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Abstract: Electroencephalogram (EEG) signals, which capture high temporal resolution and asymmetric spatial activations, provide a
reliable means for documenting emotions, unlike easily duplicated voice signals or facial expressions. However, due to the significant
individual variability in emotional responses to the same stimuli, EEG signals are not universal and vary greatly among individuals. This
variability necessitates subject-dependent emotion identification, which has shown promising results. Existing methods often struggle
with accurately capturing the complex patterns in EEG data and generalizing across different individuals and conditions. This research
proposes an advanced heterogeneous ensemble learning approach with a sophisticated voting mechanism to enhance the understanding
of spatial asymmetry and temporal dynamics in EEG for more accurate and generalizable emotion recognition. The study employs
Variational Mode Decomposition (VMD) and Empirical Mode Decomposition (EMD) for feature extraction from pre-processed EEG
data. Feature selection is optimized using the Garra Rufa Fish Optimization Algorithm (GRFOA). The ensemble model integrates a
Temporal Convolutional Network (TCNN), an Extreme Learning Machine (ELM), and a Multi-Layer Perceptron (MLP), with the final
emotion classification derived via a heterogeneous voting classifier. The proposed approach is validated using two publicly available
datasets, DEAP and MAHNOB-HCI, under extensive cross-validation settings, demonstrating its effectiveness and generalizability in
emotion recognition from EEG signals.
Keywords: Empirical Mode decomposition; Electroencephalogram; Garra Rufa Fish optimization algorithm; Extreme Learning Machine;
Emotion analysis; Multi-Layer Perception Network.

1. INTRODUCTION
Along with more conventional methods, such as affec-

tive reports (e.g. SAM), bio-signals have lately grown in
popularity as a means of gauging emotional states. Emotion
identification has long made use of bio-signals such as res-
piration, galvanic skin reaction, phalanx temperature, ECG,
electrooculographic (EOG) signals, blood volume pulse,
and cerebral blood flow [1]. A number of recent studies
have concentrated on the analysis of brain signals using
methods like functional near-infrared spectroscopy (fNIRS),
electroencephalograms (EEGs), event-related optical signals
(EROS), and proton emission tomography (PET) [2]. When
associated to the other technologies listed, EEG delivers
superior temporal resolution.

The market is seeing growth due to the increasing de-

mand for brain-computer interfaces (BCIs), particularly for
BCI applications that address brain illnesses and accidents.
The global BCI market was worth $1,488,000,000 in 2020
[3]. With a projected CAGR (Compound Annual Growth
Rate) of 13.9% from 2021–2030, its value is anticipated
to reach $5, 463, 000, 000, 000, 000 by 2030. Getting the
signal recording out of clinical research labs has been a big
obstacle in EEG system development recently [4]. Typically,
subjects were monitored in hospital or laboratory settings
using bulky technology. The development of wearable elec-
troencephalogram (EEG) equipment, however, has opened
the door to non-invasive, long-term monitoring of brain sig-
nals in settings other than laboratories [5]. As a result, BCI
may be used for emotion identification in several domains,
thanks to the increasingly wearable prototype solutions. The
non-clinical use of EEG is extensive in neuromarketing for
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the purpose of gauging consumer responses to offerings [6].
Prior research in this area has made use of a variety of
commercially available EEG equipment.

A person’s emotional state may be defined as their bod-
ily and mental reactions to significant life events, whether
those events occur within or outside of themselves [7].
The bond between people and their natural surroundings
is enhanced. There are essentially three ways that machines
get emotional data, all based on how humans see the world.
One approach is to use visual cues such as gaze, posture,
gestures, and lip and face movements to identify emotions
[8]. Two, one may use the pitch, length, and strength of
one’s voice to create an emotional classification system.
A third category includes systems that detect emotions by
analyzing biochemical cues [9]. Emotion detection using
facial expressions or auditory signals has proved successful,
but physiological signals, which are unconscious displays of
emotions, have the advantage of being impossible to hide
or cover, even after training. As a result, researching phys-
iological signal properties and applying them to emotion
identification is a worthwhile endeavor [10].

Many models exist for representing emotions; the two
most prevalent are the dimensional model and the discrete
perfect. There are six primary emotions represented by
the discrete model: joy, sorrow, wrath, surprise, disgust,
and fear [11]. From these fundamental emotions, all other
emotions emerge. A valence-arousal 2-dimensional table
represents emotions in the dimensional model. The valence
is a measure of the degree to which an feeling is happy
or sad. The arousal level, which can range from calm to
excited, is a measure of how active a person is [12]. Also,
technology for acquiring EEG signals while exercising
and other electrodes has evolved over time thanks to the
ongoing development of 60-acquisition equipment, such as
noncontact skin electrodes [13]. We are able to capture
EEG waves precisely and undisturbed. Among them, the
International 10-20 Standard is most often used to determine
where to place EEG electrodes. New developments in the
area of EEG signals, especially in emotion documentation,
have been spurred by advancements in data collecting
technologies [14].

There are over 70 components to EEG emotion recogni-
tion. Part one involves processing EEG data, which involves
doing things like extracting features and removing noise
and artifacts from the raw signal. Common space model-
ing, independent component analysis, principal component
analysis, filters, and other approaches are often used to
eliminate these false signals [15]. To remove the artifacts
while keeping the original characteristics, one might employ
a fusion signal processing approach. Emotion recognition
has been under research for a while, however there are
still issues. To start, when it comes to EEG signals, the
majority of approaches still don’t take cross-subject re-
search into account and instead concentrate on subject-
dependent investigations. Secondly, as compared to deep

learning’s performance in picture classification, the accu-
racy of emotion categorization is significantly lower. As
a result, EEG emotion identification is an area that might
greatly benefit from deep learning techniques. Third, many
approaches exploit just one of the numerous properties
present in EEG data, rather than fusing them together [16].
As a fourth point, emotions have a role in the connection
between channels. It is worthwhile to investigate how this
relationship might be utilized to enhance the precision of
mood categorization, as certain systems fail to consider it.

For EEG data, this study employs an ensemble classifier,
a GRFOA model for feature selection, and EMD and VMD
for feature extraction. In order to validate the ensemble clas-
sifier for analysis, an advanced voting method is employed.
In terms of different metrics, the tests are conducted using
datasets that are publicly available.

A. Organisation of paper
Here is the breakdown of the residual sections of the

paper: Section 2 provides a bibliography of pertinent lit-
erature; Section 3 presents the model under consideration;
Section 4 delves into an examination of the findings; and
Section 5 draws a conclusion.

2. RelatedWorks
We suggest building a robust hierarchical Bayesian spec-

tral using the hierarchical Bayesian ensemble techniques,
building on the work of Yang et al. [17] to enhance
the graph-based regression models’ robustness. By utiliz-
ing a data-driven adaptive modification method to model
parameters, the suggested HB-SR is able to significantly
mitigate the effects of noise. In particular, the present
study takes use of three distinct distributions—the Student-
t, the Laplace, and the Gaussian—to improve the HB-SR’s
generalizability. We performed experiments using emotional
EEG data to objectively assess the HB-SR framework’s
performance. Experimental findings have repeatedly shown
that the proposed HB-SR outperforms previous spectral
regression algorithms in terms of noise suppression and
robust EEG emotion identification.

In order to enhance emotion recognition, Asif et al. [18]
want to create a generic model that represents emotions in a
fuzzy VAD space. To better describe emotions, we created
a fuzzy VAD space by dividing the crisp VAD space into
low, medium, dimensions. In order to identify emotions,
a system has been created that combines EEG data with
fuzzy VAD space. Using time-frequency spectrograms to
extract spatial and temporal feature vectors, we analyzed the
EEG characteristics and also took into account the subjects’
stated VAD values. The DENS dataset, which comprises
subjective assessments, EEG data, and twenty-four distinct
emotions, was used for the investigation. A number of
models based were used to verify the study inside the deep
fuzzy framework. The corresponding emotion identification
accuracy for the 24 emotion classes was 96.09%, 95.75%,
and 95.31%, as a consequence of these models. Two ab-
lation studies were also included of the research; one used
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crisp VAD space and the other did not. In contrast to the two
models, the deep fuzzy framework produced superior results
when applied to crisp VAD space. Extending the model
to forecast emotions across subjects yielded encouraging
findings with a 78.37% accuracy rate, demonstrating the
technique’s generalizability. Affective computer interaction,
and mental health monitoring are just a few of the real-
world domains that could benefit from the created model’s
general character and good cross-subject predictions.

To overcome these shortcomings, Li et al. [19] suggested
a multi-view EEG-based emotion recognition, which helps
to automatically features while minimizing individual differ-
ences. Initially, the raw EEG signals are processed using the
short-time Fourier transform (STFT) to extract differential
entropy (DE) components. Second, at the level of the
EEG time-frame, the discriminative emotional information
is aggregated by treating each DE feature channel as a
view and applying the attention processes at distinct views.
To extract nonlinear interactions across time intervals, is
used. To further investigate the possibility of complimentary
information across various perspectives and improve the
feature’s representational capabilities, features from several
channels are fused using a feature-level fusion. Lastly, in or-
der to reduce individual variance, domain-invariant features
are generated using a domain discriminator. This feature
projection merges data from both domains into a single data
representation space. Two publicly available datasets, SEED
and DEAP, were used to assess our suggested approach. We
found that our CADD-DCCNN approach performed better
than the SOTA methods in our experiments.

In order to improve ER’s capacity for feature extraction,
Akhand et al. [20] suggest a connection feature map (CFM)
that makes advantage of partial mutual information (PMI)
through the addition of a third channel. For every set of
EEG channels, the suggested method determines PMI-based
connectivity characteristics and displays CFM in two and
three dimensions. When it comes to 2D and 3D CFMs,
the Convolutional Neural Network (CNN) is the way to
go for emotion classification. Extensive testing has been
carried out on the DEAP benchmark EEG dataset to create
CFMs from EEG signals. The improved CFM outperformed
the previous comparable modern approaches, as revealed
by PMI’s extra information, and it delivered superior ER
presentations than the one that used normal MI or NMI.

A new method has been proposed by Farokhah et al.
[21] that uses EEG signals to choose channels based on
biological information. Time and frequency domain data
are used to categorize the brain into different groups and
subgroups, and the capability of the channels linked to those
groups is then determined. Based on the accuracy results
generated by the support vector machines (SVM), we can
tell which of these groups and subgroups has the potential
to perform better. By comparing the chosen channels’-
led classification approaches to a deep learning model for
valence and arousal classes, we were able to ascertain the

channels’ capacity for correct classification. The DEAP
dataset is used to verify the technique, showing that it has
the ability to improve the efficiency and accuracy of EEG-
based emotion categorization. This novel approach to EEG
research holds great promise for the future, as it streamlines
the setup process, allows for customization according to the
emotions being studied, and achieves the highest levels of
accuracy (95.7% for intra-subject and 94.65% for cross-
subject emotion classification on average).

To fill this need, Blanco-Rios et al., [22] suggests using
technology to enhance humanities education and encourage
the growth of new approaches to teaching the subject.
More specifically, they suggest using immersive learning
environments to track students’ emotional states as they
progress through the course. To get there, we built an EEG-
based system that can identify and categorize emotions in
real time. Feelings of awe, love, hatred, want, happiness,
and melancholy were in line with the first suggestion put
out by Descartes (Passions). With the goal of building a
thorough and engaging learning environment, this system
intends to incorporate platform. Every five seconds, the
authors of this study estimated the levels of valence, arousal,
and dominance (VAD) using a machine learning (ML)
emotion recognition model. The top 8 channels and their
corresponding band powers were extracted using PCA,
PSD, RF, and Extra-Trees. Additionally, shift-based data
division and cross-validations were used to assess different
models. In comparison to the 88% accuracy stated in
the literature, Extra-Trees attained a general accuracy of
96% after evaluating their performance. After some tweaks,
the suggested model could now categorize Descartes’ six
primary passions and provide real-time predictions of VAD
variables. The VAD values, however, allow for the classi-
fication of more than fifteen emotions (as documented in
VAD emotion mapping), thereby expanding the scope of
this application.

In a simulated driving situation, Chen et al., [23] have
proposed an EEG collection and emotion categorization sys-
tem. To model obstacle avoidance at varying degrees of risk,
the approach makes use of vehicle speed as an independent
variable. In order to process the data, it employs graph
neural networks (GNN) that mimic the brain’s physiological
architecture through functional connection and attention
processes. The characteristics were also compared from
an entropy and power standpoint through a battery of
experiments. The highest F1 score for a single label was
76.7%, while the three-class classification result was 75.26
percent. The highest F1 score for a single label was 91.86%,
contributing to the overall binary classification result of
91.5%. With the help of deep learning models, the solution
was able to successfully mimic a variety of risky scenarios,
record the driver’s electroencephalogram (EEG), and keep
tabs on their emotional state.

Using an enhanced capsule network, Fan et al. [24]
presented a two-module approach to EEG emotion identifi-
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cation. When learning specific EEG spatial representations,
it is more favorable to use an enhanced capsule network
as the spatial module. In order to improve the model’s
classification capabilities, the ResLSTM module takes in-
formation flow from the upper spatial module and uses
residual connections to learn complementary features of the
spatiotemporal dual module. This results in more discrim-
inative EEG features. Arousal, valence, and dominance all
achieved average accuracy levels of 98.06%, 97.94%, and
98.15% on the DEAP dataset, respectively. On average, the
DREAMER dataset achieved arousal accuracy of 94.97%,
valence accuracy of 94.71%, and dominance accuracy of
94.96%. We found that our strategy is more effective than
the current best practices.

A new method called CS-GAN, as up by Chang et
al. [25], can improve cross-subject emotion identification
by creating EEGs of listeners in reaction to a speaker’s
voice. We trained generative adversarial networks (GANs)
to produce EEGs that were generated by stimuli by first
establishing a mapping connection between speech and
EEGs. In addition, we improved the produced EEGs’ fi-
delity and variety by including the GAN-based EEG gener-
ating approach. In order to determine the various emotional
categories expressed in the speech, the produced EEGs were
then analyzed with a CNN-LSTM model. To make the
approach work better across subjects, we averaged the EEGs
and got the event-related potentials (ERPs). In cross-subject
emotion detection tasks, the experimental findings show that
the produced EEGs using this technology surpass genuine
listener EEGs by 9.31%. In addition, the ERPs demonstrate
a 43.59% improvement, proving that this approach is useful
in recognizing emotions across subjects.

On this topic, Yuvaraj et al. [26] compared the effective-
ness of several EEG feature sets in classifying emotional
states according to valence and arousal. We looked at the
stats, fractal dimension (FD), and wavelet-derived EEG
feature sets to see how well they classified data. Five
separate and publicly accessible datasets were used to
assess performance: DREAMER. The classifier techniques
used were support vector machine (SVM). Mean valence
classification accuracy was 85.06% and mean arousal clas-
sification accuracy was 84.55% for the five datasets that
were considered using the FD-CART feature-classification
approach. Emotion identification using FD features obtained
from EEG data is dependable, since these results are stable
across all five datasets. An online feature extraction frame-
work may be built using the data, which would pave the
way for a real-time emotion identification system based on
electroencephalograms.

To enhance EEG data categorization, Dutta et al., [27]
has utilized a multilayer perceptron artificial memory. From
640 datasets acquired using a Muse EEG-powered headband
equipped with a global EEG position standard, they made
their selection. To improve the performance of the LSTM
and MLP-ANN procedures, we employed five distinct ac-

tivation function combinations with two best optimizer.
The ”EEG Brainwave Dataset: Feeling Emotions” database
on Kaggle was used to train the DL classification model
with various statistical parameters. We examined the matrix
limits of both DL models. The findings demonstrate that
the binary cross-entropy loss model obtained the highest
accuracy, while the logcosh loss model of the MLP-ANN
model achieved the lowest accuracy.

To obtain an outstanding classification impact, Wang
et al., [28] suggests a deep l identification that fuses
electroencephalogram (EEG) inputs with facial expressions.
The face features are first extracted from neural network
(CNN). To extract even more important elements from the
face frame, the attention mechanism is then developed. Af-
terwards, convolutional extract spatial characteristics data.
These CNNs learn the features of the left and right hemi-
sphere channels EEG channels using a global and a local
convolution kernel, respectively. The classifier is trained
to recognize emotions using the fused features of facial
expressions and electroencephalograms (EEGs), following
feature-level fusion. In order to test how well the suggested
model worked, this study used datasets. The DEAP dataset
has a valence dimension classification accuracy of 96.63%
and an classification accuracy of 97.15%; the MAHNOB-
HCI dataset has an accuracy of 96.69% and an accuracy of
96.26%. The suggested model is able to accurately identify
emotions, according to the experimental data.

In order to identify human emotions from EEG waves,
Iyer et al. [29] suggests a new approach. We have taken
into account three different negative. In order to calculate
the differential entropy, the EEG data are first divided into
five frequency bands based on the EEG rhythms. For precise
emotion recognition, a hybrid model is created Additionally,
all three models for emotion recognition are given the re-
trieved information. The last step is an ensemble model that
takes the best parts of each model and uses them together.
Two datasets, SEED and DEAP, for analysis, validate the
projected method. When tested on the SEED dataset for
emotion categorization, the created approach attained an ac-
curacy of 97.16 percent. The suggested method outperforms
the alternatives for EEG-based emotion analysis, according
to the experimental data.

3. Proposed system
To extract meaningful features from EEG data, the pro-

posed technique utilizes Variational Mode Decomposition
(VMD). This method decomposes the EEG signal into
a series of Intrinsic Mode Functions (IMFs), which are
simpler components representing different frequency bands
of the original signal. In order to derive intrinsic mode EEG
data, the suggested technique employs Variational). A pair
of characteristics, the IMF’s Peak Power Spectral Density
and the signal’s First Difference, are computed for every
IMF before being inputted into an ensemble classifier for
the purpose of classification.
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Figure 1. 10–20 Electrode-Placement system [30]

A. EEG data
For a number of reasons, researchers choose electroen-

cephalography (EEG) over other non-invasive methods of
monitoring brain electrical activity along the scalp. Recog-
nizing human emotions is one of such uses. The typical
range of frequencies for an electroencephalogram (EEG)
signal is between 1 Hz and 100 Hz, and its amplitude can
be anywhere from 10 mV to 100 mV. The five primary
frequency bands found in electroencephalograms (EEGs)
are as follows: the delta band, which is below 4 Hz, the
theta band, which is among 14 and 40 Hz, and the band,
which is 40 Hz or higher.

Both bipolar and monopolar recording techniques are

available for EEG signals. The voltage differential between
the scalp electrode and the reference electrode, which is
located in the ear lobe, allows for mono-polar recording.
The voltage differential between two electrodes placed on
the scalp is captured during bipolar recording. In order to
record electroencephalograms (EEGs), subjects will need
to wear electrode caps while they see the stimuli for
predetermined amounts of time. According to the 10/20
international electrode placement scheme, as illustrated in
Figure 1 [30], the electrodes within the electrode cap should
be positioned as indicated. To set the limit on the distances
between nearby electrodes, we utilize the integers 10/20.
The rule of thumb is that adjacent electrodes should be at
least 10% and no more than from the skull’s front to rear or



6 Rajanikanth Aluvalu, et al.

left to right. Different lobes make up the brain. Each letter
stands for one of the lobe positions.

B. Emotion representation
Both dimensional and category models can be used

to represent emotions. ”Surprised” and ”Angry” are two
examples of the types of emotions classified in the category
model. A number of dimensions, , are used to describe
emotions in dimensional models. Figure 2 displays the
model that utilizes valence besides arousal [31]. In this
valence-arousal space, emotions are labeled as individual
points. Both the valence and arousal axes undergo a change,
shifting from a negative to a positive state. The room
in this mode is arranged in four equal halves. On the
scale, which levels are evaluated. Feelings like ”Excited”
or ”Happy” (which are in the first quadrant) are possible
when both the valence and arousal ratings are above 5.
The second quadrant represents emotions like ”Angry” or
”Afraid” when valence is below 5 and arousal is above 5.

C. Feature extraction
The EEG’s intrinsic mode functions (IMF) reveal use-

ful information on the signal’s temporal and frequency
components. To calculate the IMFs of an EEG signal, the
suggested approach makes use of EMD and VMD methods.
Decomposing a signal into its constituent oscillatory parts
yields what are known as IMFs. The two characteristics that
are computed after obtaining the IMF signs of EEG data by
VMD are the peak worth of the PSD and the first alteration
of the signal.

1) Empirical mode decomposition (EMD)
In EMD, sifting is a repeated procedure that yields the

IMFs of a signal s(t). There are two requirements that an
IMF must meet. The first is that there can be no more than
one difference among the sum of zero crossings and the
extrema. Then, the upper enclose that is defined by local
maxima and the lower envelop that is distinct by minima
both have zero mean values. The following are the full
procedures to locate IMF:
1. Discovery out all minima and maxima in s(t).
2. Using envelop envmax(T ) and lower enclose envmin(T ) by
least correspondingly.
3. Compute the mean of envmax(T ) and envmin(T ) as m(t) =
[envmax(T )+envmin(T )]/2 and mean value is subtracted from
the unique signal s(t). to get the particulars as d(t)=s(t)-m(t).
4. Cide whether d(t). satisfy the two basic circumstances of
IMF.
5. To get first IMF I(t), recurrence the above ladders from
(a) to (e) until it contents the obligatory two conditions of
IMF.
Now sign d(t) will be the first IMF i.e I(t)=d(t),. . . ,or or next
IMF, compute the residue x(t)=s(t)-I(t). This remainder will
be named as a novel signal.
Now above steps will be repeated again.
6. The entire procedure will be sustained pending the
residue discontinuing criteria (Say, it becomes constant).

The unique signal in terms of its rotten IMF mechanisms
is shown in Equation (1).

s(t) =
k∑

i=1

Ii(t) + xk(t) (1)

In the sum of IMFs got and Ii(t) is the ith IMF. A example
of six IMFs gotten using EMD is exposed in Figure 3.

2) Variational-Mode-Decomposition (VMD)
One method that uses time-frequency decomposition is

VMD. Its purpose is to get around the following problems
using EMD:
1. Because it employs a recursive method, EMD cannot
rectify errors in the reverse direction.
2. It has trouble dealing with loud noises.

VMD use a concurrent technique rather than a recursive
one. This adaptive approach takes the input signal and
breaks it down into k independent modulation fields (IMFs),
each of which has its own set of modes. The initial signal is
represented by the total of these modes. When compared to
EMD, VMD is less noise sensitive and produces no residual
noise.
Finding IMFs is seen as an optimization issue in VMD. To
decrease the total bandwidth of IMFs to a level where the
total of all uk equals the main signal, this is the goal of the
optimization process. Figure 4 shows a trial of three IMFs
that were produced using VMD.

D. Feature Selection using GRFO Algorithm
By employing the GRFO method for feature selection,

we may enhance the classification outcomes. The Garra
Rufa fish’s unique ”fish rubbing assembly” motion which
involves swimming between two underwater legs provides
the inspiration for GRFO, a novel optimization method
[32]. Particles are categorized here, and the best one is
chosen from each category. Based on the fitness of their
group leader, some of these particles are given the ability
to rearrange the group. The quantity of fish in each group
determines how mobile those groupings are. The fish are
organized into several groups, and each group has its own
strategy for locating the system’s operating point, which
they use to locate food. Each group has a leader and a
number of followers, or particles, of about the same size.
Each repetition, the followers switch groups based on the
value. In this study, we assess the reference in the integrated
EEG classification method by using the GRFO method. The
following is how the GRFO method operates:
Step 1: Istarting: At the beginning of the process, the values
of the voltages, currents, besides load demands are set up.
Step 2: Random cohort: The matrix generates the initialised
parameter at random.
Step 3: The following is the procedure for doing a fitness
calculation based on the system’s objectives:.

Fi = Min(e) (2)
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Figure 2. Valence-Arousal model of emotions [31]

To restore the system parameter in accordance with the
Fitness Function (FF), the error function is denoted by e
here.
Step 4: Set the limit to resort: The FF states that the
system’s limits are sorted.
Step 5: Verify the cycle. Make sure you’ve reached the
maximum iteration and the best reference values. While the
predicted number has an optimal point for the objective
technique, the sum of leaders utilized in the selection
process upsurges the problem’s complexity. It is preferable
to pay the optimal tariff between the fish passes from one
group to another. In that case, we go back to the previous
steps after completing the maximum number of iterations.
Step 6: Upgrade the limit: Increase the number of particles
in each of the groups according to the definitions below.

N f =
n − NL

NL
(3)

In Equation (3), n represents the complete sum of parti-
cles, N f demonstrations the sum of characterized followers,
and NL designates the sum of leaders.
Step 7: Make a list of the top and worst leaders. Here is
the definition of the worst leader:

N f = int(α ∗ rand) (4)

mi j = max((mi j−1 − N f ), 0) (5)

Now, mi j represents the leader. The best favorite is
distinct as follows.

N1 =

n∑
2

Ni (6)

m1 j = m1d−1 − +N1 (7)

Step 8: Strengthen both the position and the pace. Here
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Figure 3. First six IMFs using EMD

we find the definitions of position and velocity.

vi(t+1) = ωvi(t)+c1R1(pi(t)−Xi(t))+c2R2(gi(t)−Xi(t)) (8)

Xi(t + 1) = Xi(t) + vi(t + 1) (9)

In these expressions, Vi i-th atom, w characterizes the
idleness mass limit, and c1, and c2 let the shown. Once the
equations have been updated, the loop is linked to Phase 3.
Both the accuracy of the classifier and the quantity of
characteristics chosen are taken into account by the FF. It
improves classification accuracy while reducing the size of
the collection of characteristics used for selection. Conse-
quently, the FF is employed to evaluate the specific solution
in the following manner:

Fitness = a ∗ ErrorRate + (1 − a) ∗
#S F

#ALL F
(10)

The classifier’s error rate is now shown via ErrorRate.
ErrorRate is a numerical value between 0 and 1 that rep-
resents the proportion of incorrect classifications relative to
the total sum of classifications.In the original dataset, #S F
indicates the selected features whereas #All F denotes all
characteristics. The classifier’s quality and subset length
may be controlled using a. The value of an is taken to be
0.9 in this experiment.

E. Classification using Ensemble Classifier with Voting
Mechanism.

1) Extreme learning machine
Considering a set of N training samples (Xi, ti), i =

1, . . . ,N for m emotion classes, where each sample and
its consistent label vector are correspondingly as Xi =
[Xi1, Xi2, · · · Xid]T ∈ Rd and ti = [ti1, ti2, · · · tim]T ∈ Rm. For
ELM with multi-output nodes, if xi belongs to the class
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Figure 4. Primary three IMFs using VMD (electrode fp1 of valence class)

m, the label vector is denoted as ti = [0, · · · , 1, · · · , 0]T .
In ELM, the weights σ and biases □ used to calculate the
network outputs are both randomly generated and fixed. It
is attainable by finding a solution to function, the goals of
which are to decrease output weights while simultaneously
achieving the least training error.

Minimize : Lp =
1
2
||β||2 +C

1
2

N∑
n=1

ξ2i (11)

S ub ject to : h(Xi)β = tT
i − ξ

T
i , i = 1, 2, ...,N

The data is mapped from layer feature space by any
nonlinear activation function denoted as j. The ELM classi-
fier’s output function is based on the Karush-Kuhn-Tucker
theorem.

f (Xi) = h(Xi)β = h(Xi)HT (
1
C
+ HHT )−1

or = h(Xi)(
1
C
+ HHT )−1HT T (12)

For any testing sample y, let f j(y) denote the consequence
of the jth output node, i.e. f (y) = [ f1(y), . . . , fm(y)]T , then
the foretold class of trial y is

class(y) = argmax
i∈{1,··· ,m} fi(y) (13)

The hidden-layer activation functions in ELM can be almost
any nonlinear piecewise continuous function, provided that
the feature mapping j is known. Output functions from
hidden layers often take the form of Sigmoid and Gaussian
curves. We can use Mercer’s conditions on ELM if j is not
known. The definition of a kernel matrix is

ΩELM = HHT : ΩELM(Xi, X j) = h(Xi)h(X j)T = K(XiX j)
(14)

Then, Equation (12) can be written compactly as,

f (Xi) = h(Xi)HT (
1
C
+HHT )−1T =

K(Xi, X1)
4

K(Xi, XN)

 ( 1
C
+ΩELM)−1T

(15)
It is clear from Equation (15) that the input data and the
sum of training tasters are the only variables that affect the
kernel form of the ELM classifier. You are also not need to
provide the dimensionality O of space, which is the quantity
of hidden nodes.

2) Multi-layer perception network
When it comes to classification tasks, MLP is often the

artificial neural network of choice. For EEG-based AER, we
compared ELM and MLP, two deep learning methods. The
input, hidden, and output layers). As an input vector, MLP
received the DE feature retrieved from the pre-processed
EEG data. Various models were evaluated to confirm the
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accuracy of the recognition. The DE feature dimension
for MLP was 160 input nodes, while the hidden node
count ranged from 1 to 2 across {128, 64, 32, 16}. For the
best classification results, we used two hidden layers with
one hundred and twenty-eight nodes and sixteen nodes,
respectively.

3) Temporal convolutional network
Sequential data is often modelled using Convolutional

Neural Networks (CNNs) and variants of them, such as
Temporal Convolutional Networks (TCNs) [33]. To achieve
a broad temporal receptive field with a small number of
parameters, TCN uses dilated 1-D convolutions. The time
dependency of different resolutions from the sequential data
may be captured by blocks with varying dilation factors.
In order to preserve low-level information and offer opti-
mization hooks, each block contains a residual connection
between its input and output. Not only that, but TCN’s
calculations may be executed in parallel, which drastically
cuts down on model size while also speeding up training.
We calculated the model parameters of a TCN with four
eight dilation variables to examine the impact of various
TCN configurations on speech separation.

4) Voting Mechanism
A thorough analysis of the combined results follows an

exhaustive review of each model. Furthermore, a modified
voting classifier, depicted in Figure 5, is a tailored applica-
tion of heterogeneous Ensemble Learning (EL), and some
shortcomings are also reduced.

Due to the wide variety of foundation models that make
up the EL method, it may be said that it is heterogeneous.
The goal of implementing the max voting method is to make
DL classifiers more efficient. The first algorithm shows
how to use the ensemble method of modified majority
voting. Here, for each testing instance, the vote counter
keeps track of the total number of votes cast by all of the
algorithms in that category and saves them in CF. Then,
the category with the greatest frequency value is described
by the final prediction FPrei. As described in lines 16–21
of Algorithm 1, class probability is used to handle issues
like the occurrence of two or more categories with the same
frequency. The smart voting coordinator gets around these
restrictions, as shown in Figure 5, by getting the greatest
frequency value from the votes accumulated by the vote
counter and using it as the final output. Then, the intelligent
elective coordinator uses a brute-force method to thoroughly
evaluate every possible mixture of the underlying base
learners. Wherein a pair consists of exactly two basic
learners, the absolute minimum. A strong and precise end
forecast is guaranteed by such coordinated strategy.

Algorithm 1 labels the DL representations used in this
study.

4. Results and discussions
On a PC with a configuration of i5-8600k, GeForce

250GB SSD, besides 1TB HDD, the suggested model was

Algorithm 1: Adapted Majority Voting Ensemble Pro-
cedure
Input: List of base replicas and BMk; Test data TDi
Output: Final forecast (FPrei) based on test data TDi

1 Model predictions dictionary,MPre: = fg
2 Class probability dictionary,MPrePro: = fg
3 Class frequencies,CF: = fg
4 for each BMk do
5 Predict test data TDi
6 Store prediction results in MPre with the model name
7 Store class probability in MPrePro
8 end
9 for each MPre do

10 Extract the predicted class from MPre
11 Increment CF
12 end
13 Determine the class CLj,that occurs most frequently in

CF
14 if frequencies are similar for two or more classes then
15 Sum up the class probability in MPrePro for the class

CL j
16 Update,FPrei CL j for the TDi when the class

probability is maximum
17 if class probabilities are similar for two or more

classes then
18 Update,FPrei CL j/ ∗CL j accepts an overall maximum

occurrences in prediction results MPre */
19 end
20 end
21 Update,FPrei CLj for the TDi
22 Return FPrei

TABLE I. Swift of Related Evidence of the Datasets Used in the
Researches

Factor MAHNOB-HCI DEAP
Subjects 27 32
Stimuli Emotional videos Music videos
Hearings/subject 20 40
Trial period 35-117s 1 min
EEG stations 32 32
Sampling rate 256Hz 512Hz
Label V/A V/A

tested using the Python 3.6.5 tool. Here are the parameters
set: activation, ReLU, learning rate, batch size, epoch count,
and dropout: 0.01.

A. Datasets
A Database for Emotion Investigation [34] besides a

affect acknowledgement (HCI)2 [35] are two publicly acces-
sible benchmark datasets that we used to perform many ex-
periments in order to assess the suggested ensemble model.
The two datasets utilized in our research are summarized in
Table I. Both datasets were used with arousal and valence
dimensions according to what was published in [36].
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Figure 5. Functioning of the projected majority voting ensemble procedure.
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Figure 6. Graphical analysis of Proposed model

Figure 7. Visual Representation of various model
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TABLE II. Experimental investigation of various models

Model Used Training Testing Training Testing Precision Recall F1 Score
Accuracy Accuracy Loss Loss

LR 0.874 0.865 0.219 0.235 0.869 0.862 0.865
DBN 0.842 0.834 0.289 0.305 0.836 0.828 0.833
AE 0.901 0.896 0.151 0.165 0.898 0.891 0.895
XGBoost 0.892 0.881 0.167 0.178 0.888 0.876 0.882
ELM 0.854 0.843 0.256 0.271 0.848 0.839 0.843
MLP 0.928 0.916 0.084 0.102 0.912 0.918 0.915
TCNN 0.903 0.895 0.127 0.139 0.898 0.891 0.894
Ensemble Classifier 0.996 0.991 0.0003 0.0035 0.992 0.989 0.9764

TABLE III. Analysis of Proposed GRFOA

Training-testing (%) Precision Recall Accuracy F1 AUC ROC AUC P-R
60-40% 0.889 0.945 90.48 0.916 0.9 0.932
80-20% 0.958 0.963 98.92 0.96 0.978 0.963
70-30% 0.929 0.986 93.84 0.957 0.909 0.962

DEAP is a dataset that includes several modalities of
human emotional states, such as galvanic skin response
(GSR), facial expressions, and (EEG). A total of thirty-
two participants had their EEG, facial expression, and GSR
monitored as they viewed music video clips. The total
number of trials that each person takes part in is forty.
With a 3-second baseline, each trial lasts for 1 minute.
Arousal, liking are four dimensions of emotion with nine
distinct levels each; after each trial, the respondent will fill
out a questionnaire about their on these dimensions. With a
sample rate using a 32-channel device. Another multi-modal
dataset that is comparable to DEAP is MAHNOB-HCI. A
total of thirty participants had their facial expressions, audio
data, electroencephalogram (EEG), signals collected as they
watched movie excerpts. It should be noted that subjects
12, 15, and 26 did not complete the data collection; so,
this study utilized data from the remaining 27 out of 30
patients. The length of the video snippets ranges from 35 to
117 seconds. The 10-20 international system collects EEG
readings from 32 electrodes. There are 256 hertz in the
sample. The valence, arousal, dominance, and emotional
keywords for each trial are labeled using four integers from
1 to 9, respectively, and the individuals self-report these
values.

B. Pre-Processing
Every trial’s DEAP baseline—three seconds long—was

eliminated. The electrooculogram (EOG) was then elimi-
nated using a separation technique after data downsampling
from 512 Hz to 128 Hz. The original EEG was subjected
to 4.0 to 45 Hz in order to eliminate the high- and low-
frequency noise. The last step was to average the reference.
Because the possible class labels for each dimension range
from 1 to 9, we chose 5 as the cutoff for dividing the 9
values into high and low categories for each dimension,
as previously mentioned [36]. Due to the vast number of
trainable parameters in deep neural networks, a considerable
amount of labeled data samples is necessary for optimal

learning of emotion state representations in EEG. Neverthe-
less, the chosen datasets have a remarkably low number of
trials (Table I). As a data augmentation step, we divided 4s
chunks to get around this problem. Once the segments were
prepared, the deep neural network was trained. With the
following exception, MAHNOB-HCI’s pre-processing was
quite similar to that of the DEAP dataset. In order to make
the remaining time correlate to the emotion elicitation event,
we first deleted the 30-second from each trial. A band-pass
filter reaching from 0.3 to 45 Hz was then functional to the
initial EEG in order to eliminate the low- and high- noise.
It should be noted that the part of an person’s emotional
state, therefore it is included.

C. Validation Analysis of proposed model
Here, the two datasets are used for validation and

consequences are mentioned in Table II.

In above Table II represent that the Experimental study
of various models. In the analysis of LR model attained the
training accuracy as 0.874 and testing accuracy as 0.865
and testing loss of 0.219 besides testing loss of 0.235
and precision of 0.869 and recall of 0.862 besides f1-
score as 0.865 correspondingly. Then the DBN classical
attained the training accuracy as 0.842 and testing accuracy
as 0.834and training loss of 0.289 and testing loss of 0.305
and precision as 0.836 and recall of 0.828 and f1-score
as 0.833 correspondingly. Then the AE model attained
the training accuracy as 0.901 besides testing accuracy as
0.896 and testing loss of 0.898 and recall of 0.891 and
f1-score as 0.895 congruently. Then the XGBoost model
accomplished the training accuracy as 0.892 and testing
accuracy as 0.881 and testing loss of 0.167 besides testing
loss of 0.178 and precision by way of 0.888 and recall
of 0.876 besides f1-score as 0.882 correspondingly. Then
the ELM model conquered the training accuracy as 0.854
and testing accuracy as 0.843 and testing loss of 0.271
and precision as 0.848 and recall of 0.839 and f1-score
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as 0.843 correspondingly. Then the MLP accuracy as 0.928
and testing accuracy as 0.916 0.084 and testing loss of 0.102
and precision as 0.912 and recall of 0.918 and f1-score as
0.915 similarly. Then the TCNN model accomplished the
training accuracy as 0.903 and testing accuracy as 0.895 and
testing loss of 0.898 and precision as 0.891 and f1-score
as 0.894 similarly. Then the Ensemble Classifier model
accomplished the training accuracy as 0.996 and testing
accuracy as 0.0003 and testing loss of 0.0035 and precision
as 0.992 and memory of 0.989 besides f1-score as 0.9764
correspondingly.

D. Experimental analysis of Feature Selection
Table III indicates that the Scrutiny of Projected GR-

FOA. In the breakdown of 60-40% ratio, the precision as
0.889 and recall of 0.945 and accuracy as 90.48 besides
f1-score as 0.916 and AUC ROC as 0.9 and AUC P-R as
0.932 correspondingly. Then 80-20% ratio, the precision as
0.958 and recall of 0.963 and accuracy as 98.92 and f1-
score as 0.96 and AUC ROC as 0.978 and AUC P-R as
0.963 correspondingly. Then 70-30% ratio, the precision as
0.929 and recall of 0.986 and accuracy as 93.84 besides
f1-score as 0.957 and AUC ROC as 0.909 and AUC P-R
as 0.962 correspondingly.

E. Discussion
EEG signals associated with emotions exhibit signifi-

cant inter-individual variability, posing a challenge for the
development of a universal model for emotion recognition.
This study addresses this issue by focusing on subject-
dependent emotion identification, tailoring models to in-
dividual differences in EEG responses. Accurate emotion
recognition relies on identifying the most relevant features
from EEG signals. To address this challenge, the research
employs Variation Mode Decomposition (VMD) and Em-
pirical Mode Decomposition (EMD) techniques for pre-
processing EEG data, effectively capturing both temporal
and spatial characteristics. Given the vast amount of data
and potential features extracted from EEG signals, selecting
the most relevant subset is critical. This study introduces
the Garra Rufa Fish Optimization Algorithm (GRFOA) to
optimize feature selection, ensuring that the most significant
features for emotion recognition are chosen.

5. Conclusion
This research presents an EEG-based emotion iden-

tification system that is independent of the individual.
The suggested approach uses EMD and VMD, which are
employed for emotion categorization, to calculate IMFs.
Two approaches, EMD besides VMD, are rummage-sale
to extract EEG data. In order to classify EEG signals, the
GRFOA model employs ensemble classifiers and handles
the feature selection process. The ensemble model was
evaluated on two publicly accessible MAHNOB-HCI, and it
incorporates ELM, MLP, and TCNN models. The suggested
approach is a global emotion detection system as it uses
diverse participants’ EEG data for model construction and
testing. Therefore, the suggested approach may be used

to the EEG of slightly individual employed for classifier
training, allowing for emotion identification. To potentially
enhance the prediction accuracy of comparable data, we
want to modify the input data and employ soft clustering
as a preprocessing step in the near future. Modifying
the model also makes it applicable to all situations. In
applications such as sleep monitoring, exercise intention,
illness detection, and more, it can analyze and identify EEG
data.
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