed its prowess in community detection, recording 

impressive results across metrics like modularity, 

normalized mutual information, and the adjusted Rand 

index.  The Fowlkes-Mallows Index has also been used to 

evaluate the method's performance, and it consistently 

delivers high values. Overall, the WFSSC method is 

effective, versatile, and robust in detecting communities in 

networks. Future work involves expanding the 

methodology to different network types, exploring its 

potential in unweighted or directed networks, enhancing it 

with additional optimization techniques, and evaluating its 

performance on larger and more diverse networks for 

scalability and generalizability. Further development and 

refinement are needed to improve its effectiveness and 

applicability in community detection for example be 

applied WFSSC in cancer subtype classification [68] for 

identifying patient clusters and advancing targeted 

therapies and biomarker discovery. 
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