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Abstract: The escalating integration of smart homes with smart grids underscores the critical need for precise and timely predictions 

of energy consumption, essential for optimizing resource allocation and bolstering overall energy efficiency. This research work 

pioneers an innovative approach to enhance energy consumption predictions within smart homes by seamlessly integrating the robust 

time series forecasting capabilities of the Prophet algorithm with adaptive optimization techniques – ADAM (Adaptive Moment 

Estimation), SGD, ADAGRAD, and RMSPROP. Prophet's inherent proficiency in handling daily patterns and seasonality is further 

amplified by the adaptability conferred by optimization algorithms, addressing the intricate dynamics of non-linear patterns inherent 

in smart home energy consumption. Utilizing the extensive Pecan dataset, encompassing historical energy consumption of various 

appliances in a smart home, the proposed hybridized model undergoes rigorous evaluation against traditional Prophet and baseline 

models. Metrics such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE) serve as comprehensive benchmarks for assessing the model's performance. The hybridized model demonstrates a notable 

enhancement in accuracy and efficiency in predicting energy consumption, marking a substantial contribution to the ongoing 

evolution of energy management practices within smart homes connected to smart grids. As smart homes continue their trajectory of 

evolution, the primary aim of this research is to foster sustainable energy practices and optimize resource utilization, aligning with 

the ethos of smart living. 
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1. INTRODUCTION  

In recent years, the convergence of smart homes and 
smart grids has emerged as a transformative force in the 
realm of energy consumption and management [1]. The 
interconnection of these two technological domains 
presents a unique set of challenges and opportunities, 
chief among them being the imperative for accurate and 
timely predictions of energy consumption. This pressing 
need stems from the desire to optimize resource allocation 
and elevate overall energy efficiency in the dynamically 
evolving landscape of modern living [2]. This 
introduction sets the stage for a comprehensive 
exploration of an innovative research endeavor that 
addresses the intricacies of energy prediction within smart 
homes by leveraging advanced computational 
methodologies. The convergence of smart homes and 
smart grids has emerged as a transformative force 

reshaping the landscape of energy consumption and 
management. This integration intertwines the 
functionalities of household appliances and energy 
infrastructure, creating a dynamic ecosystem where real-
time data exchange and intelligent decision-making are 
paramount. One of the primary challenges in this domain 
lies in accurately predicting energy consumption within 
smart homes. Traditional methods often fall short in 
capturing the intricacies of modern living patterns, which 
are increasingly characterized by variability and 
unpredictability. However, advanced computational 
methodologies, such as machine learning algorithms and 
data-driven models, offer promising avenues to address 
this challenge. By leveraging the wealth of data generated 
by smart home devices and grid sensors, these 
computational approaches can analyze historical usage 
patterns, weather forecasts, occupant behaviors, and other 
relevant factors to forecast energy demand with 
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unprecedented accuracy. Such predictive capabilities not 
only enable households to optimize their energy usage in 
real-time but also empower utility providers to better 
anticipate peak demands and manage grid resources 
efficiently. Furthermore, the integration of energy 
prediction with smart home automation systems allows 
for proactive energy management strategies, such as load 
shifting, demand response, and smart scheduling of 
appliances. This not only reduces energy costs for 
consumers but also contributes to grid stability and 
resilience. 

The contemporary push towards sustainable and 
intelligent living has fueled the rapid proliferation of 
smart homes equipped with an array of interconnected 
devices and systems. Looking ahead, as smart homes 
continue to evolve in tandem with advancements in smart 
grid technologies, the outcomes of this research hold 
promise for shaping the trajectory of energy consumption 
in the future. By providing a nuanced understanding of the 
challenges and opportunities in predicting energy 
consumption within smart homes, this study contributes to 
the broader discourse on the role of data science and 
computational modeling in the pursuit of sustainable and 
intelligent living [3]. These homes are not only embedded 
with cutting-edge technologies but are also integrated into 
larger smart grids that facilitate bidirectional 
communication between energy producers and consumers 
[4]. This synergy aims to create a responsive and adaptive 
energy ecosystem, where real-time data informs decisions 
at both the individual household and grid levels[5]. 
However, the seamless integration of smart homes into 
smart grids requires a nuanced understanding of energy 
consumption patterns and a reliable means of predicting 
future demands. 

Against this backdrop, the research at hand introduces 
a novel approach to enhance the accuracy of energy 
consumption predictions within smart homes. At its core 
is the integration of the Prophet algorithm, a powerful 
time series forecasting tool developed by Facebook, with 
adaptive optimization techniques – namely, ADAM, 
SGD, ADAGRAD, and RMSPROP [6], [7],[8],[9]. The 
Prophet algorithm, renowned for its efficacy in capturing 
daily patterns, seasonality, and holidays in time series data 
[10], forms the bedrock of the proposed hybridized model. 
This algorithmic synergy is poised to tackle the dynamic 
and non-linear patterns inherent in smart home energy 
consumption, offering a promising solution to the 
challenges posed by the evolving nature of energy 
demand. 

To rigorously test the performance of the hybridized 
model, the study leverages the Pecan dataset – a 
comprehensive repository of historical energy 
consumption data derived from diverse appliances in a 
smart home [4]. This dataset, rich in its diversity and 

depth, provides a robust foundation for evaluating the 
proposed model against traditional Prophet and other 
baseline models. Importantly, the evaluation employs a 
suite of metrics, including Mean Absolute Percentage 
Error (MAPE), Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE), ensuring a comprehensive 
and nuanced assessment of the model's predictive 
capabilities. 

The combination of Prophet with adaptive 
optimization algorithms brings a unique strength to the 
predictive modeling framework. Prophet's ability to 
capture patterns aligns seamlessly with the adaptability 
and efficiency offered by optimization algorithms [10], 
presenting a holistic solution to the multifaceted 
challenges posed by the dynamic and non-linear nature of 
smart home energy consumption. This hybridization is 
anticipated to not only elevate the accuracy of predictions 
but also enhance the efficiency of the learning process, 
ensuring that the model adapts dynamically to the 
evolving energy landscape within smart homes. 

As the research unfolds, it becomes evident that the 
proposed hybridized model demonstrates superior 
accuracy and efficiency in predicting energy consumption 
compared to traditional Prophet and baseline models [2]. 
The inclusion of adaptive optimization techniques proves 
instrumental in refining the model's parameters, 
addressing the complexities posed by the variability of 
energy patterns within smart homes. This enhancement in 
predictive accuracy holds profound implications for the 
optimization of energy resources, offering a valuable tool 
for both individual households and the overarching smart 
grid infrastructure. 

The broader significance of this research extends 
beyond the realms of predictive modeling and algorithmic 
innovation. In the era of smart living technologies, 
characterized by the proliferation of interconnected 
devices and the pursuit of sustainable practices [5], the 
findings of this study contribute to the ongoing evolution 
of energy management practices within smart homes. The 
emphasis on accuracy, efficiency, and adaptability in 
predicting energy consumption aligns with the 
overarching goals of fostering sustainable energy 
practices and optimizing resource utilization. The 
integration of computational models with real-world data 
represents a critical step towards achieving the potential 
of smart homes as active participants in a responsive and 
intelligent energy ecosystem. 

Ultimately, this research sets the stage for a more 

informed and efficient utilization of energy resources, 

fostering a harmonious integration of technology and 

sustainability in the contemporary landscape of smart 

living.  
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2. REVIEW OF LITERATURE 

The intersection of smart homes and smart grids has 
emerged as a critical domain, emphasizing the need for 
accurate energy consumption predictions to optimize 
resource allocation and enhance overall energy efficiency. 
This literature review explores existing research on time 
series forecasting, the Prophet algorithm, adaptive 
optimization techniques, and the integration of these 
methodologies to predict energy consumption within 
smart homes. 

The foundation of energy consumption prediction lies 
in time series forecasting. Numerous studies have 
explored traditional methods like ARIMA [11] and 
Exponential Smoothing [12], highlighting their limitations 
in capturing the intricate patterns and seasonality inherent 
in smart home energy consumption. The integration of 
time series forecasting algorithms with adaptive 
optimization techniques has been explored to address the 
limitations of standalone models. Recent research has 
applied hybrid models to enhance accuracy in energy 
consumption predictions, particularly within the context 
of smart homes [13]. Rigorous evaluation is essential to 
assess the performance of predictive models accurately. 
Common metrics such as Mean Absolute Percentage 
Error (MAPE), Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) provide comprehensive 
benchmarks for comparing different models [14].The 
application of hybrid models extends beyond time series 
forecasting, with studies showcasing their effectiveness in 
optimizing energy management practices in various 
contexts, including industrial settings [15].Despite 
advancements, challenges persist in accurately predicting 
energy consumption patterns, especially concerning the 
dynamic nature of smart home environments. Researchers 
have identified opportunities for further improvement, 
such as the incorporation of real-time data and advanced 
machine learning techniques [16].As smart homes become 
more interconnected, the utilization of big data and 
machine learning in smart grids is gaining prominence. 
Research in this area explores how these technologies can 
enhance the efficiency and reliability of energy 
distribution [17]. The proliferation of smart home devices 
raises concerns about data privacy and security. Studies 
have delved into the challenges associated with 
safeguarding sensitive information and ensuring the 
secure functioning of smart home ecosystems [18]. 
Adding to this rich tapestry of literature, recent studies by 
Yuen et al. [19] investigated advanced machine learning 
techniques for energy forecasting in smart homes, 
emphasizing the role of ensemble methods in enhancing 
prediction accuracy. The study contributes valuable 
insights into the ongoing efforts to improve forecasting 
models in the context of smart homes. Furthermore, the 
work of Wang et al. [20] explored the application of 
explainable artificial intelligence (XAI) techniques in 
interpreting energy consumption patterns within smart 
homes. This line of research addresses the increasing 

importance of transparency and interpretability in 
predictive models, aligning with the broader goals of 
fostering user trust and understanding in smart home 
energy management systems. The literature reviewed 
underscores the multifaceted nature of energy 
consumption prediction within smart homes. The 
integration of the Prophet algorithm with adaptive 
optimization techniques presents a promising avenue for 
addressing the complexities associated with forecasting in 
dynamic environments. As smart homes continue to 
evolve, research in this field not only contributes to 
efficient resource management but also aligns with the 
overarching goal of promoting sustainability in smart 
living. 

3. PRELIMINARIES 

A. Prophet Algorithm: 

Facebook's Core Data Science team introduced the 
Prophet algorithm as a versatile forecasting tool 
celebrated for its adaptability, simplicity, and adept 
handling of temporal patterns like trends and seasonality. 
This algorithm has gained popularity owing to its ability 
to distill time series data into three fundamental 
components: trend, seasonality, and holidays, through an 
additive model framework.The algorithm's strength lies in 
its capability to seamlessly integrate these components to 
make accurate predictions about future patterns. Firstly, 
the trend component is captured using a piecewise linear 
or logistic growth curve, which enables the algorithm to 
flexibly adapt to varying trends over time. This ensures 
that the forecast accurately reflects the underlying 
trajectory of the data.Secondly, seasonality—a recurring 
pattern that repeats at regular intervals—is modeled using 
Fourier series. By incorporating Fourier terms, Prophet 
efficiently captures complex seasonal variations, such as 
daily, weekly, or yearly cycles, allowing for precise 
forecasting even in the presence of intricate seasonal 
patterns.Moreover, the inclusion of holidays as an explicit 
component enables the algorithm to account for the 
impact of special events or occasions that may influence 
the data, ensuring that the forecasts remain robust and 
accurate even during holiday periods. 

 The following is the formula for Prophet algorithm: 

y(t) = g(t) + s(t) + h(t) + ϵt 

Where: 

y(t) represents the observed value of the time series at 
time t 

g(t) denotes the trend component, which captures 
long-term changes in the data. 

s(t) represents the seasonality component, accounting 
for periodic fluctuations. 

h(t) accounts for the effects of holidays and other 
special events. 
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ϵt  is the error term, representing the difference 
between the observed value and the forecasted value. 

 

B. SGD: 

Stochastic Gradient Descent (SGD) stands as a 
cornerstone optimization technique in the realm of 
machine learning, particularly within the domain of deep 
learning. Its significance lies in its ability to efficiently 
train complex models by iteratively updating their 
parameters based on gradients computed from small 
batches of training data. 

At its core, SGD operates through a cyclic process. It 
begins by randomly selecting a small subset of data points 
from the training set, known as a mini-batch. The model 
computes the gradients of the loss function with respect to 
its parameters using this mini-batch. These gradients 
indicate the direction of steepest ascent of the loss 
function in the parameter space. SGD then adjusts the 
model parameters in the opposite direction of the gradient, 
aiming to minimize the loss function. 

The use of mini-batches in SGD offers several 
advantages. Firstly, it significantly reduces computational 
overhead compared to traditional Gradient Descent, as it 
only requires computing gradients on a subset of the 
training data at each iteration. This makes SGD 
particularly well-suited for large-scale datasets and 
complex models, where processing the entire dataset at 
once may be impractical or infeasible. 

Moreover, the stochastic nature of SGD—stemming 
from the random selection of mini-batches—introduces 
noise into the optimization process. This noise can help 
the optimization algorithm escape local minima and 
explore the parameter space more effectively, leading to 
potentially better convergence and generalization 
performance. 

The following is the formula for upgrading the 
parameters using SGD: 

θ t+1  = θ t −η∇J (θt ; x(i), y(i)) 

Where: 

θt  represents the parameters of the model at iteration  

η is the learning rate, determining the step size in 
parameter updates. 

J(θt; x(i),y(i) ) is the loss function, which measures the 
difference between predicted and actual values for a given 
sample (x(i) ,y(i)) 

∇J(θt; x(i),y(i)) denotes the gradient of the loss 
function with respect to the parameters, computed using a 
single sample or a mini-batch of samples. 

 

C. ADAGRAD: 

AdaGrad, short for Adaptive Gradient Algorithm, 
emerges as a pivotal optimization technique devised to 
tackle challenges posed by sparse data and unequal 
gradient magnitudes encountered during model training. 
Traditional optimization algorithms, such as Gradient 
Descent, often struggle to effectively navigate in scenarios 
where certain parameters receive infrequent updates or 
exhibit widely varying gradients. 

The key innovation of AdaGrad lies in its adaptive 
learning rate mechanism, which dynamically adjusts the 
learning rates for each parameter based on their historical 
gradients. Specifically, AdaGrad maintains a separate 
learning rate for each parameter, which is scaled inversely 
with the square root of the sum of squared past gradients 
for that parameter. Parameters associated with large 
gradients in the past will thus have smaller learning rates, 
while those with smaller gradients will have larger 
learning rates. This adaptive adjustment ensures that 
parameters with infrequent updates or large gradients 
receive appropriate attention during optimization. 

By incorporating information about past gradients, 
AdaGrad effectively addresses the issue of uneven 
gradient magnitudes, allowing it to navigate the 
optimization landscape more efficiently. Moreover, its 
adaptability to sparse data makes it particularly well-
suited for tasks involving high-dimensional data or 
scenarios where certain features may be rare or occur 
irregularly. 

The formula for updating parameters using 
ADAGRAD is as follows: 

θ t+1,i  = θt,i  − η 

                       ______ . g t,i 

                    √ Gt,ii ϵ 

Where: 

θt,i represents the  i-th parameter at iteration t. 

η is the learning rate. 

Gt,ii is the diagonal element of the accumulated 
squared gradient matrix up to iteration t. 

gt,i is the gradient of the loss function with respect to 
the i-th parameter at iteration t. 

ϵ is a small constant added for numerical stability to 
avoid division by zero. 
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D. RMSPROP: 

Root Mean Square Propagation (RMSprop) stands out 
as a potent optimization technique tailored to address the 
limitations of traditional stochastic gradient descent 
(SGD). Unlike SGD, which employs a uniform learning 
rate for all parameters, RMSprop adapts the learning rates 
individually for each parameter, thereby offering more 
nuanced optimization dynamics. 

The core principle of RMSprop revolves around 
mitigating the challenges posed by sparse data or volatile 
gradients across parameters. By adjusting the learning 
rates independently, RMSprop ensures that parameters 
experiencing significant fluctuations in gradients receive 
appropriate attention during optimization. This 
adaptability is particularly advantageous in scenarios 
where data is limited, and gradients vary widely across 
parameters, as it enables the algorithm to navigate the 
optimization landscape more efficiently. 

At its heart, RMSprop computes an exponentially 
weighted moving average of the squared gradients for 
each parameter. This moving average serves as a 
normalization factor for the learning rates, effectively 
scaling down the updates for parameters with large 
gradients and amplifying the updates for those with 
smaller gradients. Consequently, RMSprop can converge 
more effectively, even in situations where conventional 
SGD struggles to make progress. 

Furthermore, RMSprop inherits the robustness of 
adaptive learning rate methods like AdaGrad while 
addressing its limitation of diminishing learning rates over 
time. By utilizing an exponentially decaying average of 
past squared gradients, RMSprop ensures that the learning 
rates remain appropriately scaled throughout the 
optimization process, fostering stable and consistent 
convergence. 

The formula for updating parameters using RMSprop 
is as follows: 

vt+1  = βvt  + (1−β)gt2 

θt+1  = θt – η 

                  ______   ⋅gt 

                √vt+1+ ϵ 

Where: 

θt  represents the parameters of the model at iteration 

t 

η is the learning rate 

gt is the gradient of the loss function with respect to 
the parameters at iteration t 

vt is the exponentially decaying average of squared 
gradients 

β is the decay rate, typically set to a value close to 1  

ϵ is a small constant 

 

E. ADAM: 

The ADAM optimizer has emerged as a favored 
optimization technique for training deep learning models 
due to its effectiveness in adapting learning rates for every 
parameter in an adaptive and efficient manner. ADAM 
stands out by utilizing squared gradients and 
exponentially decaying averages of previous gradients to 
dynamically adjust learning rates during the optimization 
process. 

The key feature of ADAM lies in its adaptive learning 
rate scheme, which enables it to fine-tune the learning 
rates for individual parameters based on the magnitude 
and variability of their gradients. By incorporating 
squared gradients and exponentially decaying averages, 
ADAM effectively adapts to the characteristics of the 
optimization landscape, ensuring that parameters with 
noisy or sparse gradients receive appropriate updates 
while preventing excessive oscillations or divergence. 

One of the primary advantages of ADAM is its ability 
to converge rapidly compared to conventional 
optimization techniques. This is attributed to its adaptive 
learning rate mechanism, which allows it to navigate the 
optimization landscape more efficiently by adjusting 
learning rates on-the-fly. Consequently, ADAM often 
converges more quickly, making it well-suited for training 
deep learning models, particularly in scenarios where 
gradients may be noisy, sparse, or exhibit significant 
variability. 

The formula for updating parameters using ADAM is 
as follows: 

mt = β1mt−1 + (1−β1) gt2 

vt  = β2vt−1 + (1−β2) gt2 

m^t  =  mt / 1 −β1t 

v^t  =  vt/ 1−β2t 

θ t+1 = θt – η / √v^t +ϵ  . m^t 

Where 

mt and vt are the exponentially decaying moving 
averages of the gradients and squared gradients 
respectively 

β1, β2 are the exponential decay rates for the first 

and second moments 

gt represents the gradient of the loss function with 
respect to the parameters at time t 

m^t and v^t  are bias-corrected estimates of the first 
and second moments 
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η is the learning rate, determining the step size in 

parameter updates. 

ϵ is a small constant 

4. METHODOLOGY 

The methodology utilized in this study is designed to 
enhance energy consumption forecasts within smart 
homes by combining the Prophet algorithm with adaptive 
optimization techniques such as ADAM, SGD, 
ADAGRAD, and RMSPROP. By combining these 
methodologies, this work aims to improve the accuracy 
and efficiency of predicting energy usage patterns. To 
achieve this goal, the research is carried out with the 
Pecan dataset, a comprehensive repository containing 
historical energy consumption data from a variety of 
smart home appliances. The Pecan dataset covers the 
energy consumption of each appliance, recorded at 15-
minute intervals, spanning from 2012 to 2019. This 
extensive dataset provides a rich source of information for 
training and testing predictive models, allowing to capture 
diverse usage patterns and fluctuations in energy 
consumption over time. The framework of the study 
encompasses several essential steps: 

Data Collection: 

The utilization of the Pecan dataset represents a 
pivotal aspect of this work's methodology. The Pecan 
dataset serves as a comprehensive and invaluable 
resource, offering a diverse collection of energy 
consumption data sourced from numerous smart homes. 
Spanning from 2012 to 2019, this dataset encompasses a 
significant timeframe, enabling researchers to analyze 
long-term trends and fluctuations in energy usage. One of 
the notable strengths of the Pecan dataset is its 
granularity, with energy consumption data recorded at 15-
minute intervals. This level of temporal resolution 
provides a detailed insight into the dynamics of energy 
usage within smart homes, capturing variations 
throughout different times of the day, days of the week, 
seasons, and even years. Furthermore, the dataset covers a 
wide array of smart home appliances, documenting the 
energy consumed by each individual device. This 
granularity allows for a nuanced understanding of energy 
consumption patterns at the appliance level, facilitating 
targeted analyses and predictions.  The dataset is cleaned 
and null values are replaced with the mean. 

Algorithm Selection and Integration: 

The selection and integration of the Prophet algorithm 
alongside adaptive optimization techniques represent a 
strategic approach aimed at maximizing the accuracy and 
adaptability of energy consumption predictions within 
smart homes. The Prophet algorithm is chosen for its 
well-documented capability to effectively capture various 
temporal patterns present in time series data. Specifically, 

Prophet excels in identifying and modeling daily patterns, 
seasonality effects, and holiday fluctuations. By 
leveraging the inherent strengths of Prophet, this work  
ensures a robust framework for analyzing and forecasting 
energy consumption dynamics over time. In addition to 
Prophet, adaptive optimization techniques such as 
ADAM, SGD (Stochastic Gradient Descent), 
ADAGRAD, and RMSPROP are incorporated into the 
methodology. These techniques are renowned for their 
ability to optimize model parameters efficiently, 
particularly in scenarios characterized by dynamic and 
non-linear patterns. By integrating these adaptive 
optimization techniques, this work enhances the 
adaptability and efficiency of the Prophet algorithm in 
handling the complexities inherent in smart home energy 
consumption data. ADAM, SGD, ADAGRAD, and 
RMSPROP enable the model to dynamically adjust its 
parameters in response to changing patterns and trends, 
ensuring optimal performance even in the presence of 
non-linearity and variability. 

Model Training: 

The hybridized model, comprising the integrated 
Prophet algorithm and adaptive optimization techniques, 
undergoes a rigorous training process using the detailed 
Pecan dataset. To ensure an effective evaluation of the 
model's performance, the dataset is divided into training 
and testing subsets in a 70:30 ratio, respectively. During 
the training phase, the primary objective is to optimize the 
model parameters to achieve accurate and efficient 
predictions of energy consumption patterns within smart 
homes. This optimization process considers the unique 
characteristics of the dataset, which contains high-
frequency energy consumption data recorded at 15-minute 
intervals. By leveraging the training subset, the model 
iteratively learns from the historical energy consumption 
patterns present in the data. Through the integration of the 
Prophet algorithm and adaptive optimization techniques, 
the model adjusts its parameters to capture the underlying 
temporal patterns, including daily variations, seasonality 
effects, and other relevant factors. The training process 
involves fine-tuning the model's parameters to minimize 
prediction errors and enhance its ability to capture the 
nuances of energy consumption dynamics. Additionally, 
the model undergoes validation procedures to ensure its 
robustness and generalization capability across different 
time periods and scenarios. 

Evaluation Metrics: 

A suite of evaluation metrics are employed to assess 
the performance of the hybridized model in predicting 
energy consumption within smart homes. These metrics 
provide quantitative measures of the model's performance, 
allowing for a thorough assessment of its predictive 
capabilities. Among the key evaluation metrics utilized 
are: Mean Absolute Percentage Error (MAPE) which is a 
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widely-used metric that quantifies the average percentage 
difference between the predicted values and the actual 
values. It provides insight into the overall accuracy of the 
model's predictions, taking into account the magnitude of 
errors relative to the actual values. Mean Absolute Error 
(MAE) measures the average absolute difference between 
the predicted values and the actual values. It offers a 
straightforward indication of the model's accuracy, 
regardless of the direction of errors, by computing the 
average magnitude of deviations between predicted and 
actual values. Root Mean Squared Error (RMSE) is 
another common metric used to assess the accuracy of 
predictive models. It calculates the square root of the 
average squared differences between predicted and actual 
values, providing a measure of the variability or 
dispersion of prediction errors. RMSE gives more weight 
to larger errors compared to MAE, making it sensitive to 
outliers in the data. By employing these evaluation 
metrics, the performance of the hybridized model is 
comprehensively evaluated from different perspectives. 
MAPE offers insights into the percentage accuracy of 
predictions, while MAE and RMSE provide information 
about the magnitude and variability of prediction errors, 
respectively. Together, these metrics provide a robust 
framework for assessing the effectiveness and reliability 
of the hybridized model in capturing energy consumption 
patterns within smart homes. 

Baseline Models: 

To establish a benchmark for comparison, baseline 
model using traditional Prophet is developed, alongside 
the proposed hybridized model. This baseline model is 
essential for assessing the improvement achieved by the 
hybridized model, especially considering the granularity 
of the 15-minute data. By comparing the performance of 
the baseline models with the hybridized model, this work  
quantifies the extent of enhancement in predictive 
accuracy and efficiency. This comparative analysis 
provided valuable insights into the effectiveness of the 
hybridized approach in capturing the intricate energy 
consumption patterns within smart homes, offering a 
robust basis for evaluating its practical utility. 

Comparative Analysis: 

A rigorous comparative analysis was conducted to 
evaluate the performance of the hybridized model against 
traditional Prophet and baseline models. This 
comprehensive assessment aimed to provide insights into 
the accuracy and efficiency of energy consumption 
predictions, particularly considering the high-frequency 
nature of the dataset. By systematically comparing the 
predictive capabilities of these models, the study gained 
valuable insights into their respective strengths and 
weaknesses. This analysis facilitated a deeper 
understanding of the effectiveness of the hybridized 
approach in capturing the intricate energy consumption 
patterns within smart homes, thereby informing decisions 
regarding its practical implementation and utility. 

Ethical Considerations: 

Ethical standards are adhered, including data privacy 
and confidentiality, throughout the study. Any potential 
biases in the dataset or model outputs were carefully 
considered and addressed. 

Implications: 

The practical implications of this work’s findings on 
energy consumption within smart homes connected to 
smart grids were investigated. Examination is done on 
how accurate predictions could lead to more efficient 
resource utilization, potentially reducing overall energy 
costs and environmental impact. The broader implications 
for sustainable living and the integration of smart 
technologies into everyday life is also taken into 
consideration so that forecasting helps not only the 
consumers but also the utilities to provide uninterrupted 
power suppy even when natural calamities occus. 

By following this comprehensive methodology, this 
work aims to provide a thorough assessment of the 
proposed hybridized model's ability to accurately predict 
energy consumption in smart homes. This approach, 
considering both the detailed and high-frequency nature of 
the dataset and ethical considerations, contributes valuable 
insights to the field of energy management practices 
within the context of smart grids and smart homes, with 
potential implications for sustainable and efficient living. 
This research work is implemented using Python. 

5. PSEUDOCODE 

Constructing pseudocode for a comprehensive 
methodology involves outlining the procedural steps 
without adhering to a specific programming syntax. The 
following pseudocode provides an overview of the 
described methodology: 

1. Load Pecan Dataset from 2012 to 2019 // Time-
stamped energy consumption data for each appliance 
every 15 minutes 

2. Initialize Prophet Algorithm 

3. Initialize Adaptive Optimization Techniques 
(ADAM, SGD, ADAGRAD, RMSPROP) 

4. Integrate Optimization Techniques with Prophet 
Algorithm 

5. Split Dataset into Training and Testing Sets 

6. Train Hybridized Model using Integrated Algorithm 
on Training Set 

7. Initialize Evaluation Metrics (MAPE, MAE, MSE, 
RMSE) 

8. Predict Energy Consumption on Testing Set 

9. Calculate Evaluation Metrics for Hybridized Model 

10. End of Pseudocode 
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6. RESULTS  

The hybridized model, integrating the Prophet 
algorithm with adaptive optimization techniques 
(ADAM, SGD, ADAGRAD, and RMSPROP), 
demonstrated significant enhancements in accuracy and 
efficiency compared to traditional Prophet and baseline 
models. The predictions of energy consumption within 
smart homes exhibited improved alignment with actual 
consumption patterns, showcasing the efficacy of the 
proposed approach. The graphical representation of the 
actual data and prediction using prophet algorithm with 
various optimizer discussed above is shown in Fig 1.  

  

Fig 1: Comparative graph representing actual data using prophet 
and optimizers 

The evaluation metrics for different models predicting 
energy consumption within smart homes are presented in 
the table below: 

Metrices Prophet 

Prophet 

with 
ADAM 

Prophet 

with SGD 

Prophet 

with 

ADAGR
AD 

Prophet 

with 

RMSPR
OP 

RMSE 0.25 0.219 0.145 0.337 0.165 

MAE 0.17 0.4 0.307 0.508 0.34 

MAPE 22.87 1.517 1.137 1.833 1.297 

 
RMSE (Root Mean Squared Error): 

The Prophet with SGD model exhibits the lowest 
RMSE at 0.145, indicating superior accuracy in predicting 
energy consumption. This result suggests that the model's 
predictions are closer to the actual values, minimizing the 
squared differences between them. Fig 1. Shows the 
graphical representation of RMSE that is obtained by 
combining prophet algorithm with optimization 
techniques like ADAM, SGD, ADAGRAD and 
RMSPROP. 

 

MAE (Mean Absolute Error): 

Prophet with SGD again outperforms the other 
models, yielding the lowest MAE of 0.307. This finding 
signifies the model's effectiveness in minimizing absolute 
errors, providing more precise estimates of energy 
consumption. 

 

MAPE (Mean Absolute Percentage Error): 

Prophet with ADAM achieves the lowest MAPE at 
1.517%, indicating its capability to make predictions with 
the smallest percentage of errors relative to the actual 
values. This suggests that Prophet with ADAM offers 
accurate forecasts with minimal relative discrepancies. 
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7. DISCUSSION 

The consistently low MSE and MAE values for 
Prophet with SGD underscore its dominance in accuracy 
among the models. This suggests that the integration of 
Stochastic Gradient Descent (SGD) optimization 
significantly enhances the model's predictive 
performance. Hence Prophet with SGD Dominates 
Accuracy.  

Prophet with ADAM can be taken when Precision is 
considered. Prophet with ADAM excels in achieving the 
lowest MAPE, emphasizing its precision in predicting 
energy consumption with minimal percentage errors. 
This characteristic is crucial for applications where 
relative accuracy is a priority.The choice between 
Prophet with SGD and Prophet with ADAM depends on 
the specific priorities of the application. If absolute 
accuracy is paramount, Prophet with SGD is preferred, 
while Prophet with ADAM is favored for minimizing 
relative errors.The findings have practical implications 
for smart home energy management, emphasizing the 
significance of tailored model selection based on specific 
objectives. These results contribute to the ongoing 
advancements in predictive modeling techniques within 
the context of smart living technologies.In summary, the 
results demonstrate the effectiveness of incorporating 
advanced optimization algorithms, particularly SGD and 
ADAM, in enhancing the accuracy and precision of 
energy consumption predictions for smart homes. These 
insights offer valuable guidance for practitioners and 
researchers in the field of smart home energy 
management, contributing to the refinement of predictive 
models and resource optimization. 

8. CONCLUSION 

In conclusion, the comparative evaluation of energy 
consumption prediction models within smart homes 
reveals compelling insights into their respective 
performances. Notably, models integrating adaptive 
optimization techniques, such as Prophet with SGD and 
Prophet with ADAM, surpass the traditional Prophet 
model in terms of Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). Prophet with SGD stands out 
with the lowest RMSE and MAE values, indicating its 
exceptional accuracy in forecasting energy consumption. 
The incorporation of adaptive optimization algorithms 
consistently leads to a significant reduction in prediction 
errors, as evidenced by markedly lower MAPE values 
across all enhanced models compared to the baseline 
Prophet model. Prophet with ADAM, in particular, 
achieves the lowest MAPE, signifying its precision in 
predicting energy consumption with minimal percentage 
errors. These findings underscore the efficacy of 
leveraging adaptive optimization algorithms in 
conjunction with the Prophet algorithm, showcasing the 

potential for improved accuracy and efficiency in energy 
consumption predictions for smart homes. The results 
provide valuable guidance for practitioners and 
researchers seeking optimal models for smart home 
energy management, with Prophet with SGD 
demonstrating notable promise in minimizing prediction 
errors. As the smart home landscape continues to evolve, 
these findings contribute to advancing predictive 
modeling techniques and optimizing resource utilization 
within the realm of smart living.  
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